Announcements

Assignment 1

- Programming (due Friday)
- Theory is graded
- Assignment 2
- Midterm
- No class or tutorial on Monday (Thanksgiving)
- Office Hours
 - Alex will have office hours on Thursday 11-12
 - I will also have office hours on Tuesday 4-5pm

Introduction

So far we have only considered in our rendering pipeline

- Geometry of the scene
- Camera modeling

We did not consider

- Lighting
- Shading of polygons (must account for properties of the surface)
- Shadows

Lighting and Reflections

Computer Graphics, CSCD18

Fall 2008 Instructor: Leonid Sigal

Introduction

- In general, to reason about shading, lighting and shadows
 - We must consider every light ray that hits every surface in the scene
 - Rays that come directly from the light source
 - Rays that are reflected from different object surfaces
 - This is impractical for most scenes
 - We need to make simplifications

Lighting Basics

Light sources

Point sources (e.g. sun)

- Light is reflected in all directions from the small light source far away
- Extended light sources (e.g. day lights)
 - Light is reflected in all directions but from many points
- Directional lighting
- Secondary lighting
 - Light reflected from other objects

Reflection Basics

- Reflectance (different objects reflect light in different ways)
 - Diffuse surfaces (e.g. egg)
 - Appear the same from all directions
 - Secular surfaces (e.g. mirrors)
 - Reflected light is a function of the viewing direction
 - Transmission (e.g. skin, glass, water)
 - Light can penetrate the surface

Reflection Basics

- Reflectance (different objects reflect light in different ways)
 - Diffuse surfaces (e.g. egg)
 - Appear the same from all directions
 - Secular surfaces (e.g. mirrors)
 - Reflected light is a function of the viewing direction
 - Transmission (e.g. skin, glass, water)
 - Light can penetrate the surface

Diffuse Reflection

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- Simplest model: $\mathbf{L}_{\mathbf{d}}(\overline{\mathbf{p}}) = \mathbf{r}_{\mathbf{d}} \mathbf{I} \max(0, \mathbf{\vec{s}} \cdot \mathbf{\vec{n}})$
 - I intensity of the light source
 - $r_{\!\scriptscriptstyle d}$ $\,$ fraction of the light being reflected
 - \vec{s} direction of the light source
 - \vec{n} surface normal

Diffuse Reflection

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- Simplest model: $\mathbf{L}_{\mathbf{d}}(\mathbf{\overline{p}}) = \mathbf{r}_{\mathbf{d}} \mathbf{I} \max(0, \mathbf{\overline{s}} \cdot \mathbf{\overline{n}})$ Why?
 - I intensity of the light source
 - $r_{\!\scriptscriptstyle d}$ $\,$ fraction of the light being reflected
 - \vec{s} direction of the light source (normalized)
 - \vec{n} surface normal (normalized)

Diffuse Reflection

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- Simplest model: $\mathbf{L}_{\mathbf{d}}(\overline{\mathbf{p}}) = \mathbf{r}_{\mathbf{d}} \mathbf{I} \max(0, \mathbf{\vec{s}} \cdot \mathbf{\vec{n}})$
 - I intensity of the light source
 - $r_{\!\scriptscriptstyle d}$ $\,$ fraction of the light being reflected
 - \vec{s} direction of the light source (normalized)
 - \vec{n} surface normal (normalized)

Diffuse Reflection with Multiple Lights

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- Light is additive, so $\mathbf{L}_{d}(\mathbf{\overline{p}}) = \sum \mathbf{r}_{d} \mathbf{I}_{j} \max(0, \mathbf{\overline{s}}_{j} \cdot \mathbf{\overline{n}})$
 - I_{j} intensity of the light source *j*
 - \boldsymbol{r}_{d} fraction of the light being reflected
 - \vec{s}_{j} direction of the light source *j* (normalized)
 - \vec{n} surface normal (normalized)

What about color?

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- We can specify reflectance and light intensity in terms of color components $\mathbf{L}_{d.R}(\mathbf{\bar{p}}) = \mathbf{r}_{d.R} \mathbf{I}_{j,R} \max(0, \mathbf{\bar{s}} \cdot \mathbf{\bar{n}})$

$$\mathbf{L}_{\mathbf{d},\mathbf{G}}(\overline{\mathbf{p}}) = \mathbf{r}_{\mathbf{d},\mathbf{G}} \mathbf{I}_{\mathbf{j},\mathbf{G}} \max(0, \mathbf{\vec{s}} \cdot \mathbf{\vec{n}})$$

$$\mathbf{L}_{\mathbf{d},\mathbf{B}}(\overline{\mathbf{p}}) = \mathbf{r}_{\mathbf{d},\mathbf{B}} \mathbf{I}_{\mathbf{j},\mathbf{B}} \max(0, \mathbf{\vec{s}} \cdot \mathbf{\vec{n}})$$

Ambient Illumination

- Diffuse reflection with point light source produce strong shadows
- Surface patches that point away from the light source, $\vec{s} \cdot \vec{n} < 0$, end up being black. This looks unnatural. Why?
- Solutions
 - Have many light sources to approximate an extended light source
 - Use ambient reflectance
 - Approximates the average amount of light in the scene

Ambient Illumination

Simple ambient reflectance

$$\mathbf{L}_{\mathbf{a}}(\overline{\mathbf{p}}) = \mathbf{r}_{\mathbf{a}}\mathbf{I}_{\mathbf{a}}$$

- $\mathbf{I}_{\mathbf{a}}$ amount of ambient illumination
- \mathbf{r}_{a} ambient reflection coefficient (how much light is reflected) (often people set $\mathbf{r}_{a} = \mathbf{r}_{d}$)
- Color ambient reflectance

$$L_{a,R}(\overline{p}) = r_{a,R}I_{a,R}$$
$$L_{a,G}(\overline{p}) = r_{a,G}I_{a,G}$$
$$L_{a,B}(\overline{p}) = r_{a,B}I_{a,B}$$

Diffuse Reflectance Model

Increasing ratio of ambient to diffuse reflection:

- Idealization: a mirror
- Models plastics, metals, and polished surfaces
- Property: Angle of reflection equal to the angle of incident with respect to the normal

r - is unit vector corresponding to emitting direction
(it is determined by the normal and the light source)

- Idealization: a mirror
- Models plastics, metals, and polished surfaces
- Property: Angle of reflection equal to the angle of incident with respect to the normal

$$\vec{\mathbf{r}} = 2(\vec{\mathbf{n}} \cdot \vec{\mathbf{s}})\vec{\mathbf{n}} - \vec{\mathbf{s}}$$

In practice most specular surfaces reflect light close to this direction

Common specular model

$$\mathbf{L}_{s}(\overline{\mathbf{p}}, \vec{\mathbf{c}}) = \mathbf{r}_{s}\mathbf{I}_{s} \max(0, \vec{\mathbf{r}} \cdot \vec{\mathbf{c}})^{\alpha}$$

where

- \mathbf{r}_{s} specular reflectance coefficient (how much light is reflected)
- \mathbf{I}_{s} "specular light source" (often = I_{d})
- \vec{r} direction of emission (normalized)
- \vec{c} direction from the point to camera (normalized)
- α controls width of the highlight

 As we decrease alpha the reflection becomes more peaked (more like a mirror)

- Lets put all the peaces together
- Remember: light is additive

 $\mathbf{L}(\mathbf{\overline{p}}, \mathbf{\vec{c}}) = \mathbf{r}_{\mathbf{d}}\mathbf{I}_{\mathbf{d}} \max(0, \mathbf{\vec{s}} \cdot \mathbf{\vec{n}}) + \mathbf{r}_{\mathbf{a}}\mathbf{I}_{\mathbf{a}} + \mathbf{r}_{\mathbf{s}}\mathbf{I}_{\mathbf{s}} \max(0, \mathbf{\vec{r}} \cdot \mathbf{\vec{c}})^{\alpha}$

- Lets put all the peaces together
- Remember: light is additive

 $\mathbf{L}(\mathbf{\overline{p}}, \mathbf{\vec{c}}) = \mathbf{r}_{\mathbf{d}}\mathbf{I}_{\mathbf{d}} \max(0, \mathbf{\vec{s}} \cdot \mathbf{\vec{n}}) + \mathbf{r}_{\mathbf{a}}\mathbf{I}_{\mathbf{a}} + \mathbf{r}_{\mathbf{s}}\mathbf{I}_{\mathbf{s}} \max(0, \mathbf{\vec{r}} \cdot \mathbf{\vec{c}})^{\alpha}$

Image from lecture slides of David Breen

- Lets put all the peaces together
- Remember: light is additive

$$\mathbf{L}(\mathbf{\overline{p}}, \mathbf{\overline{c}}) = \mathbf{r}_{\mathbf{d}} \mathbf{I}_{\mathbf{d}} \max(0, \mathbf{\overline{s}} \cdot \mathbf{\overline{n}}) + \mathbf{r}_{\mathbf{a}} \mathbf{I}_{\mathbf{a}} + \mathbf{r}_{\mathbf{s}} \mathbf{I}_{\mathbf{s}} \max(0, \mathbf{\overline{r}} \cdot \mathbf{\overline{c}})^{\alpha}$$

for color

$$\begin{aligned} \mathbf{L}_{\mathbf{R}}(\overline{\mathbf{p}}, \vec{\mathbf{c}}) &= \mathbf{r}_{d,\mathbf{R}} \mathbf{I}_{d,\mathbf{R}} \max(0, \vec{\mathbf{s}} \cdot \vec{\mathbf{n}}) + \mathbf{r}_{a,\mathbf{R}} \mathbf{I}_{a,\mathbf{R}} + \mathbf{r}_{s,\mathbf{R}} \mathbf{I}_{s,\mathbf{R}} \max(0, \vec{\mathbf{r}} \cdot \vec{\mathbf{c}})^{\alpha} \\ \mathbf{L}_{\mathbf{G}}(\overline{\mathbf{p}}, \vec{\mathbf{c}}) &= \mathbf{r}_{d,\mathbf{G}} \mathbf{I}_{d,\mathbf{G}} \max(0, \vec{\mathbf{s}} \cdot \vec{\mathbf{n}}) + \mathbf{r}_{a,\mathbf{G}} \mathbf{I}_{a,\mathbf{G}} + \mathbf{r}_{s,\mathbf{G}} \mathbf{I}_{s,\mathbf{G}} \max(0, \vec{\mathbf{r}} \cdot \vec{\mathbf{c}})^{\alpha} \\ \mathbf{L}_{\mathbf{B}}(\overline{\mathbf{p}}, \vec{\mathbf{c}}) &= \mathbf{r}_{d,\mathbf{B}} \mathbf{I}_{d,\mathbf{B}} \max(0, \vec{\mathbf{s}} \cdot \vec{\mathbf{n}}) + \mathbf{r}_{a,\mathbf{B}} \mathbf{I}_{a,\mathbf{B}} + \mathbf{r}_{s,\mathbf{B}} \mathbf{I}_{s,\mathbf{B}} \max(0, \vec{\mathbf{r}} \cdot \vec{\mathbf{c}})^{\alpha} \end{aligned}$$

 Notice we are still only considering point light source and are not considering secondary reflectance from surfaces

Increasing exponent in specular term

Increasing ratio of diffuse to

Ambient only

Foley, van Dam, Feiner, Hughes, Plate II.28

Diffuse only

Foley, van Dam, Feiner, Hughes, Plate II.29

Full Phong Model

Foley, van Dam, Feiner, Hughes, Plate II.32

Multiple Light Sources

Image from lecture slides of Giovanni Motta