‘ Announcements

= Assignment 3
2 Programming is now out
= Due on Nov 14" (next Friday)

o Theory (short) will be given out on Nov 12t
= Due on Nov 19t

= Assignment 3 Hints

0 Read the starter code carefully

=  Only fill in the fragments of code that are needed (i.e. do not
write your own classes/structures)

o Make sure you conceptually understand what you need to
do first

o Ray tracing takes a while to render, so debugging can be
slow (i.e. start right away)
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‘ Recall from last class...

= Light Is manifested as photons
o Number of photons at a point is zero

o Hence, we going to talk about flux density (i.e.
number of photons per unit area)

= Irradiance — amount of = Radiance — amount of

the light falling on the light leaving the point per
surface patch (measured area (measured in
iIn Watts/meters?) Watts/(sr * meters?))

| t




Bidirectional Reflectance Distribution
Function (BRDF)

= BRDF: Ratio of emittant to incident light (i.e. radiance
to irradiance - = . L(p.d,
) p@,.d) =0

H(P)

Intuition: what fraction of the light entering along one
direction willbe emitted in the other

Irradiance H(P) Radiance L(ﬁ,ae)
\

dA> < dA >




‘ Diffuse Reflection

= The only factor that determines appearance (radiance)
of a Lambertian surface is irradiance (incident light)

= In other words, BRDF is constant and independent of
incident and emittent direction. i.e. p(de,d) o)

= The radiance

Ls(p.d.)=p, [L(p—d)(A-d,)do,

aiEQi

Ly(P.d,)=p, [L(P.—d;)cos®do,

aiEQi

= Since total irradiance must equal radiant exitance
(conservation of energy), we can show that 0 1
—
TU



‘ Small proot

IL(E,—EIi)coseidmi — I 0, IL(E,—ai)coseidmi cos0,do,

diEQi deEQe dIEQI

jL(ﬁ,—Hi)coseidcoi = TP, jL(ﬁ,—ai)coseidooi

d; eQ; d; eQ;
1=mnp,
1
Po ="

Tt



‘ Diffuse Reflection

= Despise simple BRDF, it's still hard to compute
radiance because of the integral

Ls(p.d.) =p, [L(P.~d,)(fi-d,)do
d,eQ;

= Assuming point light source helps
o Lets assume single point light source with intensity |

o Then irradiance is as before H(p) = Ifﬁ?iz)
. 1(A-d.) Ip-¢|

I—d(ﬁide):po = _Iz

p-¢

= Assuming that light is far away removes the
denominator — B
Ly(P.d,)=p,l(A-d)) why?



‘ Diffuse Reflection

= Despise simple BRDF, it's still hard to compute
radiance because of the integral

Ls(p.d.) =p, [L(P.~d,)(fi-d,)do
d,eQ;
= Assuming point light source helps

o Lets assume single point light source \I/vigh (j.jntensity I
o Then irradiance is as before H(p) = (n-d)

2
- p—-¢

@iy P

T Quantity Is a constant

Hp = eH — for asurface

Ld (ﬁ!ae) — pO

= Assuming that light is far away removes the
denominator — B
Ly(P.d,)=p,l(A-d)) why?



'Remember the Phong model?

= Remem

per Phong lighting

L(P.C) -

1, max(0,d, - i)

'y =Po

equation?

+r.l,+rl, max(0,r-c)”

= Assuming that light is far away removes the
denominator L.,(P,d.)=p,I(A-d)



' Ambient Illumination

= Remember: we need ambient illumination, because
diffuse lighting looks artificial (parts of the object are
black)

= Ambient illumination is equivalent to uniform
illumination and constant BRDF (as in the diffuse
case)

L.(p.d.)=p, [L(P.~d))({-d;)do

deQ

= It’s easy to see that the integral in the above equation
IS simply a constant

La(ﬁ1ae) :pala



'Remember the Phong model?

= Remember Phong lighting equation?

L(p,c)=r,l, max(0,d. -A)4r,1_Hrl max(0,F-¢)°

I'a = Pa

= It's easy to see that the integral in the above equation
IS simply a constant

La(ﬁ’ae) :pala



‘ Specular Retlection
= For specular (mirror) surfaces each incident direction is
reflected toward unigue emittant direction

= The emittant direction can be derived as before In the

Phong model ~ ~
d,=2(n-d,)n-d,

= Since all of the light is reflected into a single direction,
the corresponding BRDF can be formulated as follows:

p(d,,d,) o< 8(d, - [2(7i-d,)ii—d, |

A
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‘ Specular Retlection

= |f we assume that light emitted Is the same amount of
light incident (conservation of energy), we can derive
the proportionality constant

p(d..d) =~ 8(d, ~[2(s-d)A-d, )
= Specular radiance can then be computed as for other
components | (5.d,)= [p(d,.d,)L(p.~d,)(A-d,)de
d,eQ;

which simplifies in this case to:
L.(p.d,)=L(p—[2(7-d,)n a])A

VY
A y e
- £5Q
d V




‘ Oft-axis Secularity

= If we have more complex surfaces (not just mirrors) we
will have off-axis secularities

= In that case the BRDF will not be a simple delta
function and we need to go back to the full integral
formulation for the radiance

= Phong model makes the point light source assumption
that is far away, this leads to the approximation we

already encountered

L(p,c)=r,l, max(0,d. -A)+r,1_4r.l max(0,r-c)°




How will all of this help in Ray Tracing?

= We will consider a more accurate (and much more
expensive) approximation to the radiance at the “hit
point” based on the integral of the BRDF and incident
Irradiance

= What do we integrate over?
o We integrate over area of a pixel
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Distribution Ray Tracing

= In Whitted Ray Tracing we computed lighting very
crudely
o Phong + specular global lighting

= In Distributed Ray Tracing we want to compute the
lighting as accurately as possible
o Use the formalism of Radiometry
o Compute irradiance at each pixel (by integrating all the
Incoming light)
o Since integrals are can not be done analytically, we will
employ numeric approximations



‘Benefits of Distribution Ray Tracing

= Better global diffuse lighting
o Color bleeding
o Bouncing highlights

= Extended light sources
= Anti-aliasing

= Motion blur

= Depth of field

= Subsurface scattering



‘ Radiance at a Point

= Recall that radiance (shading) at a surface point is
L(p,d,) = p(d,.d,)L(P,~d;) (ii-d,) de
Q

= If we parameterize directions in spherical coordinates
and assume smalll differential solid angle, we get
L@Ed)= [ [pld..d (¢.6))(p.~d\(¢.6))-d,(.6) sinededo

d<[0,27] 0€[0,27] -

given by




‘ Radiance at a Point
= Recall that radiance (shading) at a surface point is

iven b = Lo L
S Lp,d,) = [p(d,,d)L(P,~d,) (-d,) do
Q

= If we parameterize directions in spherical coordinates
and assume smalll differential solid angle, we get
L@Ed)= [ [pld..d (¢.6))(p.~d\(¢.6))-d,(.6) sinededo

¢<[0,2n] 0€[0,27] 4 _ _ _ o
= Integral is over all incoming direction

(hemisphere)




‘ Irradiance at a Pixel

To compute the color of the pixel, we need to compute
total light energy (flux) passing through the pixel

(rectangle) (i.e. we need to compute the total irradiance
at a pixel)

D, = [ H(0.B)dodp

O min So('SO('max Bmin SBSB max

P \ntegrals Is over the extent

of the pixel




‘ Numerical Integration (1D Case)

= Remember: integral is an area under the curve

= We can approximate any integral numerically as
follows

X;
K
y
=S —_ Do
S N f(x)
N |
D X




‘ Numerical Integration (1D Case)

= Remember: integral is an area under the curve

= We can approximate any integral numerically as
follows

X

y N
< 74<->\¥

f(x)
d, -
N

Z|O

_Tf(x)dXzZN:%f(xi)

=1



‘ Numerical Integration (1D Case)

= Problem: what if we are really unlucky and our
signal has the same structure as sampling?

X

y &
NN

U

Tf(x)dXzZN:%f(xi)

=1




‘ Monte Carlo Integration

= |dea: randomize points X; to avoid structured noise

(e.g. duey to periodic texture)

f(x)

D X

= Draw N random samples x; independently from
uniform distribution Q(x)=U[0,D] (i.e. Q(x) = 1/D Is the
uniform probability density function)

= Then approximation to the integral becomes

1 1
NZwif(xi)zjf(x)dx for W, = e

= We can also use other Q’s for efficiency !!! (a.k.a.
Importance sampling)




‘ Monte Carlo Integration

f(x)

>
D X

= Then approximation to the integral becomes
%Zwif(xi) ~[f0dx o w :Q(lx.)

= We can also use other Q’s for efficiency !!! (a.k.a.
Importance sampling)




‘ Stratified Sampling
= ldea: combination of uniform sampling plus random
jitter
= Break domain into T intervals of widths d, and N,
samples in interval t

A\\‘// \ f(x)

>
D X

= Integral apprOX|mated usmg the following:

Z de(xu)

t=1 t J=1

- O




