
Announcements
Assignment 3

Programming is now out
Due on Nov 14th (next Friday)

Theory (short) will be given out on Nov 12th

Due on Nov 19th

Assignment 3 Hints
Read the starter code carefully

Only fill in the fragments of code that are needed (i.e. do not 
write your own classes/structures)

Make sure you conceptually understand what you need to 
do first
Ray tracing takes a while to render, so debugging can be 
slow (i.e. start right away)



Radiometry:
Continuation

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal



Recall from last class…
Light is manifested as photons

Number of photons at a point is zero
Hence, we going to talk about flux density (i.e.
number of photons per unit area)

dA

Irradiance – amount of 
the light falling on the 
surface patch (measured 
in Watts/meters2 )

Radiance – amount of 
light leaving the point per 
area (measured in 
Watts/(sr * meters2))

dA



Bidirectional Reflectance Distribution 
Function (BRDF)

BRDF: Ratio of emittant to incident light (i.e. radiance 
to irradiance)

Models reflectance of simple materials
Often BRDF must be empirically determined (measured 
in a laboratory) 

Irradiance
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Intuition: what fraction of the light entering along one 
direction willbe emitted in the other

Radiance
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Diffuse Reflection
The only factor that determines appearance (radiance) 
of a Lambertian surface is irradiance (incident light)
In other words,  BRDF is constant and independent of 
incident and emittent direction. i.e. 
The radiance 

Since total irradiance must equal radiant exitance
(conservation of energy), we can show that 
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Small proof
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Diffuse Reflection
Despise simple BRDF, it’s still hard to compute 
radiance because of the integral

Assuming point light source helps
Lets assume single point light source with intensity I
Then irradiance is as before 

Assuming that light is far away removes the 
denominator
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Diffuse Reflection
Despise simple BRDF, it’s still hard to compute 
radiance because of the integral

Assuming point light source helps
Lets assume single point light source with intensity I
Then irradiance is as before 

Assuming that light is far away removes the 
denominator
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Quantity is a constant
for a surface



Remember the Phong model?
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Ambient Illumination
Remember: we need ambient illumination, because 
diffuse lighting looks artificial (parts of the object are 
black)

Ambient illumination is equivalent to uniform 
illumination and constant BRDF (as in the diffuse 
case)

It’s easy to see that the integral in the above equation 
is simply a constant 
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Remember the Phong model?
Remember Phong lighting equation?

It’s easy to see that the integral in the above equation 
is simply a constant 
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Specular Reflection
For specular (mirror) surfaces each incident direction is 
reflected toward unique emittant direction
The emittant direction can be derived as before in the 
Phong model

Since all of the light is reflected into a single direction, 
the corresponding BRDF can be formulated as follows:
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Specular Reflection
If we assume that light emitted is the same amount of 
light incident (conservation of energy), we can derive 
the proportionality constant

Specular radiance can then be computed as for other 
components

which simplifies in this case to:
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Off-axis Secularity 
If we have more complex surfaces (not just mirrors) we 
will have off-axis secularities

In that case the BRDF will not be a simple delta 
function and we need to go back to the full integral 
formulation for the radiance

Phong model makes the point light source assumption 
that is far away, this leads to the approximation we 
already encountered
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How will all of this help in Ray Tracing?
We will consider a more accurate (and much more 
expensive) approximation to the radiance at the “hit 
point” based on the integral of the BRDF and incident 
irradiance

What do we integrate over?
We integrate over area of a pixel



Distribution Ray Tracing

Computer Graphics, CSCD18
Fall 2007
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Distribution Ray Tracing

In Whitted Ray Tracing we computed lighting very 
crudely 

Phong + specular global lighting 

In Distributed Ray Tracing we want to compute the 
lighting as accurately as possible 

Use the formalism of Radiometry
Compute irradiance at each pixel (by integrating all the 
incoming light) 
Since integrals are can not be done analytically, we will 
employ numeric approximations



Benefits of Distribution Ray Tracing

Better global diffuse lighting
Color bleeding
Bouncing highlights

Extended light sources
Anti-aliasing
Motion blur
Depth of field
Subsurface scattering



Radiance at a Point
Recall that radiance (shading) at a surface point is 
given by

If we parameterize directions in spherical coordinates 
and assume small differential solid angle, we get
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Radiance at a Point
Recall that radiance (shading) at a surface point is 
given by

If we parameterize directions in spherical coordinates 
and assume small differential solid angle, we get
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Integral is over all incoming direction 
(hemisphere)



Irradiance at a Pixel
To compute the color of the pixel, we need to compute 
total light energy (flux) passing through the pixel
(rectangle) (i.e. we need to compute the total irradiance 
at a pixel)
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of the pixel



Numerical Integration (1D Case)
Remember: integral is an area under the curve
We can approximate any integral numerically as 
follows
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Numerical Integration (1D Case)
Remember: integral is an area under the curve
We can approximate any integral numerically as 
follows
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Numerical Integration (1D Case)
Problem: what if we are really unlucky and our 
signal has the same structure as sampling?
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Monte Carlo Integration
Idea: randomize points xi to avoid structured noise 
(e.g. due to periodic texture)

Draw N random samples xi independently from 
uniform distribution Q(x)=U[0,D] (i.e. Q(x) = 1/D is the 
uniform probability density function)
Then approximation to the integral becomes

We can also use other Q’s for efficiency !!! (a.k.a. 
importance sampling) 

x

y

)(xfxi

D

∑ ∫≈ dxxfxfw
N ii )()(1

)(
1

i
i xQ

w =, for 



Monte Carlo Integration
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Then approximation to the integral becomes

We can also use other Q’s for efficiency !!! (a.k.a. 
importance sampling) 
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Idea: combination of uniform sampling plus random 
jitter
Break domain into T intervals of widths dt and Nt
samples in interval t

Integral approximated using the following:

Stratified Sampling
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