Announcements

- Assignment 3
- Programming will be given out first
- Theory will be given out later
- Due dates will be shifted accordingly
- Office Hours
- After class today from 11-11:45

Radiometry

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

Radiometry

- Previously we treated light and material reflectance heuristically
- Not physically plausible (e.g. no accounting for conservation of energy)
- To move to more advanced rendering techniques, it is necessary to treat light and reflectance more rigorously
- This involves physics and some more advance geometry

Basic Assumptions and Setup

- Basic assumptions
- Light travels along straight lines
- There are no delays due to the light travel through space
- Light is scattered not absorbed (i.e. is conserved)
- With these assumptions we only need to concentrate on the geometry of lighting

Basic light related quantities

- Light energy is measured in Joules
- Power (flux) is measured in Watts = Joules / seconds
- Rate at which light energy is emitted
e.g. 100 Watt bulb $=100 \mathrm{~J} / \mathrm{sec}$
- In general, power is a function of the wavelength, but we'll ignore that

Light

- Light is manifested as photons
- Number of photons at a point is zero
\square Hence, we going to talk about flux density (i.e. number of photons per unit area)
- Irradiance - amount of the light falling on the surface patch (measured in Watts/meters ${ }^{2}$)

- Radiance - amount of light leaving the point per area (measured in Watts/(sr * meters ${ }^{2}$))

- What is steradian?
- Describes two-dimensional angular span (just like radians measure angular span in a plane)
- Measure of the solid angle
- Irradiance - amount of the light falling on the surface patch (measured in Watts/meters ${ }^{2}$)

- Radiance - amount of light leaving the point per area (measured in Watts/(sr * meters ${ }^{2}$))

Solid Angle

- Solid Angle - measured as the area a of a patch of a sphere, divided by the squared radius \mathbf{r} of the sphere

$$
\omega=\frac{\mathbf{a}}{\mathbf{r}^{2}}
$$

- Intuition: imagine you are at point $\overline{\mathbf{q}}$ and you look out in all possible directions, solid angle measures the amount of your view that a patch of the surface \mathbf{S} is taken up

Irradiance

- What is irradiance at surface patch \mathbf{S} at point $\overline{\mathbf{p}}$ due to point light source at $\overline{\mathbf{e}}$ in direction $\overrightarrow{\mathbf{d}}$, with radiance I ?
- First compute the solid angle of \mathbf{S} with respect to $\overline{\mathbf{e}}$

$$
\mathbf{d} \omega=\frac{\mathbf{d} \mathbf{A}_{\mathbf{s}}}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}}(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}) \quad \text { foreshortening }
$$

- Light reaching S

$$
\mathbf{S}=\mathbf{I} \mathbf{d} \omega=\mathbf{I} \frac{\mathbf{d} \mathbf{A}_{\mathbf{s}}}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}}(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}})
$$

- Irradiance (divide by area)

$$
\mathbf{H}(\overline{\mathbf{p}})=\frac{\mathbf{I} \mathbf{d} \omega}{\mathbf{d} \mathbf{A}_{\mathbf{s}}}=\frac{\mathbf{I}(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}})}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}}
$$

Radiance

- Light emitted in direction $\overrightarrow{\mathbf{d}}_{\mathrm{e}}$ through small surface patch \mathbf{S} at point $\overline{\mathbf{p}}$, is called radiance $\mathbf{L}(\overline{\mathbf{p}}, \overline{\mathbf{d}})$
- We need to integrate this quantity over all possible directions to obtain the radiosity (or radiant exitance)

Radiance

- Light emitted in direction $\overrightarrow{\mathbf{d}}_{\mathrm{e}}$ through small surface patch S at point $\overline{\mathbf{p}}$, is called radiance $\mathbf{L}(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}})$
- We need to integrate this quantity over all possible directions to obtain the radiosity (or radiant exitance)
- But we need to account for foreshortened surface are per solid angle

Radiance

- Light emitted in direction $\overrightarrow{\mathbf{d}}_{\mathrm{e}}$ through small surface patch \mathbf{S} at point $\overline{\mathbf{p}}$, is called radiance $\mathbf{L}(\overline{\mathbf{p}}, \overline{\mathbf{d}})$
- We need to integrate this quantity over all possible directions to obtain the radiosity (or radiant exitance)
- But we need to account for foreshortened surface are per solid angle

- Taking this into account we get

$$
\mathbf{E}(\overline{\mathbf{p}})=\int_{\vec{d}_{e} \in \Omega_{\mathrm{e}}} \mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right) \mathbf{d} \omega
$$

Radiance

- In spherical coordinates, we can express this as a double integral (assuming infinitesimally small patch)

$\mathbf{d} \omega=\sin \theta \mathbf{d} \theta \mathbf{d} \phi$

$$
E(\overline{\mathbf{p}})=\int_{\overrightarrow{\mathbf{d}}_{e} \in \Omega_{e}} L\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{e}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{e}\right) \mathbf{d} \omega
$$

$$
\mathbf{E}(\overline{\mathbf{p}})=\int_{\phi} \int_{\theta} \mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathbf{e}}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{e}}\right) \sin \theta \mathbf{d} \theta \mathbf{d} \phi
$$

Irradiance from Radiance

- We can get irradiance by integrating radiance over the entire sphere
- Intuition: Light that is hitting the surface is equal to the light emitted by everything else in the direction of the point

$$
\mathbf{H}(\overline{\mathbf{p}})=\int_{\phi} \int_{\theta} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \sin \theta \mathbf{d} \theta \mathbf{d} \phi
$$

Radiance vs. Irradiance

- Radiance
- Describes light emitted from a surface (per area)
- Function of direction
- Units: $\mathbf{W} \cdot \mathbf{s r}^{-1} \cdot \mathbf{m}^{-2}$
- Irradiance
- Describes light incident on a surface
- Not a directional quantity
- Units: $\mathbf{W} \cdot \mathbf{m}^{-2}$
- From the radiance emitted from one surface we can compute the incidence irradiance at a nearby surface

Bidirectional Reflectance Distribution

 Function (BRDF)- BRDF: Ratio of emittant to incident light (i.e. radiance to irradiance)

$$
\rho\left(\overrightarrow{\mathbf{d}}_{\mathrm{e}}, \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)=\frac{\mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)}{\mathbf{H}(\overline{\mathbf{p}})}
$$

Intuition: what fraction of the light entering along one direction willbe emitted in the other

Irradiance $\mathbf{H}(\overline{\mathbf{p}})$

Radiance $\mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)$

Bidirectional Reflectance Distribution

 Function (BRDF)- BRDF: Ratio of emittant to incident light (i.e. radiance to irradiance)

$$
\rho\left(\overrightarrow{\mathbf{d}}_{\mathrm{e}}, \overrightarrow{\mathbf{d}}_{\mathrm{i}}\right)=\frac{\mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)}{\mathbf{H}(\overline{\mathbf{p}})}
$$

- Models reflectance of simple materials
- Often BRDF must be empirically determined (measured in a laboratory)

Irradiance $\mathbf{H}(\overline{\mathbf{p}})$

Radiance $\mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)$

Point Light Sources

- Let's compute surface radiance for a point light source with radiant intensity I
- I = flux for a solid angle dw
- We already know (from earlier slides) that for a point light source irradiance is given by: $\mathbf{H}(\overline{\mathbf{p}})=\frac{\mathbf{I}\left(\overline{\mathbf{n}} \cdot \mathbf{d}_{\mathbf{i}}\right)}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}}$
- We can then get surface radiance by rearranging terms in the definition of BRDF

$$
\begin{aligned}
\mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathbf{e}}\right) & =\rho\left(\overrightarrow{\mathbf{d}}_{\mathbf{e}}, \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \mathbf{H}(\overline{\mathbf{p}}) \\
& =\rho\left(\overrightarrow{\mathbf{d}}_{\mathbf{e}}, \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \frac{\mathbf{I}\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}}
\end{aligned}
$$

Multiple Point Light Sources

- Simple to handle, since light is additive

$$
\mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{J}} \rho\left(\overrightarrow{\mathbf{d}}_{\mathrm{e}}, \overrightarrow{\mathbf{d}}_{\mathrm{i}, \mathrm{j}} \frac{\mathbf{I}\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathrm{i}, \mathrm{j}}\right)}{\left\|\overline{\mathbf{p}}-\overline{\mathbf{e}}_{\mathrm{j}}\right\|^{2}}\right.
$$

Extended Light Sources

- We can use radiance to compute required irradiance at a point by integrating over the incident directions
- Remember

$$
\mathbf{H}(\overline{\mathbf{p}})=\int_{\phi} \int_{\theta} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \sin \theta \mathbf{d} \theta \mathbf{d} \phi
$$

hence

$$
\mathbf{L}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathbf{e}}\right)=\int_{\phi} \int_{\theta} \rho\left(\overrightarrow{\mathbf{d}}_{\mathrm{e}}, \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \mathrm{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \sin \theta \mathbf{d} \theta \mathbf{d} \phi
$$

How much of this light is reflected
How much light is hitting surface point in a given direction

Idealizing Lighting and Reflectance

- We will consider a few special cases of the general BRDF models that facilitate lighting
- How do we do Phong lighting in terms of BRDFs?

Diffuse Reflection

- The only factor that determines appearance (radiance) of a Lambertian surface is irradiance (incident light)
- In other words, BRDF is constant and independent of incident and emittent direction. i.e. $\rho\left(\overrightarrow{\mathbf{d}}_{\mathrm{e}}, \overrightarrow{\mathbf{d}}_{\mathrm{i}}\right)=\rho_{0}$
- The radiance

$$
\begin{aligned}
& \mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)=\rho_{0} \int_{\overrightarrow{\mathbf{d}}_{i} \in \Omega_{\mathbf{i}}} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \mathbf{d} \omega_{\mathbf{i}} \\
& \mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)=\rho_{0} \int_{\mathbf{d}_{i} \in \Omega_{i}} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \cos \theta_{\mathbf{i}} \mathbf{d} \omega_{\mathbf{i}}
\end{aligned}
$$

- Since total irradiance must equal radiant exitance (conservation of energy), we can show that $\rho_{0}=\frac{1}{\pi}$

Small proof

$$
\begin{aligned}
& \int_{\vec{d}_{i} \in \Omega_{\mathbf{i}}} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \cos \theta_{\mathbf{i}} \mathbf{d} \omega_{\mathbf{i}}=\int_{\overrightarrow{\mathbf{d}}_{\mathrm{e}} \in \Omega_{\mathrm{e}}} \rho_{0} \int_{\mathbf{d}_{\mathbf{i}} \in \Omega_{\mathbf{i}}} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \cos \theta_{\mathbf{i}} \mathbf{d} \omega_{\mathbf{i}} \cos \theta_{\mathbf{e}} \mathbf{d} \omega_{\mathrm{e}} \\
& \int_{\mathrm{d}_{\mathbf{i}} \in \Omega_{i}} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \cos \theta_{\mathbf{i}} \mathbf{d} \omega_{\mathbf{i}}=\pi \rho_{0} \int_{\mathbf{d}_{i} \in \Omega_{i}} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \cos \theta_{\mathbf{i}} \mathbf{d} \omega_{i}
\end{aligned}
$$

$$
\begin{aligned}
& 1=\pi \rho_{0} \\
& \rho_{0}=\frac{1}{\pi}
\end{aligned}
$$

Diffuse Reflection

- Despise simple BRDF, it's still hard to compute radiance because of the integral

$$
\mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathbf{e}}\right)=\rho_{0} \int_{\overline{\mathbf{d}}_{i} \in \Omega_{i}} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{i}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{i}\right) \mathbf{d} \omega_{\mathbf{i}}
$$

- Assuming point light source helps
- Lets assume single point light source with intensity I
- Then irradiance is as before $\mathbf{H}(\overline{\mathbf{p}})=\frac{\mathbf{I}\left(\overrightarrow{\mathbf{n}} \cdot \mathbf{d}_{\mathbf{i}}\right)}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}}$

$$
\mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathbf{e}}\right)=\rho_{0} \frac{\mathbf{I}\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}}
$$

- Assuming that light is far away removes the denominator

$$
\mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)=\rho_{0} \mathbf{I}\left(\overrightarrow{\mathbf{n}}^{\prime} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \quad \text { Why? }
$$

Diffuse Reflection

- Despise simple BRDF, it's still hard to compute radiance because of the integral

$$
\mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathbf{e}}\right)=\rho_{0} \int_{\overline{\mathbf{d}}_{i} \in \Omega_{i}} \mathbf{L}\left(\overline{\mathbf{p}},-\overrightarrow{\mathbf{d}}_{i}\right)\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{i}\right) \mathbf{d} \omega_{\mathbf{i}}
$$

- Assuming point light source helps
- Lets assume single point light source with intensity I
- Then irradiance is as before $\mathbf{H}(\overline{\mathbf{p}})=\frac{\mathbf{I}\left(\overrightarrow{\mathbf{n}} \cdot \mathbf{d}_{\mathbf{i}}\right)}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}}$

$$
\mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathbf{e}}\right)=\rho_{0} \frac{\mathbf{I}\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|^{2}} \quad \begin{aligned}
& \text { Quantity is a constant } \\
& \text { for a surface }
\end{aligned}
$$

- Assuming that light is far away removes the denominator

$$
\mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}^{2}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)=\rho_{0} \mathbf{I}\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right) \quad \text { Why? }
$$

Remember the Phong model?

- Remember Phong lighting equation?
$\mathbf{L}(\overline{\mathbf{p}}, \overrightarrow{\mathbf{c}})=\mathbf{r}_{\mathbf{d}} \mathbf{I}_{\mathbf{d}} \max \left(0, \overrightarrow{\mathbf{d}}_{\mathbf{i}} \cdot \overrightarrow{\mathbf{n}}\right)+\mathbf{r}_{\mathbf{a}} \mathbf{I}_{\mathbf{a}}+\mathbf{r}_{\mathbf{s}} \mathbf{I}_{\mathrm{s}} \max (0, \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{c}})^{\alpha}$

$$
\mathbf{r}_{\mathrm{d}}=\rho_{0} \stackrel{?}{\leq} \frac{1}{\pi}
$$

- Assuming that light is far away removes the denominator

$$
\mathbf{L}_{\mathbf{d}}\left(\overline{\mathbf{p}}, \overrightarrow{\mathbf{d}}_{\mathrm{e}}\right)=\rho_{0} \mathbf{I}\left(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{d}}_{\mathbf{i}}\right)
$$

