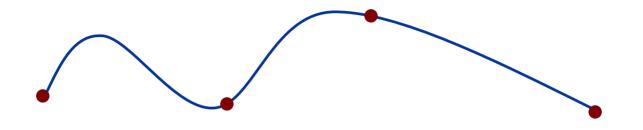
Announcements

- Assignment 2
 - Programming is graded (Mean: 80%)
- Assignment 3
 - Programming was due
 - Theory is due Friday (Nov 21st)
- Assignment 4
 - You can start planning

Interpolation, Parametric Curves and Surfaces

Computer Graphics, CSCD18 Fall 2008 Instructor: Leonid Sigal

What is interpolation?



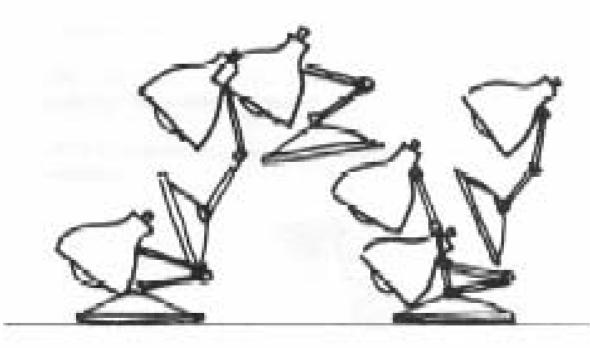
Why do we need interpolation?

- Animation
- Curved surface

Keyframe Animation

Idea: specify variables that describe keyframes and interpolate them over the sequence

(e.g. Assignment 1 & 2)



Interpolation Basics

- Goal: develop vocabulary of modeling primitives, that can extend meshes or global analytic shapes
- We would like to define curves that meet the following criteria:
 - Interaction should be natural and intuitive
 - Smoothness should be controllable
 - Analytic derivatives should exist and be easy to compute
 - Adjustable resolution (easy to zoom in and out)
 - Representation should be compact

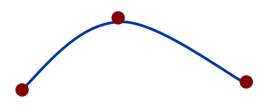
Curves Basics

Interpolation

Curve goes through "control points"

Approximation

Curve approximates but does not go through "control points"

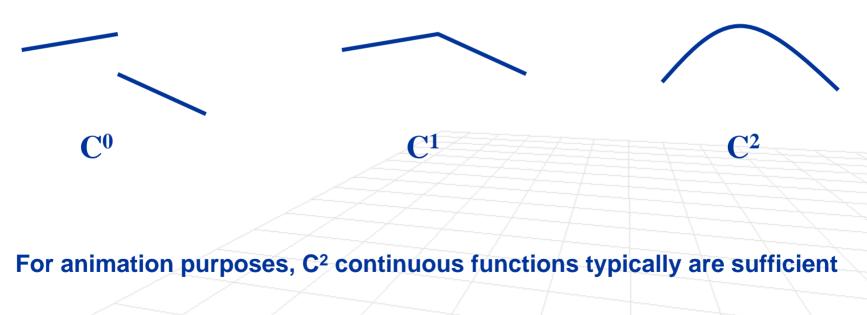


Extrapolation

 Extending curve beyond domain of control points

Continuity

 Cⁿ continuous function implies that n-th order derivatives exist

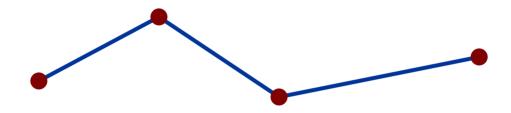


What is the continuity of the n-th order polynomial?

Linear Interpolation

Simplest possible interpolation technique

Peace wise linear curve



Pros:

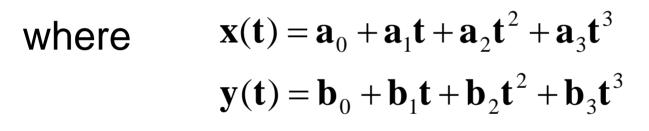
- Really simple to implement
- Local (interpolation only depends on the closest two control points)

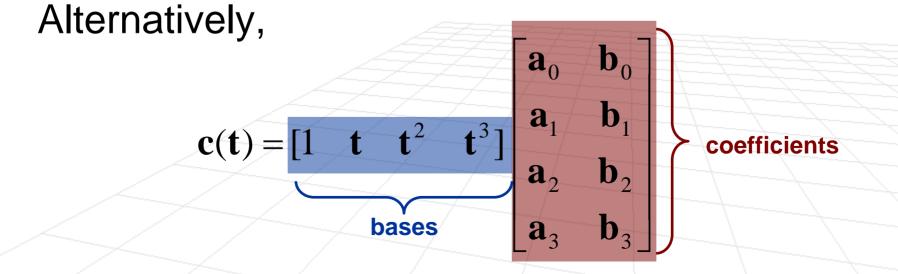
Cons:

Only C¹ continuous (typically bad for animation)

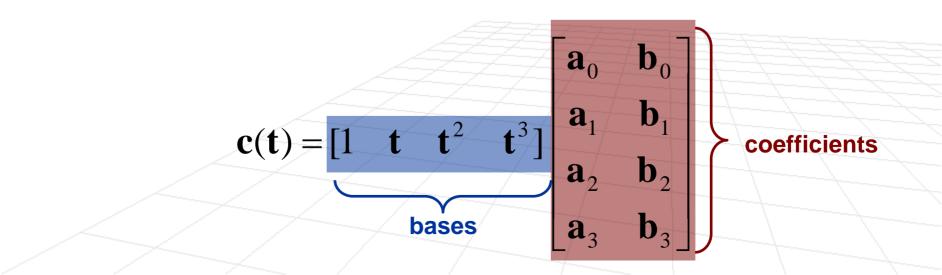
Consider a 2D cubic interplant (a curve in 2D)

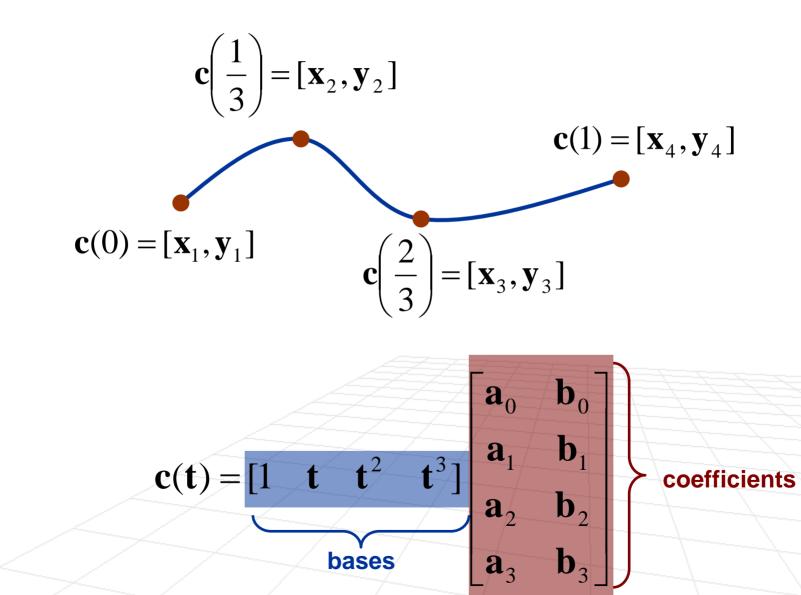
 $\mathbf{c}(\mathbf{t}) = [\mathbf{x}(\mathbf{t}) \ \mathbf{y}(\mathbf{t})]$

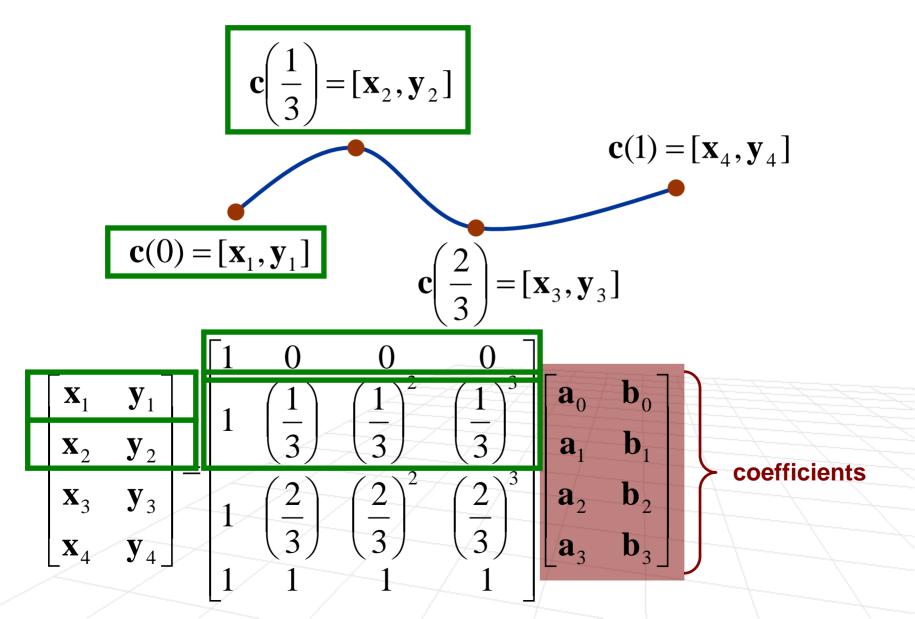


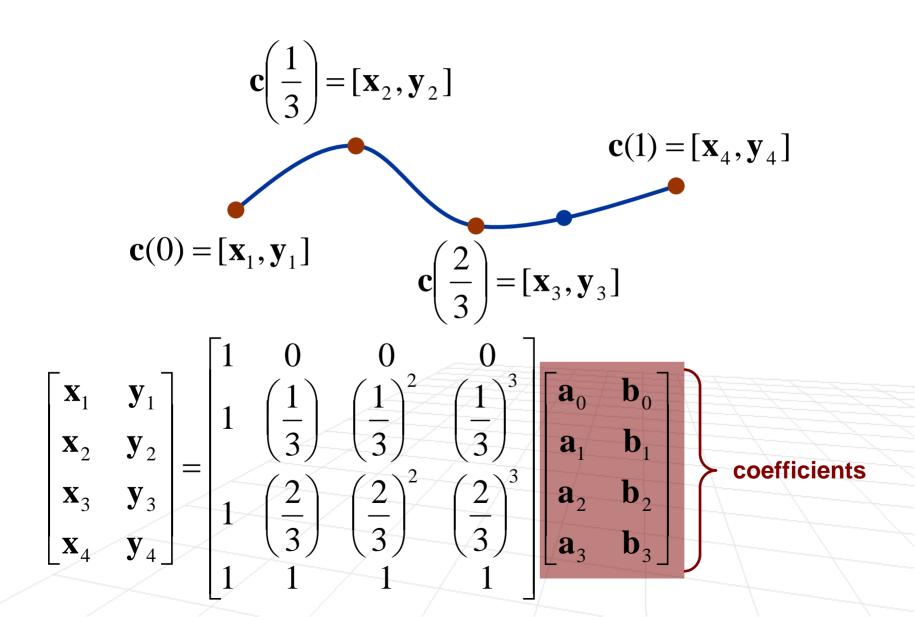


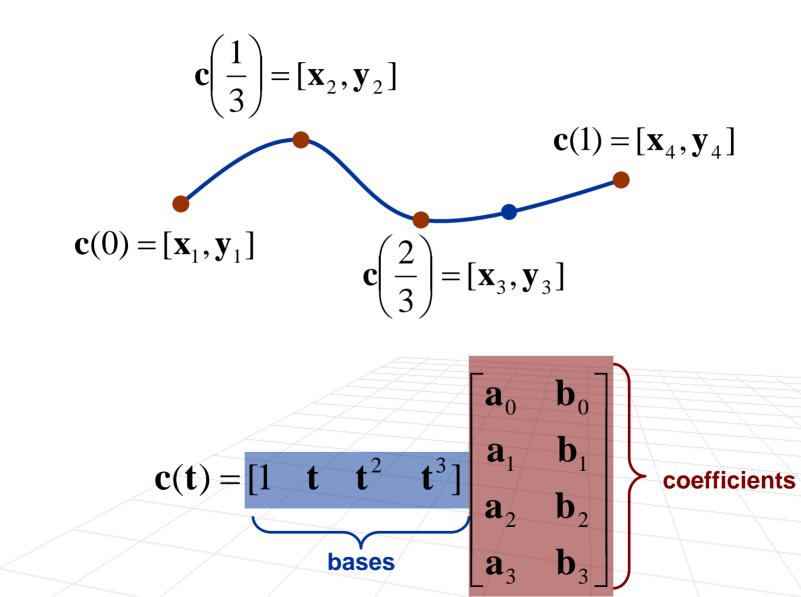
We have **8 unknowns** (coefficients) how many 2D points do we need to constrain the curve?











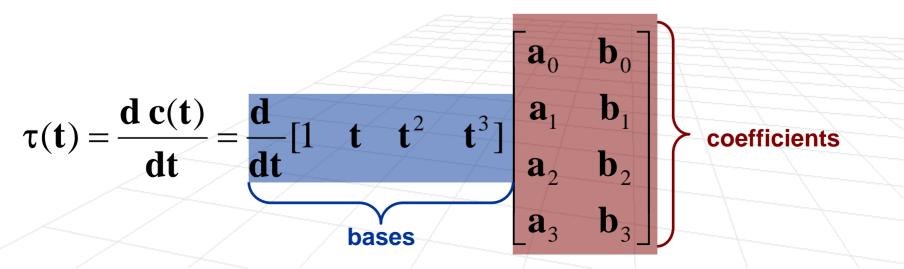
Consider a 2D cubic interplant (a curve in 2D)

 $\mathbf{c}(\mathbf{t}) = [\mathbf{x}(\mathbf{t}) \ \mathbf{y}(\mathbf{t})]$

where
$$\mathbf{x}(t) = \mathbf{a}_0 + \mathbf{a}_1 t + \mathbf{a}_2 t^2 + \mathbf{a}_3 t^3$$

 $\mathbf{y}(t) = \mathbf{b}_0 + \mathbf{b}_1 t + \mathbf{b}_2 t^2 + \mathbf{b}_3 t^3$

Alternatively we can place derivative constrains



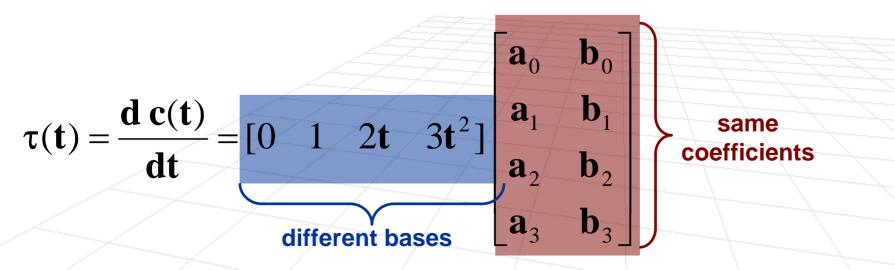
Consider a 2D cubic interplant (a curve in 2D)

 $\mathbf{c}(\mathbf{t}) = [\mathbf{x}(\mathbf{t}) \ \mathbf{y}(\mathbf{t})]$

where
$$\mathbf{x}(t) = \mathbf{a}_0 + \mathbf{a}_1 t + \mathbf{a}_2 t^2 + \mathbf{a}_3 t^3$$

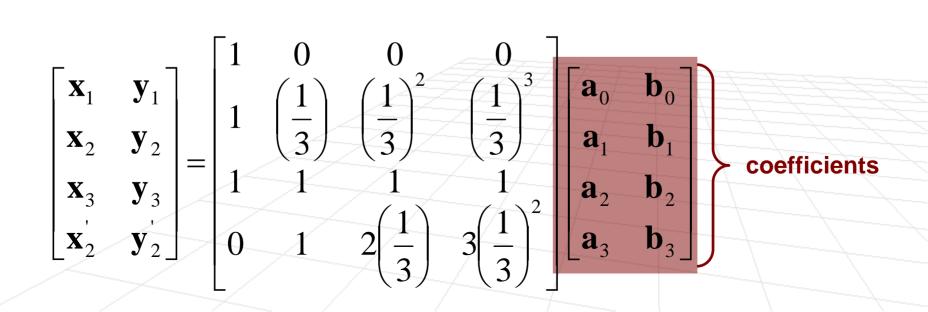
 $\mathbf{y}(t) = \mathbf{b}_0 + \mathbf{b}_1 t + \mathbf{b}_2 t^2 + \mathbf{b}_3 t^3$

Alternatively we can place derivative constrains



$$\mathbf{c}\left(\frac{1}{3}\right) = [\mathbf{x}_2, \mathbf{y}_2] \qquad \frac{\mathbf{d}\mathbf{c}}{\mathbf{d}\mathbf{t}}\left(\frac{1}{3}\right) = [\mathbf{x}_2, \mathbf{y}_2] \\ \mathbf{c}(1) = [\mathbf{x}_4, \mathbf{y}_4] \\ \mathbf{c}(1) =$$

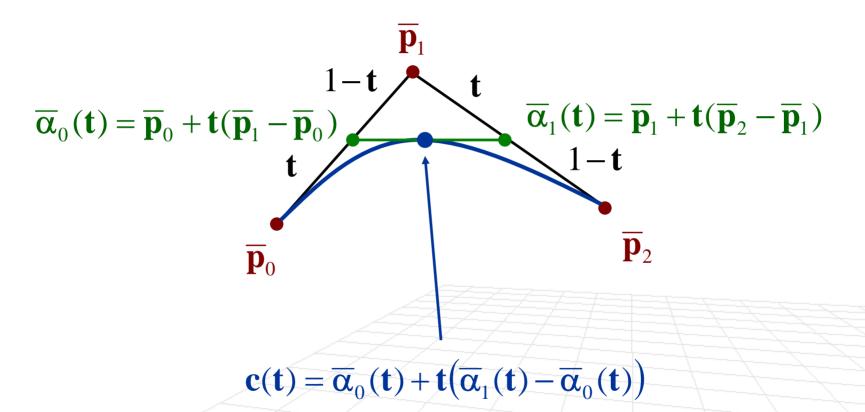
 $\mathbf{c}(0) = [\mathbf{x}_1, \mathbf{y}_1]$



- What happens if there are more then 4 points?
 There may not be a solution that goes through all the control points (or any of the control points)
 - Interpolation may not result in intuitive results
- Cubic interpolation is global
 - Changing one control point changes the interpolation for all points
- In general (at least for animation) local control is better

Bezier Curves

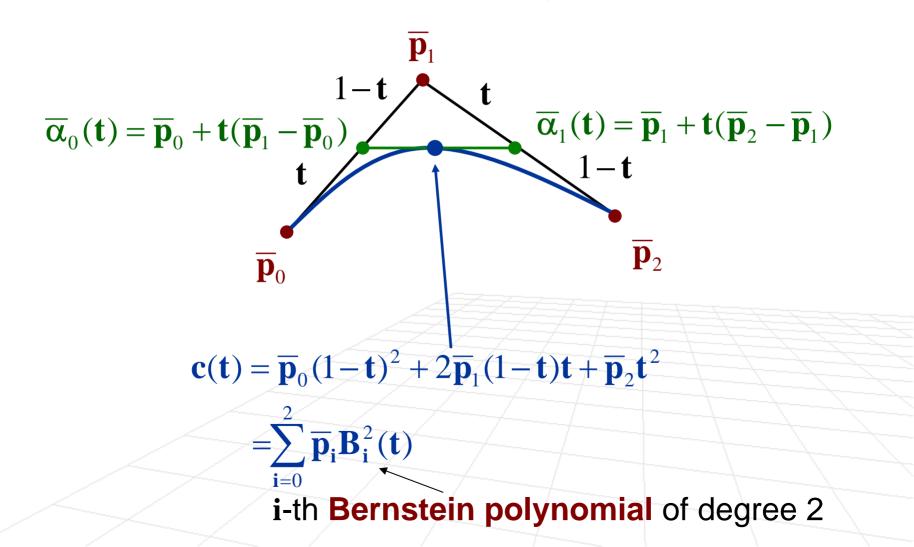
Idea: cascade of linear interpolations



If we plug in all the expressions into c(t) we get a polynomial in terms of control points

Bezier Curves

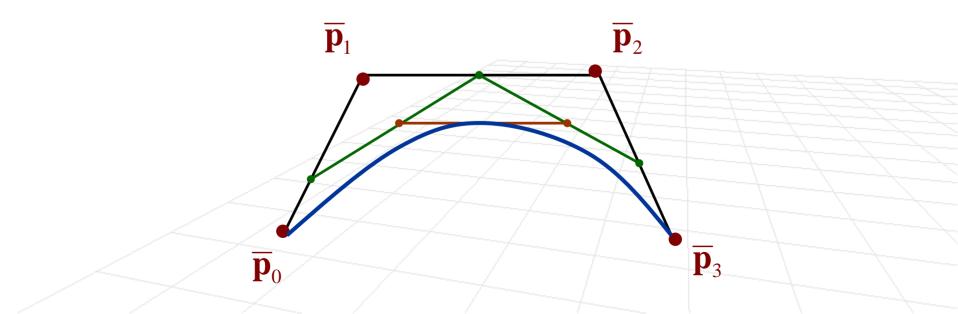
Idea: cascade of linear interpolations



Bezier Curves Generalization

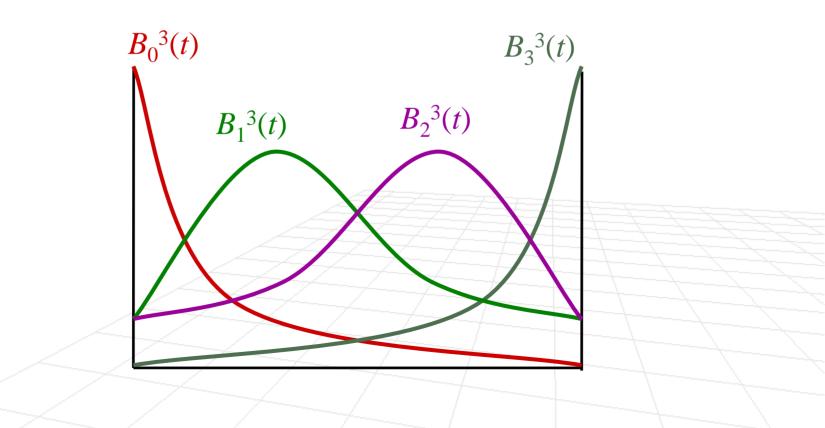
Generalization to N+1 points $c(t) = \sum_{i=0}^{N} \overline{p}_{i} B_{i}^{N}(t)$

$$\mathbf{B}_{i}^{N}(t) = \binom{N}{i} (1-t)^{N-i} t^{i} = \frac{N!}{(N-i)!i!} (1-t)^{N-i} t^{i}$$



Bernstein Polynomials of Degree 3

 Note: Bezier curve with 4 points will be a combination of these curves.



Bezier Curves Properties

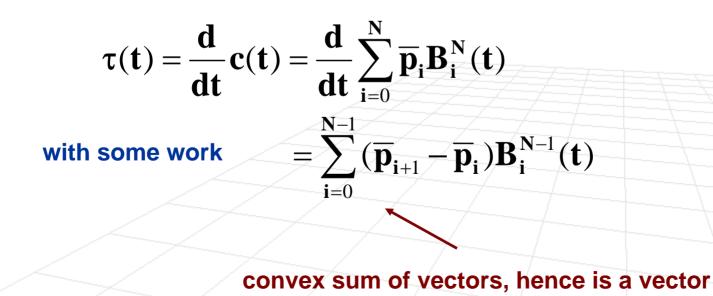
- Bezier curve interpolates between the first and the last point, but not the intermediate points
- Bezier curves have nice properties that make them useful in graphics
 - Affine invariance: affine transformation of the curve implies transformation of control points (nothing else)
 - Convex hall property: any point on a curve is by definition a convex combination of the control points, hence the curve must be inside the (convex) polygon defined by those points
 - Linear precision: as convex polygon approximates the line, so will the curve
 - Variation Diminishing: No line has more intersections with the curve than with control points (no accessive fluctuations)

Derivatives of Bezier Curves

$$\mathbf{c}(\mathbf{t}) = \sum_{i=0}^{N} \overline{\mathbf{p}}_{i} \mathbf{B}_{i}^{N}(\mathbf{t}) \qquad \mathbf{B}_{i}^{N}(\mathbf{t}) = \binom{N}{\mathbf{i}} (1-\mathbf{t})^{N-\mathbf{i}} \mathbf{t}^{\mathbf{i}} = \frac{N!}{(N-\mathbf{i})!\mathbf{i}!} (1-\mathbf{t})^{N-\mathbf{i}} \mathbf{t}^{\mathbf{i}}$$

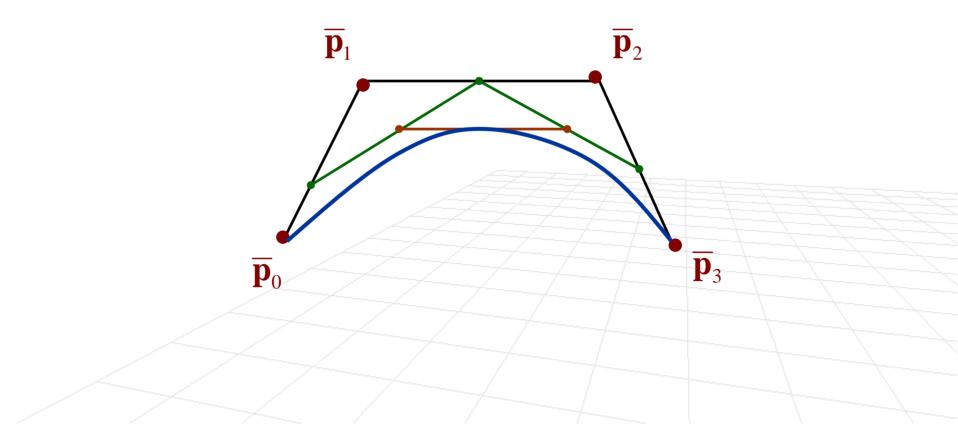
convex sum of points, hence is a point

We want to differentiate with respect to t



Derivatives of Bezier Curves

Property: tangents at the end points of a Bezier curve are always parallel to vector from the end point to the adjacent point



Final word on Bezier curves

Pros:

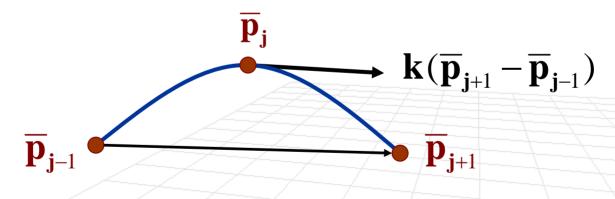
- Has nice properties (e.g. affine invariance)
- Derivatives are easy to compute

Cons:

- Tough to control a high-order polynomial
- Global (curve is a function of all control points)

Catmull-Rom Splines

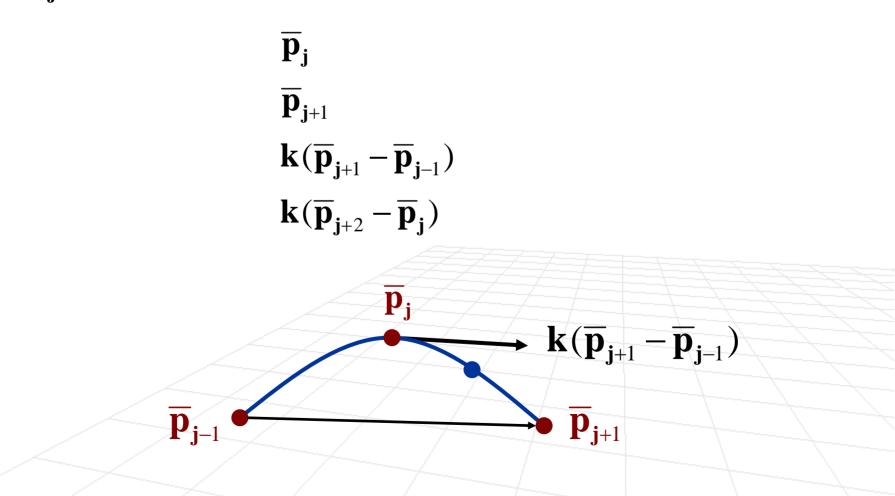
- Idea: piecewise cubic curves of degree-3 with C¹ continuity
- A user specifies points and the tangent at each point is set to be parallel to the vector between adjacent points



 k is the set by the user parameter, that determines the "tension" of the curve

Catmull-Rom Splines

 To interpolate a value for the point between p_j and p_{j+1} one needs to consider 4 bits of information



Catmull-Rom Splines

 To interpolate a value for the point between p_j and p_{i+1} one needs to consider 4 bits of information

