Announcements

- Assignment 1
- programming (due Friday)
- submission directories are fixed use (submit -N Alb cscd1 $8 f 08$ al_solution.tgz)
- theory will be returned (Wednesday)
- Midterm
- Will cover all of the materials so far including today's lecture - Lecture notes, lecture slides, readings, assignment are all fair game
- Practice midterms are on-line (no solutions will be given)
- Tutorial this week
- Life of the polygon
- A1 theory questions
- Office Hours
- I will have office hours today 1-2 pm
- Alex will have office hours later in the week
- I will also have office hours on Tuesday 4-5pm

Last week's review ...

- Cameras (theory)
- Pinhole Camera
- Thin Lens model
- Virtual pinhole camera
- Perspective and orthographic projections
- Cameras (practice)
- Location of camera in space
- Transformation of geometry from camera to world coordinate frame and (vice versa)
- Homogeneous Perspective Projection (how do we represent perspective using a single 4×4 matrix)
- Homogeneous Prospective Projection with Pseudodepth

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices
- Transform to world coordinated $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{w}}=\mathbf{M}_{\mathrm{ow}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{o}}$

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices
- Transform to world coordinated $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{w}}=\mathbf{M}_{\mathrm{ow}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{o}}$
- Transform from world to camera coordinates $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{c}}=\mathbf{M}_{\mathrm{wc}} \overline{\mathbf{p}}_{\mathrm{i}}^{\mathrm{w}}$

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices
- Transform to world coordinated $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{w}}=\mathbf{M}_{\mathrm{ow}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{o}}$
- Transform from world to camera coordinates $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{c}}=\mathbf{M}_{\mathrm{wc}} \overline{\mathbf{p}}_{\mathrm{i}}^{\mathrm{w}}$
- Apply homogeneous perspective $\overline{\mathbf{p}}_{\mathbf{i}}^{*}=\mathbf{M}_{\mathrm{p}} \overline{\mathbf{p}}_{\mathbf{i}}^{\text {c }}$
- Divide by last component

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices
- Transform to world coordinated $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{w}}=\mathbf{M}_{\mathrm{ow}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{o}}$
- Transform from world to camera coordinates $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{c}}=\mathbf{M}_{\text {wc }} \overline{\mathbf{p}}_{\mathbf{i}}^{\text {w }}$
- Apply homogeneous perspective $\overline{\mathbf{p}}_{\mathbf{i}}^{*}=\mathbf{M}_{\mathrm{p}} \overline{\mathbf{p}}_{\mathbf{i}}^{\text {c }}$
- Divide by last component

Visibility

Computer Graphics, CSCD18
 Fall 2008
 Instructor: Leonid Sigal

Clipping

- Idea: Remove points and parts of objects outside view volume
- Sounds simple, but consider if we have an object on a boundary

View Volume

- Consider what we can actually see

Side note: Field of View

View Volume

- What does homogeneous perspective projection do to our view volume?

$$
\mathbf{M}_{\mathbf{p}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{2 \mathbf{F}}{\mathbf{f - \mathbf { F }}} & -\frac{1}{\mathbf{f}}\left(\frac{\mathbf{f}+\mathbf{F}}{\mathbf{f}-\mathbf{F}}\right) \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]
$$

Canonical View Volume

- Can we alter homogeneous perspective projection to help us clip?

$$
\mathbf{M}_{\mathbf{p}}=\left[\begin{array}{cccc}
\frac{2}{\mathbf{R}-\mathbf{L}} & 0 & \frac{\mathbf{R}+\mathbf{L}}{\mathbf{R}-\mathbf{L}} & 0 \\
0 & \frac{2}{\mathbf{T}-\mathbf{B}} & \frac{\mathbf{T}+\mathbf{B}}{\mathbf{T}-\mathbf{B}} & 0 \\
0 & 0 & \frac{2 \mathbf{F}}{\mathbf{f}-\mathbf{F}} & -\frac{1}{\mathbf{f}}\left(\frac{\mathbf{f}+\mathbf{F}}{\mathbf{f}-\mathbf{F}}\right) \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]
$$

Back-face Removal

- Idea: Remove surface patches that point away from the camera (like backside of the object as it viewed from the front)
- Consider a cube

We only need to render at most half of the sides depending on the view

Back-face Removal

- How do we know if the patch (triangle) points away from the camera?

Consider a normal of the patch (triangle)

- If $(\overline{\mathbf{p}}-\overline{\mathbf{e}}) \cdot \overrightarrow{\mathbf{n}}>0$ then triangle is part of the back-face and needs to be removed
- If $(\overline{\mathbf{p}}-\overline{\mathbf{e}}) \cdot \overrightarrow{\mathbf{n}}<0$ then triangle may be visible

Back-face Removal

- Does it matter which point we consider on the patch?
- Not if this is a planar patch

Consider a normal of the patch (triangle)

- If $(\overline{\mathbf{p}}-\overline{\mathbf{e}}) \cdot \overrightarrow{\mathbf{n}}>0$ then triangle is part of the back-face and needs to be removed
- If $(\overline{\mathbf{p}}-\overline{\mathbf{e}}) \cdot \overrightarrow{\mathbf{n}}<0$ then triangle may be visible

Back-face Removal

- Does it matter which point we consider on the patch?
- Not if this is a planar patch
- How do we compute $\overrightarrow{\mathbf{n}}$
- If $\overline{\mathbf{p}}_{1}, \overline{\mathbf{p}}_{2}, \overline{\mathbf{p}}_{3}$ are patch vertices in CCW order

- If $(\overline{\mathbf{p}}-\overline{\mathbf{e}}) \cdot \overrightarrow{\mathbf{n}}>0$ then triangle is part of the back-face and needs to be removed
- If $(\overline{\mathbf{p}}-\overline{\mathbf{e}}) \cdot \overrightarrow{\mathbf{n}}<0$ then triangle may be visible

Back-face Removal

- Does it matter which point we consider on the patch?
- Not if this is a planar patch
- How do we compute $\overrightarrow{\mathbf{n}}=\frac{\left(\overline{\mathbf{p}}_{2}-\overline{\mathbf{p}}_{1}\right) \times\left(\overline{\mathbf{p}}_{3}-\overline{\mathbf{p}}_{1}\right)}{\left\|\left(\overline{\mathbf{p}}_{2}-\overline{\mathbf{p}}_{1}\right) \times\left(\overline{\mathbf{p}}_{3}-\overline{\mathbf{p}}_{1}\right)\right\|}$

- If $(\overline{\mathbf{p}}-\overline{\mathbf{e}}) \cdot \overrightarrow{\mathbf{n}}>0$ then triangle is part of the back-face and needs to be removed
- If $(\overline{\mathbf{p}}-\overline{\mathbf{e}}) \cdot \overrightarrow{\mathbf{n}}<0$ then triangle may be visible

Z-Buffer (a.k.a Depth Buffer)

- We have a frame-buffer (this is where an image that we see on the screen is stored)
- We also have a z-buffer that keeps track of the \mathbf{z}^{*} coordinate for every pixel in the frame-buffer
- To draw point in the world with color c that projects to ($\mathbf{x}^{*}, \mathbf{y}^{*} \mathbf{z}^{*}$) we can execute the following algorithm

$$
\text { if } \mathbf{z}^{*}<\mathbf{z} \text {-buffer }\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right) \text { then }
$$

$$
\text { frame-buffer }\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)=\mathbf{c}
$$

$$
\text { z-buffer }\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)=\mathbf{z}^{*}
$$

end

Z-Buffer (a.k.a Depth Buffer)

- We need to initialize the z-buffer with some value. What is the good value to initialize with?
- If we are using canonical view volume then 1 would work
- To draw point in the world with color c that projects to ($\mathbf{x}^{*}, \mathbf{y}^{*} \mathbf{z}^{*}$) we can execute the following algorithm
if $\mathbf{z}^{*}<\mathbf{z}-\operatorname{buffer}\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ then frame-buffer $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)=\mathbf{c}$ z-buffer $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)=\mathbf{z}^{*}$
end

Z-Buffer (a.k.a Depth Buffer)

- Advantages of Z-buffering
- Simple and accurate
- Independent of the order the polygons are drawn
- Disadvantages of Z-buffering
- Memory for a Z-buffer (small consideration)
- Wasted computation in drawing distant points first (this potentially can be a large drawback)

Z-Buffer (a.k.a Depth Buffer)

- We represent a patch using vertices
- How do we get a pseudodeph and proper rendering everywhere else?

Z-Buffer (a.k.a Depth Buffer)

- We represent a patch using vertices
- How do we get a pseudodeph and proper rendering everywhere else?

Linearly interpolate \mathbf{z}^{*} along a scan line

Painter's Algorithm

- Idea: Order the patches and draw them in the order of depth (with most distant patches first)
- This is an alternative to Z-buffering

$$
\begin{aligned}
& \left(\mathbf{x}_{1}^{*}, \mathbf{y}_{1}^{*}, \mathbf{z}_{1}^{*}\right) \\
\left(\mathbf{x}_{2}^{*}, \mathbf{y}_{2}^{*}, \mathbf{z}_{2}^{*}\right) & \left(\mathbf{x}_{3}^{*}, \mathbf{y}_{3}^{*}, \mathbf{z}_{3}^{*}\right)
\end{aligned}
$$

Painter's Algorithm

- How do we deal with intersecting patches?
- Break patches into smaller patches

BSP Trees

- Binary space partition tree (BSP tree) is an algorithm for making back-to-front ordering of polygons efficient and to break polygons to avoid intersections

BSP Tree

- If $\overline{\mathbf{e}}$ and T_{2} on the same side of T_{1} (left) then draw T_{1} first then T_{2}
- If \mathbf{e} and T_{2} are on different sides of T_{1} (right) then draw T_{2} first then T_{1}
- How do we know if points are on the same side?

BSP Tree Example

- Let's try building a BSP tree for this scene

The tree will be the same regardless of the camera placement

BSP Tree Example

- Let's try building a BSP tree for this scene inside outside

BSP Tree Example

- Let's try building a BSP tree for this scene
inside outside

BSP Tree Example

- Let's try building a BSP tree for this scene inside

BSP Tree Example

- Let's try building a BSP tree for this scene

outside

BSP Tree Example

- Let's try building a BSP tree for this scene

inside

outside

BSP Tree Traversal

- Tree traversal algorithm

BSP Tree

- Advantages
- Can easily discard portions of the scene behind the camera
- Artifacts of z-buffer quantization are not seen
- Tree construction fixed for the static scenes
- Disadvantages
- How can we handle dynamic scenes?

This is what is typically done in games, because it's fast

