‘ Announcements

= Assignment 3
o Programming will be given out first
o Theory will be given out later
o Due dates will be shifted accordingly

= Office Hours
o After class today from 11-11:45
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‘ Radiometry

= Previously we treated light and material
reflectance heuristically

o Not physically plausible (e.g. no accounting for
conservation of energy)

= To move to more advanced rendering
techniques, it Is necessary to treat light and
reflectance more rigorously

= This involves physics and some more advance
geometry



Basic Assumptions and Setup

= Basic assumptions
o Light travels along straight lines

o There are no delays due to the light travel through
space
o Light is scattered not absorbed (i.e. is conserved)

= With these assumptions we only need to
concentrate on the geometry of lighting



Basic light related quantities

= Light energy Is measured in Joules

= Power (flux) is measured in Watts = Joules / seconds

o Rate at which light energy Is emitted
e.g. 100 Watt bulb = 100 J/sec

o In general, power is a function of the wavelength, but
we’ll ignore that



‘ Light

= Light Is manifested as photons
o Number of photons at a point is zero

o Hence, we going to talk about flux density (i.e.
number of photons per unit area)

= Irradiance — amount of = Radiance — amount of

the light falling on the light leaving the point per
surface patch (measured area (measured in
iIn Watts/meters?) Watts/(sr * meters?))
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‘ Light

= What Is steradian?

o Describes two-dimensional angular span (just like
radians measure angular span in a plane)

o Measure of the solid angle
= Irradiance — amount of = Radiance — amount of

the light falling on the light leaving the point per
surface patch (measured area (measured in
iIn Watts/meters?) Watts/(sr * meters?))
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‘ Solid Angle

= Solid Angle - measured as the area a of a patch of a

sphere, divided by the squared radius r of the sphere
a
W=—
r2
= Intuition: imagine you are at point g and you look out
In all possible directions, solid angle measures the

amount of your view that a patch of the surface S is
taken up




‘ [rradiance

= What is irradiance at surface patch S at point p due to
point light source at € in direction d, with radiance | ?

= First compute the solid angle of S with respect to e

s 1(5-d)

foreshortening

S=ldo=1——=(i-d)

= Irradiance (divide by area)

. ldo I(fi-d)
H j— p—
P dA,  [p-¢|

dA

S



‘ Radiance

= Light emitted in direction a; through small surface patch
S at point p, is called radiance L(p,d)

= We need to integrate this quantity over all possible
directions to obtain the radiosity (or radiant exitance)




‘ Radiance

= Light emitted in direction a; through small surface patch
S at point p, is called radiance L(p,d)

= We need to integrate this quantity over all possible
directions to obtain the radiosity (or radiant exitance)

o But we need to account for foreshortened surface are per solid
angle -
d

A dA = (fi-d,)dA,



‘ Radiance

= Light emitted in direction a; through small surface patch
S at point p, is called radiance L(p,d)

= We need to integrate this quantity over all possible
directions to obtain the radiosity (or radiant exitance)

o But we need to account for foreshortened surface are per solid
angle -
d

= Taking this into account we get
EM =, _ L(p.d,)(A-d,)do



‘ Radiance

= In spherical coordinates, we can express this as a
double integral (assuming infinitesimally small patch)

n d, = (cos¢sin ,sin ¢sin B, cos 0)

ol

“" do =sin 0 do do

EM =, L(p.d,)(A-d,)do

Jd,

E(P) =:IL(§,89)(ﬁoae)sin 0dodo
o 0



‘ Irradiance from Radiance

= We can get irradiance by integrating radiance over
the entire sphere

= Intuition: Light that is hitting the surface is equal to

the light emitted by everything else in the direction
of the point

H(p) =”L(ﬁ,—ai)(ﬁ-ai)sin 0dodd
o 0




‘ Radiance vs. Irradiance

= Radiance
o Describes light emitted from a surface (per area)
o Function of direction
o Units: W-sr™-m™

= Irradiance
o Describes light incident on a surface
o Not a directional quantity
o Units: W-m™

= From the radiance emitted from one surface we can
compute the incidence irradiance at a nearby surface



Bidirectional Reflectance Distribution
Function (BRDF)

= BRDF: Ratio of emittant to incident light (i.e. radiance
to irradiance) - - L(p.d
p(d, d) = - PG

H(p)

Intuition: what fraction of the light entering along one
direction willbe emitted in the other

Irradiance H(P) Radiance L(ﬁ,ae)
\

dA> < dA >




Bidirectional Reflectance Distribution
Function (BRDF)

= BRDF: Ratio of emittant to incident light (i.e. radiance
to irradiance) - = . L(p.d,
p(@,,d,) = =25
H(p)
= Models reflectance of simple materials

= Often BRDF must be empirically determined (measured
In a laboratory)

Irradiance H(P) Radiance L(ﬁ,ae)
\

dA> < dA >




Point Light Sources

= Let’s compute surface radiance for a point light source
with radiant intensity |
o | =flux for a solid angle dw
= We already know (from earlier slides) that for_a point
light source irradiance is given by: 1) - "‘(” dH)
p—¢€

= We can then get surface radiance by rearranging terms
In the definition of BRDF

L(p,d.) = p(d.,d)H{P)
id I(n- d)

I
-
~~

o
@D
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‘ Multiple Point Light Sources

= Simple to handle, since light is additive




‘ Extended Light Sources

= We can use radiance to compute required irradiance
at a point by integrating over the incident directions

= Remember

—

H(p) = ”L ~d,)(A-d,)sin6ded¢

hence

L(p.d.) 5[ [p(d..d)|L(p.~d,) (fi-d,)sin 6 dOd¢
o 0

How much of this light is reflected How much light is hitting surface point
in a given direction



‘ Idealizing Iighting and Retlectance

= We will consider a few special cases of the general
BRDF models that facilitate lighting

= How do we do Phong lighting in terms of BRDFs?



‘ Diffuse Reflection

= The only factor that determines appearance (radiance)
of a Lambertian surface is irradiance (incident light)

= In other words, BRDF is constant and independent of
incident and emittent direction. i.e. p(de,d) o)

= The radiance

Ls(p.d.)=p, [L(p—d)(A-d,)do,

aiEQi

Ly(P.d,)=p, [L(P.—d;)cos®do,

aiEQi

= Since total irradiance must equal radiant exitance
(conservation of energy), we can show that 0 1
—
TU



‘ Small proot

jL(ﬁ,—ai)coseidooi = j P, IL(E,—ai)(:oseidooi cos0.dw,

aeQ aeQ aeQ
jL(p —d.)cos8.dw, =p, jL(p —d.)cos8.dw,
deQ
1=mp,
1
Po ="

T



‘ Diffuse Reflection

= Despise simple BRDF, it's still hard to compute
radiance because of the integral

Ls(p.d.) =p, [L(P.~d,)(fi-d,)do
d,eQ;

= Assuming point light source helps
o Lets assume single point light source with intensity |

o Then irradiance is as before H(p) = Ifﬁ?iz)
. 1(A-d.) Ip-¢|

I—d(ﬁide):po = _Iz

p-¢

= Assuming that light is far away removes the
denominator — B
Ly(P.d,)=p,l(A-d)) why?



‘ Diffuse Reflection

= Despise simple BRDF, it's still hard to compute
radiance because of the integral

Ls(p.d.) =p, [L(P.~d,)(fi-d,)do
d,eQ;
= Assuming point light source helps

o Lets assume single point light source \I/vigh (j.jntensity I
o Then irradiance is as before H(p) = (n-d)

2
- p—-¢

@iy P

T Quantity Is a constant

Hp = eH — for asurface

Ld (ﬁ!ae) — pO

= Assuming that light is far away removes the
denominator — B
Ly(P.d,)=p,l(A-d)) why?



'Remember the Phong model?

= Remem

per Phong lighting

L(P.C) -

1, max(0,d, - i)

'y =Po

equation?

+r.l,+rl, max(0,r-c)”

= Assuming that light is far away removes the
denominator L.,(P,d.)=p,I(A-d)



