
Announcements
Assignment 2

Programming is graded (Mean: 80%)

Assignment 3
Programming was due
Theory is due Friday (Nov 21st)

Assignment 4
You can start planning

Interpolation, Parametric
Curves and Surfaces

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

What is interpolation?

Why do we need interpolation?

Animation
Curved surface

Keyframe Animation
Idea: specify variables that describe keyframes and
interpolate them over the sequence

(e.g. Assignment 1 & 2)

Interpolation Basics
Goal: develop vocabulary of modeling primitives,
that can extend meshes or global analytic shapes

We would like to define curves that meet the
following criteria:

Interaction should be natural and intuitive
Smoothness should be controllable
Analytic derivatives should exist and be easy to compute
Adjustable resolution (easy to zoom in and out)
Representation should be compact

Curves Basics

Interpolation
Curve goes through “control
points”

Approximation
Curve approximates but does
not go through “control points”

Extrapolation
Extending curve beyond
domain of control points

Continuity

Cn continuous function implies that n-th order
derivatives exist

C0 C1 C2

For animation purposes, C2 continuous functions typically are sufficient

What is the continuity of the n-th order polynomial?

Linear Interpolation
Simplest possible interpolation technique

Peace wise linear curve

Pros:
Really simple to implement
Local (interpolation only depends on the closest two control
points)

Cons:
Only C1 continuous (typically bad for animation)

Cubic Interpolation

Consider a 2D cubic interplant (a curve in 2D)

where

Alternatively,

)]()([)(tytxtc =

3
3

2
210

3
3

2
210

)(

)(

tbtbtbbty

tatataatx

+++=

+++=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

3

2

1

0

32]1[)(

b
b
b
b

a
a
a
a

ttttc coefficients

bases

Cubic Interpolation

We have 8 unknowns (coefficients) how many
2D points do we need to constrain the curve?

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

3

2

1

0

32]1[)(

b
b
b
b

a
a
a
a

ttttc

bases

coefficients

Cubic Interpolation

],[)0(11 yxc =

],[
3
1

22 yxc =⎟
⎠
⎞

⎜
⎝
⎛

],[)1(44 yxc =

],[
3
2

33 yxc =⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

3

2

1

0

32]1[)(

b
b
b
b

a
a
a
a

ttttc

bases

coefficients

Cubic Interpolation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

3

2

1

0

32

32

4

3

2

1

4

3

2

1

1111
3
2

3
2

3
21

3
1

3
1

3
11

0001

b
b
b
b

a
a
a
a

y
y
y
y

x
x
x
x

],[)0(11 yxc =

],[
3
1

22 yxc =⎟
⎠
⎞

⎜
⎝
⎛

],[)1(44 yxc =

],[
3
2

33 yxc =⎟
⎠
⎞

⎜
⎝
⎛

coefficients

Cubic Interpolation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

3

2

1

0

32

32

4

3

2

1

4

3

2

1

1111
3
2

3
2

3
21

3
1

3
1

3
11

0001

b
b
b
b

a
a
a
a

y
y
y
y

x
x
x
x

],[)0(11 yxc =

],[
3
1

22 yxc =⎟
⎠
⎞

⎜
⎝
⎛

],[)1(44 yxc =

],[
3
2

33 yxc =⎟
⎠
⎞

⎜
⎝
⎛

coefficients

Cubic Interpolation

],[)0(11 yxc =

],[
3
1

22 yxc =⎟
⎠
⎞

⎜
⎝
⎛

],[)1(44 yxc =

],[
3
2

33 yxc =⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

3

2

1

0

32]1[)(

b
b
b
b

a
a
a
a

ttttc

bases

coefficients

Cubic Interpolation
Consider a 2D cubic interplant (a curve in 2D)

where

Alternatively we can place derivative constrains

)]()([)(tytxtc =

3
3

2
210

3
3

2
210

)(

)(

tbtbtbbty

tatataatx

+++=

+++=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

3

2

1

0

3

2

1

0

32]1[)()(

b
b
b
b

a
a
a
a

ttt
dt
d

dt
tcdtτ coefficients

bases

Cubic Interpolation
Consider a 2D cubic interplant (a curve in 2D)

where

Alternatively we can place derivative constrains

)]()([)(tytxtc =

3
3

2
210

3
3

2
210

)(

)(

tbtbtbbty

tatataatx

+++=

+++=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

3

2

1

0

3

2

1

0

2]3210[)()(

b
b
b
b

a
a
a
a

tt
dt

tcdtτ same
coefficients

different bases

Cubic Interpolation
],[

3
1 '

2
'
2 yx

dt
dc

=⎟
⎠
⎞

⎜
⎝
⎛],[

3
1

22 yxc =⎟
⎠
⎞

⎜
⎝
⎛

],[)0(11 yxc =

],[)1(44 yxc =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

3

2

1

0

2

32

'
2

3

2

1

'
2

3

2

1

3
13

3
1210

1111
3
1

3
1

3
11

0001

b
b
b
b

a
a
a
a

y
y
y
y

x
x
x
x

coefficients

Cubic Interpolation
What happens if there are more then 4 points?

There may not be a solution that goes through all
the control points (or any of the control points)
Interpolation may not result in intuitive results

Cubic interpolation is global
Changing one control point changes the
interpolation for all points

In general (at least for animation) local control
is better

Bezier Curves
Idea: cascade of linear interpolations

0p

1p

2p

)()(1211 pptpt −+=α)()(0100 pptpt −+=α
t

tt−1

t−1

())()()()(010 tttttc ααα −+=

If we plug in all the expressions into c(t) we get a polynomial
in terms of control points

Bezier Curves
Idea: cascade of linear interpolations

0p

1p

2p

)()(1211 pptpt −+=α)()(0100 pptpt −+=α
t

tt−1

t−1

∑
=

=

+−+−=
2

0

2

2
21

2
0

)(

)1(2)1()(

i
ii tBp

tpttptptc

i-th Bernstein polynomial of degree 2

Bezier Curves Generalization

∑
=

=
N

i

N
ii tBptc

0
)()(Generalization to N+1 points

iiNiiNN
i tt

iiN
Ntt

i
N

tB −− −
−

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=)1(

!)!(
!)1()(

0p

1p 2p

3p

Bernstein Polynomials of Degree 3

Note: Bezier curve with 4 points will be a combination
of these curves.

B1
3(t) B2

3(t)

B3
3(t)B0

3(t)

Bezier Curves Properties
Bezier curve interpolates between the first and the last
point, but not the intermediate points

Bezier curves have nice properties that make them
useful in graphics

Affine invariance: affine transformation of the curve implies
transformation of control points (nothing else)
Convex hall property: any point on a curve is by definition a
convex combination of the control points, hence the curve must
be inside the (convex) polygon defined by those points
Linear precision: as convex polygon approximates the line,
so will the curve
Variation Diminishing: No line has more intersections with
the curve than with control points (no accessive fluctuations)

Derivatives of Bezier Curves

iiNiiNN
i tt

iiN
Ntt

i
N

tB −− −
−

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=)1(

!)!(
!)1()(∑

=

=
N

i

N
ii tBptc

0
)()(

convex sum of points, hence is a point

We want to differentiate with respect to t

∑
=

==
N

i

N
ii tBp

dt
dtc

dt
dt

0
)()()(τ

∑
−

=

−
+ −=

1

0

1
1)()(

N

i

N
iii tBppwith some work

convex sum of vectors, hence is a vector

Derivatives of Bezier Curves
Property: tangents at the end points of a Bezier curve
are always parallel to vector from the end point to
the adjacent point

0p

1p 2p

3p

Final word on Bezier curves

Pros:
Has nice properties (e.g. affine invariance)
Derivatives are easy to compute

Cons:
Tough to control a high-order polynomial
Global (curve is a function of all control points)

Catmull-Rom Splines

jp

1−jp 1+jp

)(11 −+ − jj ppk

Idea: piecewise cubic curves of degree-3 with C1

continuity

A user specifies points and the tangent at each point
is set to be parallel to the vector between adjacent
points

k is the set by the user parameter, that determines
the “tension” of the curve

Catmull-Rom Splines
To interpolate a value for the point between pj and
pj+1 one needs to consider 4 bits of information

)(

)(

2

11

1

jj

jj

j

j

ppk

ppk

p

p

−

−

+

−+

+

jp

1−jp 1+jp

)(11 −+ − jj ppk

Catmull-Rom Splines
To interpolate a value for the point between pj and
pj+1 one needs to consider 4 bits of information

)(

)(

2

11

1

jj

jj

j

j

ppk

ppk

p

p

−

−

+

−+

+
4 points lead to cubic interplant

(see lecture notes for details)

jp

1−jp 1+jp

)(11 −+ − jj ppk

