## Announcements

- Assignment 2
  - Programming is graded (Mean: 80%)
- Assignment 3
  - Programming was due
  - Theory is due Friday (Nov 21<sup>st</sup>)
- Assignment 4
  - You can start planning

# Interpolation, Parametric Curves and Surfaces

Computer Graphics, CSCD18 Fall 2008 Instructor: Leonid Sigal

# What is interpolation?



#### Why do we need interpolation?

- Animation
- Curved surface

# Keyframe Animation

Idea: specify variables that describe keyframes and interpolate them over the sequence

(e.g. Assignment 1 & 2)



# Interpolation Basics

- Goal: develop vocabulary of modeling primitives, that can extend meshes or global analytic shapes
- We would like to define curves that meet the following criteria:
  - Interaction should be natural and intuitive
  - Smoothness should be controllable
  - Analytic derivatives should exist and be easy to compute
  - Adjustable resolution (easy to zoom in and out)
  - Representation should be compact

# Curves Basics

#### Interpolation

Curve goes through "control points"

#### Approximation

Curve approximates but does not go through "control points"





#### Extrapolation

 Extending curve beyond domain of control points

# Continuity

 C<sup>n</sup> continuous function implies that n-th order derivatives exist



What is the continuity of the n-th order polynomial?

# Linear Interpolation

#### Simplest possible interpolation technique

Peace wise linear curve



#### Pros:

- Really simple to implement
- Local (interpolation only depends on the closest two control points)

#### Cons:

Only C<sup>1</sup> continuous (typically bad for animation)

Consider a 2D cubic interplant (a curve in 2D)

 $\mathbf{c}(\mathbf{t}) = [\mathbf{x}(\mathbf{t}) \ \mathbf{y}(\mathbf{t})]$ 





# We have **8 unknowns** (coefficients) how many 2D points do we need to constrain the curve?











#### Consider a 2D cubic interplant (a curve in 2D)

 $\mathbf{c}(\mathbf{t}) = [\mathbf{x}(\mathbf{t}) \ \mathbf{y}(\mathbf{t})]$ 

where 
$$\mathbf{x}(t) = \mathbf{a}_0 + \mathbf{a}_1 t + \mathbf{a}_2 t^2 + \mathbf{a}_3 t^3$$
  
 $\mathbf{y}(t) = \mathbf{b}_0 + \mathbf{b}_1 t + \mathbf{b}_2 t^2 + \mathbf{b}_3 t^3$ 

Alternatively we can place derivative constrains



Consider a 2D cubic interplant (a curve in 2D)

 $\mathbf{c}(\mathbf{t}) = [\mathbf{x}(\mathbf{t}) \ \mathbf{y}(\mathbf{t})]$ 

where 
$$\mathbf{x}(t) = \mathbf{a}_0 + \mathbf{a}_1 t + \mathbf{a}_2 t^2 + \mathbf{a}_3 t^3$$
  
 $\mathbf{y}(t) = \mathbf{b}_0 + \mathbf{b}_1 t + \mathbf{b}_2 t^2 + \mathbf{b}_3 t^3$ 

Alternatively we can place derivative constrains



$$\mathbf{c}\left(\frac{1}{3}\right) = [\mathbf{x}_2, \mathbf{y}_2] \qquad \frac{\mathbf{d}\mathbf{c}}{\mathbf{d}\mathbf{t}}\left(\frac{1}{3}\right) = [\mathbf{x}_2, \mathbf{y}_2] \\ \mathbf{c}(1) = [\mathbf{x}_4, \mathbf{y}_4] \\ \mathbf{c}(1) =$$

 $\mathbf{c}(0) = [\mathbf{x}_1, \mathbf{y}_1]$ 



- What happens if there are more then 4 points?
  There may not be a solution that goes through all the control points (or any of the control points)
  - Interpolation may not result in intuitive results
- Cubic interpolation is global
  - Changing one control point changes the interpolation for all points
- In general (at least for animation) local control is better

#### Bezier Curves

Idea: cascade of linear interpolations



If we plug in all the expressions into c(t) we get a polynomial in terms of control points

#### Bezier Curves

Idea: cascade of linear interpolations



#### Bezier Curves Generalization

Generalization to N+1 points  $c(t) = \sum_{i=0}^{N} \overline{p}_{i} B_{i}^{N}(t)$ 

$$\mathbf{B}_{i}^{N}(t) = \binom{N}{i} (1-t)^{N-i} t^{i} = \frac{N!}{(N-i)!i!} (1-t)^{N-i} t^{i}$$



Bernstein Polynomials of Degree 3

 Note: Bezier curve with 4 points will be a combination of these curves.



# Bezier Curves Properties

- Bezier curve interpolates between the first and the last point, but not the intermediate points
- Bezier curves have nice properties that make them useful in graphics
  - Affine invariance: affine transformation of the curve implies transformation of control points (nothing else)
  - Convex hall property: any point on a curve is by definition a convex combination of the control points, hence the curve must be inside the (convex) polygon defined by those points
  - Linear precision: as convex polygon approximates the line, so will the curve
  - Variation Diminishing: No line has more intersections with the curve than with control points (no accessive fluctuations)

#### Derivatives of Bezier Curves

$$\mathbf{c}(\mathbf{t}) = \sum_{i=0}^{N} \overline{\mathbf{p}}_{i} \mathbf{B}_{i}^{N}(\mathbf{t}) \qquad \mathbf{B}_{i}^{N}(\mathbf{t}) = \binom{N}{\mathbf{i}} (1-\mathbf{t})^{N-\mathbf{i}} \mathbf{t}^{\mathbf{i}} = \frac{N!}{(N-\mathbf{i})!\mathbf{i}!} (1-\mathbf{t})^{N-\mathbf{i}} \mathbf{t}^{\mathbf{i}}$$

convex sum of points, hence is a point

We want to differentiate with respect to t



## Derivatives of Bezier Curves

**Property:** tangents at the end points of a Bezier curve are always parallel to vector from the end point to the adjacent point



# Final word on Bezier curves

#### Pros:

- Has nice properties (e.g. affine invariance)
- Derivatives are easy to compute

#### Cons:

- Tough to control a high-order polynomial
- Global (curve is a function of all control points)

# Catmull-Rom Splines

- Idea: piecewise cubic curves of degree-3 with C<sup>1</sup> continuity
- A user specifies points and the tangent at each point is set to be parallel to the vector between adjacent points



 k is the set by the user parameter, that determines the "tension" of the curve

# Catmull-Rom Splines

 To interpolate a value for the point between p<sub>j</sub> and p<sub>j+1</sub> one needs to consider 4 bits of information



# Catmull-Rom Splines

 To interpolate a value for the point between p<sub>j</sub> and p<sub>i+1</sub> one needs to consider 4 bits of information

