
Announcements
Assignment 2

Programming is graded (Mean: 80%)

Assignment 3
Programming was due
Theory is due Friday (Nov 21st)

Assignment 4
You can start planning



Interpolation, Parametric 
Curves and Surfaces

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal



What is interpolation?

Why do we need interpolation?

Animation
Curved surface 



Keyframe Animation
Idea: specify variables that describe keyframes and 
interpolate them over the sequence

(e.g. Assignment 1 & 2)



Interpolation Basics
Goal: develop vocabulary of modeling primitives, 
that can extend meshes or global analytic shapes

We would like to define curves that meet the 
following criteria:

Interaction should be natural and intuitive
Smoothness should be controllable
Analytic derivatives should exist and be easy to compute
Adjustable resolution (easy to zoom in and out)
Representation should be compact



Curves Basics

Interpolation
Curve goes through “control 
points”

Approximation
Curve approximates but does 
not go through “control points”

Extrapolation
Extending curve beyond 
domain of control points



Continuity 

Cn continuous function implies that n-th order 
derivatives exist

C0 C1 C2

For animation purposes, C2 continuous functions typically are sufficient

What is the continuity of the n-th order polynomial?



Linear Interpolation
Simplest possible interpolation technique

Peace wise linear curve 

Pros:
Really simple to implement
Local (interpolation only depends on the closest two control 
points)

Cons:
Only C1 continuous (typically bad for animation)



Cubic Interpolation

Consider a 2D cubic interplant (a curve in 2D)

where

Alternatively,
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Cubic Interpolation

We have 8 unknowns (coefficients) how many 
2D points do we need to constrain the curve? 
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Cubic Interpolation
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Cubic Interpolation
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Cubic Interpolation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

3

2

1

0

32

32

4

3

2

1

4

3

2

1

1111
3
2

3
2

3
21

3
1

3
1

3
11

0001

b
b
b
b

a
a
a
a

y
y
y
y

x
x
x
x

],[)0( 11 yxc =

],[
3
1

22 yxc =⎟
⎠
⎞

⎜
⎝
⎛

],[)1( 44 yxc =

],[
3
2

33 yxc =⎟
⎠
⎞

⎜
⎝
⎛

coefficients



Cubic Interpolation
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Cubic Interpolation
Consider a 2D cubic interplant (a curve in 2D)

where

Alternatively we can place derivative constrains
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Cubic Interpolation
Consider a 2D cubic interplant (a curve in 2D)

where

Alternatively we can place derivative constrains
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Cubic Interpolation
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Cubic Interpolation
What happens if there are more then 4 points? 

There may not be a solution that goes through all 
the control points (or any of the control points)
Interpolation may not result in intuitive results

Cubic interpolation is global
Changing one control point changes the 
interpolation for all points

In general (at least for animation) local control 
is better



Bezier Curves
Idea: cascade of linear interpolations
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If we plug in all the expressions into c(t) we get a polynomial 
in terms of control points



Bezier Curves
Idea: cascade of linear interpolations
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Bezier Curves Generalization
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Bernstein Polynomials of Degree 3

Note: Bezier curve with 4 points will be a combination 
of these curves.

B1
3(t) B2

3(t)

B3
3(t)B0

3(t)



Bezier Curves Properties
Bezier curve interpolates between the first and the last 
point, but not the intermediate points

Bezier curves have nice properties that make them 
useful in graphics

Affine invariance: affine transformation of the curve implies 
transformation of control points (nothing else)
Convex hall property: any point on a curve is by definition a 
convex combination of the control points, hence the curve must 
be inside the (convex) polygon defined by those points
Linear precision: as convex polygon approximates the line, 
so will the curve
Variation Diminishing: No line has more intersections with 
the curve than with control points (no accessive fluctuations)



Derivatives of Bezier Curves
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Derivatives of Bezier Curves
Property: tangents at the end points of a Bezier curve 
are always parallel to vector from the end point to 
the adjacent point

0p

1p 2p

3p



Final word on Bezier curves

Pros:
Has nice properties (e.g. affine invariance)
Derivatives are easy to compute

Cons:
Tough to control a high-order polynomial 
Global (curve is a function of all control points)



Catmull-Rom Splines
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Idea: piecewise cubic curves of degree-3 with C1

continuity

A user specifies points and the tangent at each point 
is set to be parallel to the vector between adjacent 
points

k is the set by the user parameter, that determines 
the “tension” of the curve



Catmull-Rom Splines
To interpolate a value for the point between pj and 
pj+1 one needs to consider 4 bits of information 
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Catmull-Rom Splines
To interpolate a value for the point between pj and 
pj+1 one needs to consider 4 bits of information 
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(see lecture notes for details)
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