
Announcements
Assignment 2

Theory due Wednesday
Programming due next Friday

OpenGL support on mathlab machines has been fixed

Office hours
Today 12-1 pm

Last week …

Lighting
Phong model components: Ambient, Diffuse, Specular

aassdd IrcrIrnsIrscpL +⋅+⋅= α),0max(),0max(),,(
rrrrrr

Last week …

Lighting
Phong model components: Ambient, Diffuse, Specular

Shading

Scan conversion with shading
Foley, van Dam, Feiner, Hughes

Flat Gouraud Phong

Texture Mapping

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

Texture Mapping
So far we only considered objects that have
consistent color (that is modulated by light)

To get more realistic variations in reflectance (that
conveys texture) we need to model them

There are two natural sources of textures
Surface markings – variations in the total light reflected
Surface relief – variations in 3D shape which introduce
local variability in shading

Why do we need textures?

An alternative would be to have much more complex
models

This is expensive computationally
The tools for building such high fidelity models are not readily
available

Textures
Cheaper to render (especially on current graphics hardware)
Reusable

Once we have the texture (e.g. wood) we can use it for many
different objects

Texture Mapping Examples

Sky

From http://www.cs.ualberta.ca/~yang/Projects/texture_analysis_and_synthesis.htm

Parchment

Marble

Texture Mapping
Texture mapping is also a great way to create artificial
objects

Questions we must address

Where do textures come from?

How do we map texture onto a surface?

How does texture change reflectance properties and
shading of the surface?

Scan conversion (how do we actually render texture
mapped surface?)

Where do we get a texture?
Textures can be defined procedurally

Input: point on the surface
Output: surface albedo at that point

Example of procedural texture

albedo of an object is the extent to which it diffusely reflects light

Where do we get a texture?
Textures can be defined procedurally

Input: point on the surface
Output: surface albedo at that point

Example of procedural texture (in 3D)

albedo of an object is the extent to which it diffusely reflects light

Where do we get a texture?
We can also use digital images as textures

Imagine gluing a 2D picture over a 3D surface

How do we do this?
map a point on the arbitrary geometry to a point on an abstract
unit square (we call this texture space)
map a point on abstract unit square to a point on the image of
arbitrary dimension

(1,1)(0,1)

v

(0,0) (1,0)
u

Texture Mapping Details
Simplest approaches to texture mapping

For each face of the mesh, specify a point (ui, vi) for each
vertex point pi

Continuous mapping from parametric form of the surface
onto texture, for example for sphere

π
β

π
α

== vu ,
2

πβ
πα

β
βα
βα

βα
≤<
≤≤

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

=
0

20
,

cos
sinsin
sincos

),(

0

0

0

rz
ry
rx

s

(1,1)

512 x 512

Questions we must address

Where do textures come from?

How do we map texture onto a surface?

How does texture change reflectance properties and
shading of the surface?

Scan conversion (how do we actually render texture
mapped surface?)

What about color texture map?

Assuming that the texture values are (we can
achieve this by normalizing intensities of the texture
map image), we can simply scale the reflection
coefficients of ambient and diffuse components of the
Phong model accordingly

We could also similarly modulate the secular
reflectance coefficient as well

10 ≤≤ τ

aa

dd

rr
rr

τ
τ

=
=

~
~

What about color texture map?

Assuming that the texture values are (we can
achieve this by normalizing intensities of the texture
map image), we can simply scale the reflection
coefficients of ambient and diffuse components of the
Phong model accordingly

We could also similarly modulate the secular
reflectance coefficient as well

10 ≤≤ τ

BaBBa

BdBBd

GaGGa

GdGGd

RaRRa

RdRRd

rr
rr

rr
rr

rr
rr

,,

,,

,,

,,

,,

,,

~
~

~
~

~
~

τ

τ

τ

τ

τ

τ

=

=

=

=

=

=

Questions we must address

Where do textures come from?

How do we map texture onto a surface?

How does texture change reflectance properties and
shading of the surface?

Scan conversion (how do we actually render texture
mapped surface?)

Scan Conversion with Texture Mapping
Let’s try extending the scan conversion algorithm from
last class

1111
*
1

*
1 ,,,,, vuEdyx

3333
*
3

*
3 ,,,,, vuEdyx

2222
*
2

*
2 ,,,,, vuEdyx

Scan Conversion with Texture Mapping
Let’s try extending the scan conversion algorithm from
last class

Linearly interpolate u, v along with radiance and pseudodepth
Scale radiance according to the texture map values

1111
*
1

*
1 ,,,,, vuEdyx

3333
*
3

*
3 ,,,,, vuEdyx

2222
*
2

*
2 ,,,,, vuEdyx

Simple Scan Conversion with Textures
Let’s try extending the scan conversion algorithm from
last class

Linearly interpolate u, v along with radiance and pseudodepth
Scale radiance according to the texture map values

τ

if (d < z-buffer(x, y))
use current u,v to index into the texture map
to get texture value
scale the radiance value
putpixel(x, y,)
z-buffer(x, y) = d

end

EE τ=~
E~

Problems with Simple Scan Conversion
Perspective projection is non-linear

Lines map to lines
But, mid-point is not necessarily maps to mid-point

So, distortion depends on the slope of the surface with
respect to line of sight
Why did we not care about this before?

Image
Plane

Problems with Simple Scan Conversion
Perspective projection is non-linear

Lines map to lines
But, mid-point is not necessarily maps to mid-point

So, distortion depends on the slope of the surface with
respect to line of sight
Why did we not care about this before?

Image
Plane

Problems with Simple Scan Conversion
Perspective projection is non-linear

Lines map to lines
But, mid-point is not necessarily maps to mid-point

So, distortion depends on the slope of the surface with
respect to line of sight

Only evident in animation or for textures with straight lines

Image
Plane

Problems with Simple Scan Conversion
Does this really happen in practice?

We need to handle perspective effects during scan
conversion (more complicated)

Simple scan
conversion

Scan conversion with
handling of perspective

Aliasing
Another Problem: When adjacent pixels in the
image plane are rendered, the corresponding
coordinates in the texture can be far apart (if the
object is far away and we have high resolution
texture) and sampling artifacts can be seen.

(1,1)

Mipmapping
Solution: use high resolution texture for rendering
objects that are close, and low-resolution texture
when the object is far away

Bump Mapping
Idea: Instead of perturbing reflectance properties, why
don’t we perturb the normals? What’s the difference?

Bump Mapping
Bump MappingTexture Mapping

Environment Mapping
Idea: Use a texture map that corresponds to the
view of the environment to achieve the effect of
reflectance in a given object.

Let’s assume we want to render a silver sphere

Cube environment mapping

Environment Mapping
Idea: Use a texture map that corresponds to the
view of the environment to achieve the effect of
reflectance in a given object.

Let’s assume we want to render a silver sphere

Cube environment mapping

Environment Mapping
Idea: Use a texture map that corresponds to the
view of the environment to achieve the effect of
reflectance in a given object.

Let’s assume we want to render a silver sphere

Cube environment mapping

Environment Mapping
Idea: Use a texture map that corresponds to the
view of the environment to achieve the effect of
reflectance in a given object.

Image from slides by Aditi Majumder

Environment Mapping
Idea: Use a texture map that corresponds to the
view of the environment to achieve the effect of
reflectance in a given object.

Image from slides by Aditi Majumder

