Announcements

- Assignment 2
- Programming is graded (Mean: 80\%)
- Assignment 3
- Programming was due
- Theory is due Friday (Nov 21 ${ }^{\text {st }}$)
- Assignment 4
- You can start planning

Interpolation, Parametric Curves and Surfaces

Computer Graphics, CSCD18 Fall 2008
Instructor: Leonid Sigal

What is interpolation?

Why do we need interpolation?

- Animation
- Curved surface

Keyframe Animation

- Idea: specify variables that describe keyframes and interpolate them over the sequence
(e.g. Assignment 1 \& 2)

Interpolation Basics

- Goal: develop vocabulary of modeling primitives, that can extend meshes or global analytic shapes
- We would like to define curves that meet the following criteria:
- Interaction should be natural and intuitive
- Smoothness should be controllable
- Analytic derivatives should exist and be easy to compute
- Adjustable resolution (easy to zoom in and out)
- Representation should be compact

Curves Basics

- Interpolation
- Curve goes through "control points"

- Approximation
- Curve approximates but does not go through "control points"

- Extrapolation
- Extending curve beyond domain of control points

Continuity

- $\mathbf{C}^{\mathbf{n}}$ continuous function implies that \mathbf{n}-th order derivatives exist

C^{1}
C^{2}

For animation purposes, C^{2} continuous functions typically are sufficient
What is the continuity of the n-th order polynomial?

Linear Interpolation

- Simplest possible interpolation technique
- Peace wise linear curve

- Pros:
- Really simple to implement
- Local (interpolation only depends on the closest two control points)
- Cons:
- Only \mathbf{C}^{1} continuous (typically bad for animation)

Cubic Interpolation

Consider a 2D cubic interplant (a curve in 2D)

$$
\mathbf{c}(\mathbf{t})=[\mathbf{x}(\mathbf{t}) \mathbf{y}(\mathbf{t})]
$$

where

$$
\begin{aligned}
& \mathbf{x}(\mathbf{t})=\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{t}+\mathbf{a}_{2} \mathbf{t}^{2}+\mathbf{a}_{3} \mathbf{t}^{3} \\
& \mathbf{y}(\mathbf{t})=\mathbf{b}_{0}+\mathbf{b}_{1} \mathbf{t}+\mathbf{b}_{2} \mathbf{t}^{2}+\mathbf{b}_{3} \mathbf{t}^{3}
\end{aligned}
$$

Alternatively,

Cubic Interpolation

We have 8 unknowns (coefficients) how many
2D points do we need to constrain the curve?

Cubic Interpolation

$$
c\left(\frac{1}{3}\right)=\left[x_{2}, y_{2}\right]
$$

Cubic Interpolation

Cubic Interpolation

$$
\begin{aligned}
& \mathbf{c}\left(\frac{1}{3}\right)=\left[\mathbf{x}_{2}, \mathbf{y}_{2}\right] \\
& \mathbf{c}(0)=\left[\mathbf{x}_{1}, \mathbf{y}_{1}\right] \\
& \mathbf{c}(1)=\left[\mathbf{x}_{4}, \mathbf{y}_{4}\right] \\
& c\left(\frac{2}{3}\right)=\left[x_{3}, y_{3}\right] \\
& \left.\left[\begin{array}{ll}
\mathbf{x}_{1} & \mathbf{y}_{1} \\
\mathbf{x}_{2} & \mathbf{y}_{2} \\
\mathbf{x}_{3} & \mathbf{y}_{3} \\
\mathbf{x}_{4} & \mathbf{y}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & \left(\frac{1}{3}\right) & \left(\frac{1}{3}\right)^{2} & \left(\frac{1}{3}\right)^{3} \\
1 & \left(\frac{2}{3}\right) & \left(\frac{2}{3}\right)^{2} & \left(\frac{2}{3}\right)^{3} \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{a}_{0} & \mathbf{b}_{0} \\
\mathbf{a}_{1} & \mathbf{b}_{1} \\
\mathbf{a}_{2} & \mathbf{b}_{2} \\
\mathbf{a}_{3} & \mathbf{b}_{3}
\end{array}\right]\right\} \text { coefficients }
\end{aligned}
$$

Cubic Interpolation

$$
c\left(\frac{1}{3}\right)=\left[x_{2}, y_{2}\right]
$$

Cubic Interpolation

- Consider a 2D cubic interplant (a curve in 2D)

$$
\mathbf{c}(\mathbf{t})=[\mathbf{x}(\mathbf{t}) \mathbf{y}(\mathbf{t})]
$$

where

$$
\begin{aligned}
& \mathbf{x}(\mathbf{t})=\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{t}+\mathbf{a}_{2} \mathbf{t}^{2}+\mathbf{a}_{3} \mathbf{t}^{3} \\
& \mathbf{y}(\mathbf{t})=\mathbf{b}_{0}+\mathbf{b}_{1} \mathbf{t}+\mathbf{b}_{2} \mathbf{t}^{2}+\mathbf{b}_{3} \mathbf{t}^{3}
\end{aligned}
$$

Alternatively we can place derivative constrains

Cubic Interpolation

- Consider a 2D cubic interplant (a curve in 2D)

$$
\mathbf{c}(\mathbf{t})=[\mathbf{x}(\mathbf{t}) \mathbf{y}(\mathbf{t})]
$$

where

$$
\begin{aligned}
& \mathbf{x}(\mathbf{t})=\mathbf{a}_{0}+\mathbf{a}_{1} \mathbf{t}+\mathbf{a}_{2} \mathbf{t}^{2}+\mathbf{a}_{3} \mathbf{t}^{3} \\
& \mathbf{y}(\mathbf{t})=\mathbf{b}_{0}+\mathbf{b}_{1} \mathbf{t}+\mathbf{b}_{2} \mathbf{t}^{2}+\mathbf{b}_{3} \mathbf{t}^{3}
\end{aligned}
$$

Alternatively we can place derivative constrains

Cubic Interpolation

$$
\mathbf{c}\left(\frac{1}{3}\right)=\left[\mathbf{x}_{2}, \mathbf{y}_{2}\right] \quad \frac{\mathbf{d c}}{\mathbf{d t}}\left(\frac{1}{3}\right)=\left[\mathbf{x}_{2}^{\prime}, \mathbf{y}_{2}^{\prime}\right]
$$

$$
\mathbf{c}(1)=\left[\mathbf{x}_{4}, \mathbf{y}_{4}\right]
$$

$$
\mathbf{c}(0)=\left[\mathbf{x}_{1}, \mathbf{y}_{1}\right]
$$

$$
\left.\left[\begin{array}{ll}
\mathbf{x}_{1} & \mathbf{y}_{1} \\
\mathbf{x}_{2} & \mathbf{y}_{2} \\
\mathbf{x}_{3} & \mathbf{y}_{3} \\
\mathbf{x}_{2}^{\prime} & \mathbf{y}_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & \left(\frac{1}{3}\right) & \left(\frac{1}{3}\right)^{2} & \left(\frac{1}{3}\right)^{3} \\
1 & 1 & 1 & 1 \\
0 & 1 & 2\left(\frac{1}{3}\right) & 3\left(\frac{1}{3}\right)^{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{a}_{0} & \mathbf{b}_{0} \\
\mathbf{a}_{1} & \mathbf{b}_{1} \\
\mathbf{a}_{2} & \mathbf{b}_{2} \\
\mathbf{a}_{3} & \mathbf{b}_{3}
\end{array}\right]\right\} \text { coefficients }
$$

Cubic Interpolation

- What happens if there are more then 4 points?
- There may not be a solution that goes through all the control points (or any of the control points)
- Interpolation may not result in intuitive results
- Cubic interpolation is global
- Changing one control point changes the interpolation for all points
- In general (at least for animation) local control is better

Bezier Curves

- Idea: cascade of linear interpolations

$$
\bar{\alpha}_{0}(\mathbf{t})=\overline{\mathbf{p}}_{0}+\mathbf{t}\left(\overline{\mathbf{p}}_{1}-\overline{\mathbf{p}}_{0}\right)
$$

If we plug in all the expressions into $\mathbf{c}(\mathbf{t})$ we get a polynomial in terms of control points

Bezier Curves

- Idea: cascade of linear interpolations

$$
\begin{aligned}
& \bar{\alpha}_{0}(\mathbf{t})=\overline{\mathbf{p}}_{0}+\mathbf{t}\left(\overline{\mathbf{p}}_{1}-\overline{\mathbf{p}}_{0}\right) \\
& \mathbf{c}(\mathbf{t})=\overline{\mathbf{p}}_{0}(1-\mathbf{t})^{2}+2 \overline{\mathbf{p}}_{1}(1-\mathbf{t}) \mathbf{t}+\overline{\mathbf{p}}_{2} \mathbf{t}^{2} \\
& =\sum_{\substack{i \\
i \\
\mathbf{i}-\text { th } \\
\mathbf{p}_{\mathbf{i}} \\
\mathbf{B}_{\mathbf{i}}^{2}(\mathbf{t})}}^{\overline{\mathbf{p}}_{1}} \text { Bernstein polynomial of degree } 2
\end{aligned}
$$

Bezier Curves Generalization

Generalization to $\mathbf{N}+\mathbf{1}$ points $\quad \mathbf{c}(\mathbf{t})=\sum_{\mathrm{i}=0}^{N} \overline{\bar{i}}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}}^{N}(\mathbf{t})$

$$
\mathbf{B}_{\mathbf{i}}^{\mathrm{N}}(\mathbf{t})=\binom{\mathbf{N}}{\mathbf{i}}(1-\mathbf{t})^{\mathrm{N-i}-\mathbf{t}^{\mathbf{i}}}=\frac{\mathbf{N}!}{(\mathbf{N}-\mathbf{i})!!!}(1-\mathbf{t})^{\mathrm{N-i}} \mathbf{t}^{\mathbf{i}}
$$

Bernstein Polynomials of Degree 3

- Note: Bezier curve with 4 points will be a combination of these curves.

Bezier Curves Properties

- Bezier curve interpolates between the first and the last point, but not the intermediate points
- Bezier curves have nice properties that make them useful in graphics
- Affine invariance: affine transformation of the curve implies transformation of control points (nothing else)
- Convex hall property: any point on a curve is by definition a convex combination of the control points, hence the curve must be inside the (convex) polygon defined by those points
- Linear precision: as convex polygon approximates the line, so will the curve
\square Variation Diminishing: No line has more intersections with the curve than with control points (no accessive fluctuations)

Derivatives of Bezier Curves

$$
\mathbf{c}(\mathbf{t})=\sum_{\mathrm{i}=0}^{\mathbf{N}} \overline{\mathbf{p}}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}}^{\mathrm{N}}(\mathbf{t}) \quad \mathbf{B}_{\mathbf{i}}^{\mathrm{N}}(\mathbf{t})=\binom{\mathbf{N}}{\mathbf{i}}(1-\mathbf{t})^{\mathrm{N}-\mathrm{i}} \mathbf{t}^{\mathrm{i}}=\frac{\mathbf{N}!}{(\mathbf{N}-\mathbf{i})!\mathbf{i}!}(1-\mathbf{t})^{\mathrm{N}-\mathrm{i}} \mathbf{t}^{\mathrm{i}}
$$

- We want to differentiate with respect to \mathbf{t}

$$
\tau(\mathbf{t})=\frac{\mathbf{d}}{\mathbf{d t}} \mathbf{c}(\mathbf{t})=\frac{\mathbf{d}}{\mathbf{d t}} \sum_{\mathbf{i}=0}^{\mathbf{N}} \overline{\mathbf{p}}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}}^{\mathbf{N}}(\mathbf{t})
$$

with some work $=\sum_{\mathbf{i}=0}^{\mathbf{N}-1}\left(\overline{\mathbf{p}}_{\mathbf{i}+1}-\overline{\mathbf{p}}_{\mathbf{i}}\right) \mathbf{B}_{\mathbf{i}}^{\mathbf{N}-1}(\mathbf{t})$
convex sum of vectors, hence is a vector

Derivatives of Bezier Curves

Property: tangents at the end points of a Bezier curve are always parallel to vector from the end point to the adjacent point

Final word on Bezier curves

- Pros:
- Has nice properties (e.g. affine invariance)
- Derivatives are easy to compute
- Cons:
- Tough to control a high-order polynomial
- Global (curve is a function of all control points)

Catmull-Rom Splines

- Idea: piecewise cubic curves of degree-3 with \mathbf{C}^{1} continuity
- A user specifies points and the tangent at each point is set to be parallel to the vector between adjacent points

- \mathbf{k} is the set by the user parameter, that determines the "tension" of the curve

Catmull-Rom Splines

- To interpolate a value for the point between $\mathbf{p}_{\mathbf{j}}$ and $\mathbf{p}_{\mathbf{j}+\mathbf{1}}$ one needs to consider 4 bits of information

$$
\begin{aligned}
& \overline{\mathbf{p}}_{\mathbf{j}} \\
& \overline{\mathbf{p}}_{\mathbf{j}+1} \\
& \mathbf{k}\left(\overline{\mathbf{p}}_{\mathbf{j}+1}-\overline{\mathbf{p}}_{\mathbf{j}-1}\right) \\
& \mathbf{k}\left(\overline{\mathbf{p}}_{\mathbf{j}+2}-\overline{\mathbf{p}}_{\mathbf{j}}\right)
\end{aligned}
$$

Catmull-Rom Splines

- To interpolate a value for the point between $\mathbf{p}_{\mathbf{j}}$ and $\mathbf{p}_{\mathbf{j}+\mathbf{1}}$ one needs to consider 4 bits of information

