
Announcements
Assignment 3

Programming will be given out first
Theory will be given out later
Due dates will be shifted accordingly 

Office Hours
After class today from 11-11:45
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Radiometry

Previously we treated light and material 
reflectance heuristically 

Not physically plausible (e.g. no accounting for 
conservation of energy) 

To move to more advanced rendering 
techniques, it is necessary to treat light and 
reflectance more rigorously

This involves physics and some more advance 
geometry



Basic Assumptions and Setup

Basic assumptions
Light travels along straight lines
There are no delays due to the light travel through 
space
Light is scattered not absorbed (i.e. is conserved)

With these assumptions we only need to 
concentrate on the geometry of lighting



Basic light related quantities
Light energy is measured in Joules

Power (flux) is measured in Watts = Joules / seconds

Rate at which light energy is emitted 
e.g. 100 Watt bulb = 100 J/sec

In general, power is a function of the wavelength, but 
we’ll ignore that



Light
Light is manifested as photons

Number of photons at a point is zero
Hence, we going to talk about flux density (i.e.
number of photons per unit area)

dA

Irradiance – amount of 
the light falling on the 
surface patch (measured 
in Watts/meters2 )

Radiance – amount of 
light leaving the point per 
area (measured in 
Watts/(sr * meters2))

dA



Light
What is steradian?

Describes two-dimensional angular span (just like  
radians measure angular span in a plane) 
Measure of the solid angle

dA

Irradiance – amount of 
the light falling on the 
surface patch (measured 
in Watts/meters2 )

Radiance – amount of 
light leaving the point per 
area (measured in 
Watts/(sr * meters2))

dA



Solid Angle
Solid Angle - measured as the area a of a patch of a 
sphere, divided by the squared radius r of the sphere 

Intuition: imagine you are at point q and you look out 
in all possible directions, solid angle measures the 
amount of your view that a patch of the surface S is 
taken up
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Irradiance
What is irradiance at surface patch S at point p due to 
point light source at e in direction d, with radiance I ?
First compute the solid angle of S with respect to e

Light reaching S

Irradiance (divide by area)
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Radiance
Light emitted in direction de through small surface patch 
S at point p, is called radiance 

We need to integrate this quantity over all possible 
directions to obtain the radiosity (or radiant exitance)
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Radiance
Light emitted in direction de through small surface patch 
S at point p, is called radiance 

We need to integrate this quantity over all possible 
directions to obtain the radiosity (or radiant exitance)

But we need to account for foreshortened surface are per solid 
angle 
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Radiance
Light emitted in direction de through small surface patch 
S at point p, is called radiance 

We need to integrate this quantity over all possible 
directions to obtain the radiosity (or radiant exitance)

But we need to account for foreshortened surface are per solid 
angle 

Taking this into account we get
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Radiance
In spherical coordinates, we can express this as a 
double integral (assuming infinitesimally small patch)
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Irradiance from Radiance
We can get irradiance by integrating radiance over 
the entire sphere
Intuition: Light that is hitting the surface is equal to 
the light emitted by everything else in the direction 
of the point

∫ ∫ ⋅−=
φ θ

φθθ dddndpLpH ii sin)(),()(
rrr



Radiance vs. Irradiance
Radiance

Describes light emitted from a surface (per area)
Function of direction
Units: 

Irradiance
Describes light incident on a surface
Not a directional quantity
Units:

From the radiance emitted from one surface we can 
compute the incidence irradiance at a nearby surface
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Bidirectional Reflectance Distribution 
Function (BRDF)

BRDF: Ratio of emittant to incident light (i.e. radiance 
to irradiance)
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Bidirectional Reflectance Distribution 
Function (BRDF)

BRDF: Ratio of emittant to incident light (i.e. radiance 
to irradiance)

Models reflectance of simple materials
Often BRDF must be empirically determined (measured 
in a laboratory) 

Irradiance
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Point Light Sources
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Let’s compute surface radiance for a point light source 
with radiant intensity I

I = flux for a solid angle dw
We already know (from earlier slides) that for a point 
light source irradiance is given by:

We can then get surface radiance by rearranging terms 
in the definition of BRDF
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Multiple Point Light Sources
Simple to handle, since light is additive
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Extended Light Sources
We can use radiance to compute required irradiance 
at a point by integrating over the incident directions 

Remember

hence
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How much of this light is reflected
in a given direction

How much light is hitting surface point



Idealizing Lighting and Reflectance

We will consider a few special cases of the general 
BRDF models that facilitate lighting

How do we do Phong lighting in terms of BRDFs? 



Diffuse Reflection
The only factor that determines appearance (radiance) 
of a Lambertian surface is irradiance (incident light)
In other words,  BRDF is constant and independent of 
incident and emittent direction. i.e. 
The radiance 

Since total irradiance must equal radiant exitance
(conservation of energy), we can show that 

∫

∫

Ω∈

Ω∈

−=

⋅−=

ii

ii

d
iiied

d
iiied

ddpLdpL

ddndpLdpL

r

r

rr

rrrr

ωθρ

ωρ

cos),(),(

))(,(),(

0

0

0),( ρρ =ie dd
rr

π
ρ

1
0 =



Small proof
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Diffuse Reflection
Despise simple BRDF, it’s still hard to compute 
radiance because of the integral

Assuming point light source helps
Lets assume single point light source with intensity I
Then irradiance is as before 

Assuming that light is far away removes the 
denominator
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Diffuse Reflection
Despise simple BRDF, it’s still hard to compute 
radiance because of the integral

Assuming point light source helps
Lets assume single point light source with intensity I
Then irradiance is as before 

Assuming that light is far away removes the 
denominator
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Quantity is a constant
for a surface



Remember the Phong model?

α),0max(),0max(),( crIrIrndIrcpL ssaaidd
rrrrr
⋅++⋅=

Remember Phong lighting equation? 

Assuming that light is far away removes the 
denominator )(),( 0 ied dnIdpL

rrr
⋅= ρ

π
ρ

1
0 ≤=dr
?


