Announcements

- Assignment 2
- Programming due Friday
- Assignment 3
a Programming will be given out first
- Theory will be given out later
- Due dates will be shifted accordingly
- Office Hours for Alex
- After class today from 11-11:45

Ray Tracing Review

- For each pixel
- Form a ray (a.k.a. ray casting)
- Find intersection of this ray with objects in the scene
- Find closest object intersection (there could be multiple object intersections for any given ray)
- Find normal at the closest intersection point (a.k.a hit point)
- Evaluate reflectance model at the hit point (global + local)

Effects of Ray Tracer Recursion

No recursive rays (local lighting)

1 Level of recursive reflection

Effects of Ray Tracer Recursion

Recursion level of 1 or 2 is usually sufficient, unless we have mirrors That reflect in one another

2 Levels of recursive reflection

1 Level of recursive reflection

Effects of Ray Tracer Recursion

1 Level of recursive reflection

2 Levels of recursive reflection

Texture (last time this went by quickly)

- Texture can be used to modulate diffuse and ambient reflection coefficients, as with Gouraud or Phong shading
- All we need, is a way of mapping a point on the surface (hit point) to a point in the texture space
- e.g. given a hit point of parametric surface, we can convert the 3D point coordinates to surface parameters, and use them to get texture coordinates (as with standard texture mapping)
- Unlike with Gouraud or Phong shading models we don't need to interpolate texture coordinates over polygons
- Anti-aliasing and super-sampling we will cover later (next week)

Intersections Algorithms

Triangles

Polygonal Patches

Spheres

Cylinders

Conics

Affinely Deformed Surfaces

Constructive Solid Geometry

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

Constructive Solid Geometry

- Idea: construct a more expressive class of geometrical models by combining the basic geometric primitives we already studied
- To do this we define boolean operators on overlapping geometric objects

Union

Intersection
Subtraction

How do we intersect a CFG geometry?

- We can use the original intersection tests + a bit of logic

We can determine this by simple insideloutside tests

How do we intersect a CFG geometry?

- We can use the original intersection tests + a bit of logic

For example, for union operator we must consider

How do we intersect a CFG geometry?

- We can use the original intersection tests + a bit of logic

For example, for intersection operator we must consider

How do we intersect a CFG geometry?

- We can use the original intersection tests + a bit of logic

For example, for subtraction operator (assuming A-B) we must consider

What about normals at "hit points"?

- Simple rules:
- If object is positive, then the computed normal at the "hit point" is outward facing
- If object is negative, then the computed normal at the "hit point" is inward facing (and needs to be flipped)

What can you build out of what we know?

Complex CFG

Benefits of CFG

- Builds complex geometry based on simple primitives
- Requires no additional intersection code
- Relatively inexpensive and easy to use in a Ray Tracer
- Naturally partitions objects and the scene in terms of hierarchical representation
- Allows for efficient rendering

Ray Tracing
 Part 3: Refraction and Shadows

Computer Graphics, CSCD18 Fall 2008
 Instructor: Leonid Sigal

What do we want to model?

Transmission or refraction effects in semi-transparent surfaces

Transmission or Refraction

- Physics: light that penetrates a (partially or fully) transparent surface or material is refracted (bent) to account for change in the speed of light transmission in different media
- Snell's law governs refractions $\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\mathbf{c}_{1}}{\mathbf{c}_{2}}$

Transmission or Refraction

- Physics: light that penetrates a (partially or fully) transparent surface or material is refracted (bent) to account for change in the speed of light transmission in different media
- Snell's law governs refractions $\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\mathbf{c}_{1}}{\mathbf{c}_{2}}$

Material with speed of light $\mathbf{C}_{\mathbf{1}}$

$$
\overrightarrow{\mathbf{n}}
$$

$$
\stackrel{\Delta \stackrel{\Delta}{\Delta} \triangleright}{\Delta \Delta}
$$

Material with speed of light \mathbf{C}_{2}

Transmission or Refraction

- Physics: light that penetrates a (partially or fully) transparent surface or material is refracted (bent) to account for change in the speed of light transmission in different media
index of refraction
- Snell's law governs refractions
$\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\mathbf{c}_{1}}{\mathbf{c}_{2}}$

Material with speed of light $\mathbf{C}_{\mathbf{1}}$

$$
\overrightarrow{\mathbf{n}}
$$

Material with speed of light \mathbf{C}_{2}

Transmission or Refraction

- For example,

$$
\frac{\mathbf{c}_{\text {air }}}{\mathbf{c}_{\text {water }}} \approx 1.33
$$

$$
\frac{\mathbf{c}_{\text {air }}}{} \approx 1.8
$$

$\mathbf{C}_{\text {glass }}$
$\mathbf{c}_{2}<\mathbf{c}_{1}$ light bends toward the normal (eg. air to water)
$\mathbf{c}_{\mathbf{2}}>\mathbf{C}_{\mathbf{1}}$ light bends away from the normal (eg. water to air)

Common Indices of Refraction

Material	Index of Refraction
vacuum	1.0
ice	1.309
water	1.333
ethyl alcohol	1.36
glass	$1.5-1.6$
diamond	2.417

Material with speed of light $\mathbf{C}_{\mathbf{1}}$

Material with speed of light \mathbf{C}_{2}

Transmission or Refraction

- Critical angle (for $\mathbf{c}_{\mathbf{2}}>\mathbf{c}_{\mathbf{1}}$)
- As incoming angle approaches critical angle, the outgoing angle approaches 90 degrees
- No light enters the material

Transmission or Refraction

- Special case
- If incoming angle is 0 the outgoing angle is also 0
- No light bending

Refraction in Ray Tracing

- We can treat global refraction/transmission just like global specular reflection (ie. cast one ray)
- Need to keep track of the speed of light in the current medium
- Perfect refraction direction

$$
\overrightarrow{\mathbf{d}}=\frac{\mathbf{c}_{2}}{\mathbf{c}_{1}} \overrightarrow{\mathbf{b}}+\left(\frac{\mathbf{c}_{2}}{\mathbf{c}_{1}}(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{b}})-\left(1-\left[\frac{\mathbf{c}_{2}}{\mathbf{c}_{1}}\right]^{2}\left(1-(\overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{b}})^{2}\right)\right)^{1 / 2}\right) \overrightarrow{\mathbf{n}}
$$

Material with speed of light $\mathbf{C}_{\mathbf{1}}$

$$
\overrightarrow{\mathbf{n}}
$$

\vec{b}

Material with speed of light \mathbf{C}_{2}

More complex scene with refraction

Shadows

- Easy to deal with in ray tracing
- When point is in shadow, turn off local reflection
- To do so, cast a ray towards a light source

$$
\overline{\mathbf{r}}(\lambda)=\overline{\mathbf{p}}_{\mathbf{k}}+\lambda\left(\overline{\mathbf{l}}-\overline{\mathbf{p}}_{\mathbf{k}}\right)
$$

if there is a hit point $0 \leq \lambda \leq 1$, turn off local reflection (diffuse and specular components of Phong)

Review of Ray Tracer Shading

