Announcements

Assignment 1

- Programming (was due Friday)
- Last day to submit for late credit was yesterday

Assignment 2

- Theory due next Wednesday
- Programming

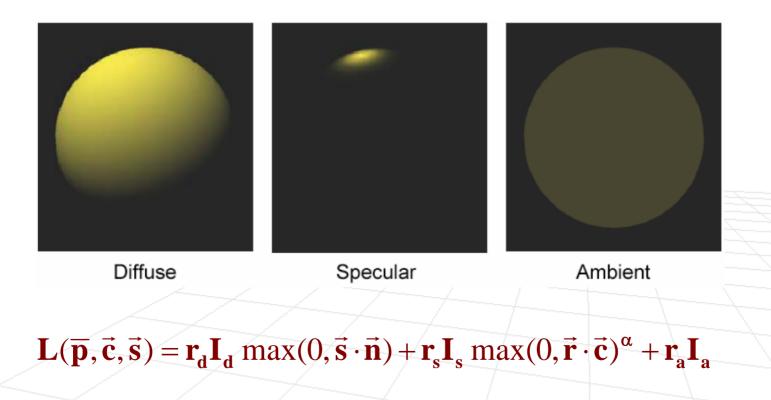
Midterm

Today 6-7pm in AA204

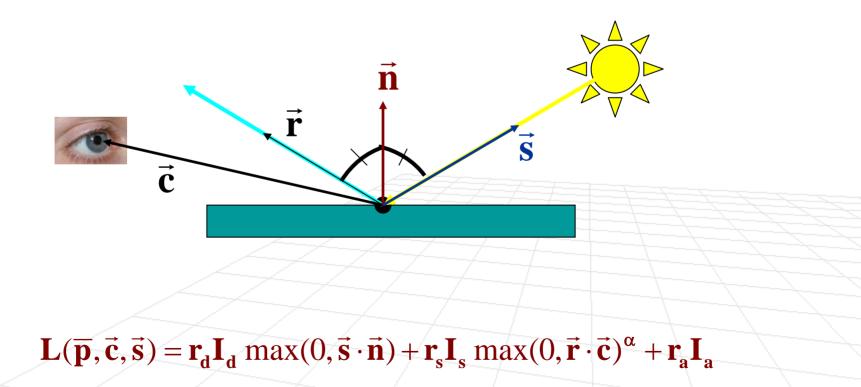
All you need is a writing utensil and an ID (no books/notes/calculators, etc.)

You cannot leave the exam room till 7:15pm

We started taking about lighting I introduced a Phong model



We started taking about lighting I introduced a Phong model



Computer Graphics, CSCD18

Fall 2008 Instructor: Leonid Sigal

Shading

- Goal: use light/reflectance model we derived last week to shade/color facets of polygonal mesh
- We know how to color a point on objects surface given a point, a normal at that point, a light source, and a camera position (Phong model)
- But, geometry is not modeled using points (too expensive), it is modeled using polygonal meshes.

This is why we need shading

Basic setup

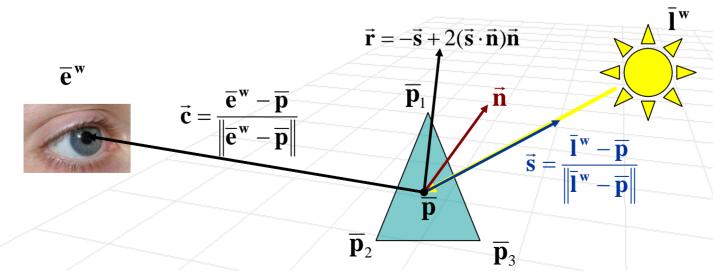
Assume we know

How do we shade a triangle?

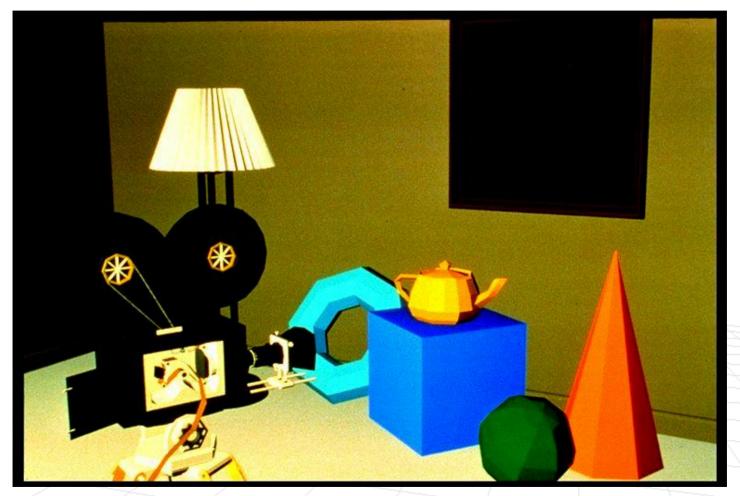
Flat Shading

- Idea: Fill each triangle with single color
- Let us assume we have a triangle with vertices \overline{p}_1 , \overline{p}_2 , \overline{p}_3 in CCW order
- We can then compute the normal, $\vec{\mathbf{n}} = \frac{(\overline{\mathbf{p}}_2 \overline{\mathbf{p}}_1) \times (\overline{\mathbf{p}}_3 \overline{\mathbf{p}}_1)}{\|(\overline{\mathbf{p}}_2 \overline{\mathbf{p}}_1) \times (\overline{\mathbf{p}}_2 \overline{\mathbf{p}}_1)\|}$
- And shade entire triangle using Phong model

$$\mathbf{L}(\mathbf{\bar{p}}, \mathbf{\bar{e}}^{w}, \mathbf{\bar{l}}^{w}) = \mathbf{r}_{d}\mathbf{I}_{d} \max(0, \mathbf{\bar{s}} \cdot \mathbf{\bar{n}}) + \mathbf{r}_{s}\mathbf{I}_{s} \max(0, \mathbf{\bar{r}} \cdot \mathbf{\bar{c}})^{\alpha} + \mathbf{r}_{a}\mathbf{I}_{a}$$



Flat Shading



Foley, van Dam, Feiner, Hughes, Plate II.29

Issues with Flat Shading

- For large faces secularities are impractical, since highlight is often sharp
 - Because of this, typically the secular term is dropped

n

ñ

Mesh binderies are visible
 People are very sensitive to this

Solutions

- Use small patches (but this is inefficient)
- Use interpolative shading

Interpolative Shading

- Idea: Average intensities at vertices of the triangle to smoothly interpolate over pixels within a face
- Algorithm, for a triangular face with vertices p
 ₁, p
 ₂, p
 ₃
 Compute normals at each vertex
 - □ Compute radiance $E_j = L(\overline{p}_j, \overline{e}^w, \overline{l}^w)$ for each vertex point \overline{p}_j

 $\mathbf{L}(\mathbf{\overline{p}}_{j}, \mathbf{\overline{e}}^{w}, \mathbf{\overline{l}}^{w}) = \mathbf{r}_{d}\mathbf{I}_{d} \max(0, \mathbf{\overline{s}}_{j} \cdot \mathbf{\overline{n}}_{j}) + \mathbf{r}_{s}\mathbf{I}_{s} \max(0, \mathbf{\overline{r}}_{j} \cdot \mathbf{\overline{c}}_{j})^{\alpha} + \mathbf{r}_{a}\mathbf{I}_{a}$

- Project vertices onto image plane
- Fill polygon by interpolating radiance along the triangle (scan conversion)

- Compute normals at each vertex
 - Many approaches are possible
 - Given parametric shape, compute normal \$\vec{n}_j\$ when sampling vertices of the mesh \$\vec{p}_i\$

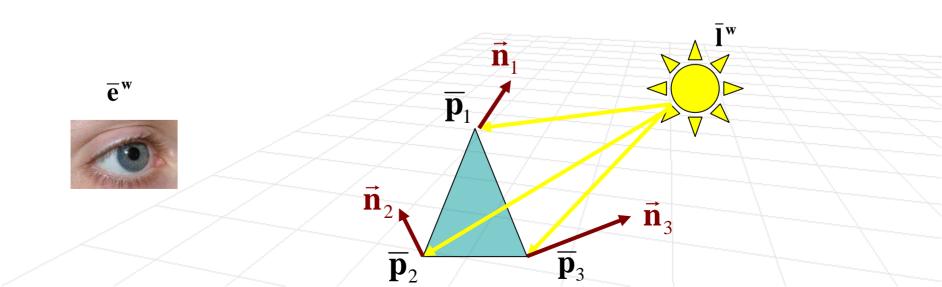
• Implicit form
$$\vec{n}_j(\overline{p}_j) = \nabla f(\overline{p}_j)$$

Explicit form
$$\vec{\mathbf{n}}_{j}(\overline{\mathbf{p}}_{j}) = \frac{\partial \mathbf{s}(\alpha, \beta)}{\partial \alpha} \Big|_{\alpha_{0}, \beta_{0}} \times \frac{\partial \mathbf{s}(\alpha, \beta)}{\partial \beta} \Big|_{\alpha_{0}, \beta_{0}}$$

Let n
_j be average of "face normals" of all adjacent faces

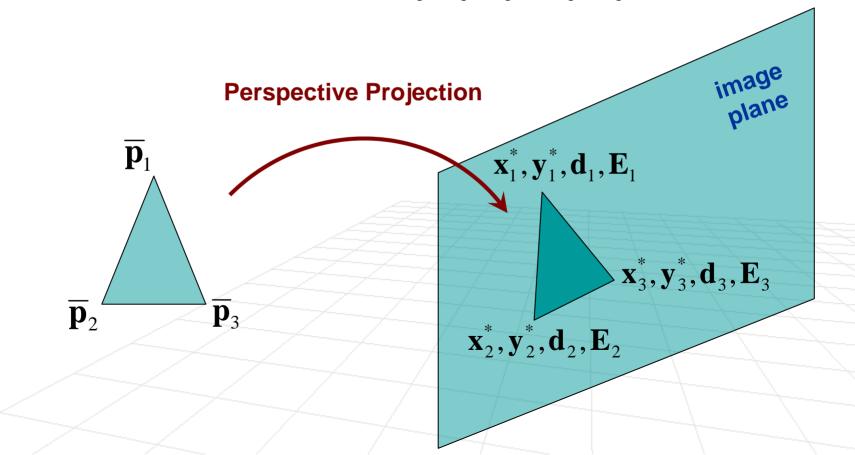
Compute radiance E_j for each vertex point p_j
 Same as in flat shading (using Phong model)

 $\mathbf{E}_{\mathbf{j}} = \mathbf{L}(\mathbf{\overline{p}}_{\mathbf{j}}, \mathbf{\overline{e}}^{\mathbf{w}}, \mathbf{\overline{l}}^{\mathbf{w}}) = \mathbf{r}_{\mathbf{d}}\mathbf{I}_{\mathbf{d}} \max(0, \mathbf{\overline{s}}_{\mathbf{j}} \cdot \mathbf{\overline{n}}_{\mathbf{j}}) + \mathbf{r}_{\mathbf{s}}\mathbf{I}_{\mathbf{s}} \max(0, \mathbf{\overline{r}}_{\mathbf{j}} \cdot \mathbf{\overline{c}}_{\mathbf{j}})^{\alpha} + \mathbf{r}_{\mathbf{a}}\mathbf{I}_{\mathbf{a}}$



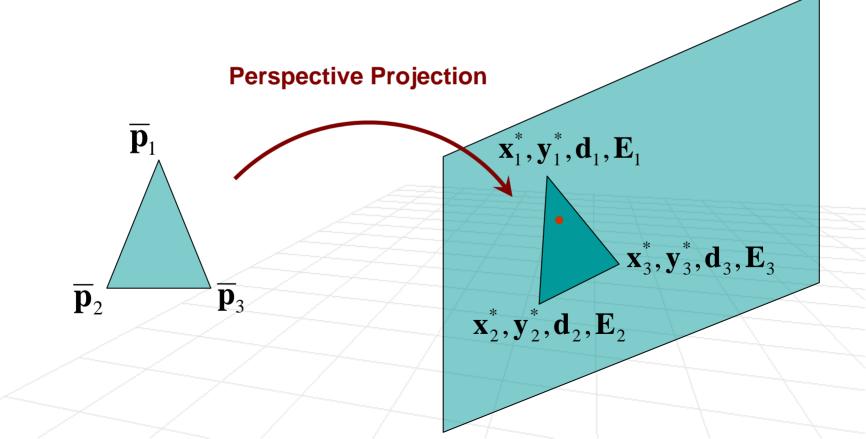
Project onto image plane with pseudodepth

• So for each vertex we have $\mathbf{x}_{j}^{*}, \mathbf{y}_{j}^{*}, \mathbf{d}_{j} = \mathbf{z}_{j}^{*}, \mathbf{E}_{j}$



Scan conversion with linear interpolation of both pseudodepth (d_j) and radiance values (E_j)

use z-buffer to handle visibility



Algorithm (part 1)

• For each edge between $(\mathbf{x}_{b}^{*}, \mathbf{y}_{b}^{*}, \mathbf{d}_{b}, \mathbf{E}_{b})$ and $(\mathbf{x}_{a}^{*}, \mathbf{y}_{a}^{*}, \mathbf{d}_{a}, \mathbf{E}_{a})$ ordered such that $\mathbf{y}_{a}^{*} > \mathbf{y}_{b}^{*}$

$$\mathbf{x} = \mathbf{x}_{b}^{*}, \quad \Delta \mathbf{x} = (\mathbf{x}_{a}^{*} - \mathbf{x}_{b}^{*})/(\mathbf{y}_{a}^{*} - \mathbf{y}_{b}^{*})$$
$$\mathbf{d} = \mathbf{d}_{b}, \quad \Delta \mathbf{d} = (\mathbf{d}_{a} - \mathbf{d}_{b})/(\mathbf{y}_{a}^{*} - \mathbf{y}_{b}^{*})$$
$$\mathbf{E} = \mathbf{E}_{b}, \quad \Delta \mathbf{E} = (\mathbf{E}_{a} - \mathbf{E}_{b})/(\mathbf{y}_{a}^{*} - \mathbf{y}_{b}^{*})$$

□ For (
$$y = y_b$$
; $y < y_a$; $y++$)

Place (x, d, E) in active edge list (AEL) at scanline y

$$\mathbf{x} = \mathbf{x} + \Delta \mathbf{x}$$

$$\mathbf{d} = \mathbf{d} + \Delta \mathbf{d}$$

$$\mathbf{E} = \mathbf{E} + \Delta \mathbf{E}$$

$$\mathbf{x}_{1}^{*}, \mathbf{y}_{1}^{*}, \mathbf{d}_{1}, \mathbf{E}_{1}$$

$$\mathbf{x}_{3}^{*}, \mathbf{y}_{3}^{*}, \mathbf{d}_{3}, \mathbf{E}_{3}$$

$$\mathbf{x}_{2}^{*}, \mathbf{y}_{2}^{*}, \mathbf{d}_{2}, \mathbf{E}_{2}$$

Algorithm (part 2)

- For each scanline between $min(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$ and $max(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$
 - Extract (x_a, d_a, E_a) and (x_a, d_a, E_a) from AEL where $x_a > x_b$

$$\mathbf{d} = \mathbf{d}_{\mathbf{b}}, \quad \Delta \mathbf{d} = (\mathbf{d}_{\mathbf{a}} - \mathbf{d}_{\mathbf{b}}) / (\mathbf{x}_{\mathbf{a}} - \mathbf{x}_{\mathbf{b}})$$
$$\mathbf{E} = \mathbf{E}, \quad \Delta \mathbf{E} = (\mathbf{E}_{\mathbf{a}} - \mathbf{E}_{\mathbf{b}}) / (\mathbf{x}_{\mathbf{a}} - \mathbf{x}_{\mathbf{b}})$$

□ For
$$(x = x_b; x < x_a; x++)$$

$$(d < z-buffer(x, y))$$

 $putpixel(x, y, E)$
 $z-buffer(x, y) = d$

end

$$\mathbf{d} = \mathbf{d} + \Delta \mathbf{d}$$

 $\mathbf{E} = \mathbf{E} + \Delta \mathbf{E}$

$$\mathbf{x}_{1}^{*}, \mathbf{y}_{1}^{*}, \mathbf{d}_{1}, \mathbf{E}_{1}$$

 $\mathbf{x}_{3}^{*}, \mathbf{y}_{3}^{*}, \mathbf{d}_{3}, \mathbf{E}_{3}$
 $\mathbf{x}_{2}^{*}, \mathbf{y}_{2}^{*}, \mathbf{d}_{2}, \mathbf{E}_{2}$

 What we just described is so called Gouraud Shading

Advantages

 Does not produce artifacts at face boundaries (i.e. better then flat shading)

Disadvantages

Still hard to handle secular highlights. Why?

Gouraud Shading

Foley, van Dam, Feiner, Hughes, Plate II.30

Phong Shading

 Idea: Slightly modify the Gouraud shading algorithm to correctly shade every pixel (with secularities)

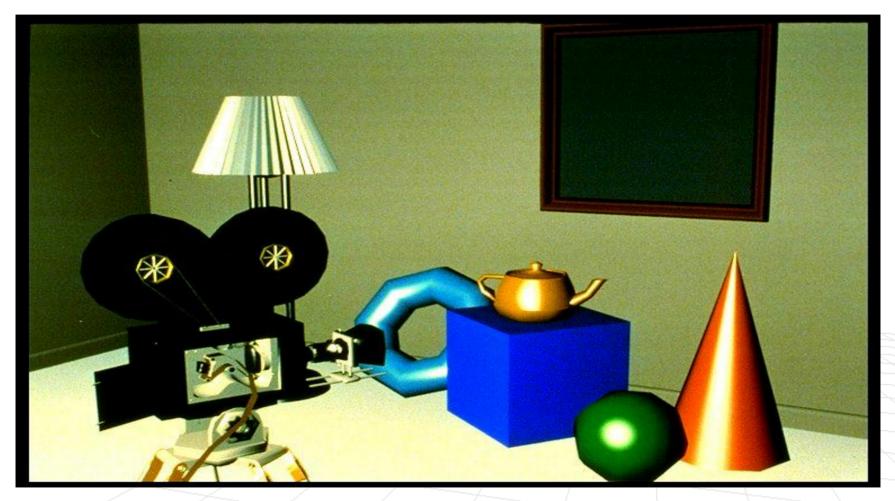
(Note that **phong shading** and **phong lighting** are not one and the same)

• Algorithm, for a triangular face with vertices p_1 , p_2 , p_3

- Compute normals at each vertex
- For each point on a triangle that corresponds to a pixel location interpolate the normal
- Compute radiance E_j for each pixel in the projected triangle that corresponds to point within the world triangle
- Project vertices onto image plane

Why is this batter then just doing Phong lighting?

Phong Shading



Foley, van Dam, Feiner, Hughes, Plate II.32

Phong Shading

Advantages

 Produces very accurate shading with specular highlights (better then flat shading and Gouraud shading)

Disadvantages

 It's computationally expensive (but not on current graphics hardware)