‘ Announcements

= Assignment 1
o programming (due Friday)
o submission directories are fixed use (submit -N Alb cscd18f08 al_solution.tgz)
o theory will be returned (Wednesday)

= Midterm

o Will cover all of the materials so far including today's lecture
= Lecture notes, lecture slides, readings, assignment are all fair game

o Practice midterms are on-line (no solutions will be given)

= Tutorial this week
o Life of the polygon
o Al theory questions

= Office Hours
o | will have office hours today 1-2 pm
o Alex will have office hours later in the week
o | will also have office hours on Tuesday 4-5pm

Last week’s review ...

= Cameras (theory)
o Pinhole Camera
o Thin Lens model
o Virtual pinhole camera
o Perspective and orthographic projections

= Cameras (practice)
o Location of camera in space

o Transformation of geometry from camera to world coordinate
frame and (vice versa)

o Homogeneous Perspective Projection (how do we
represent perspective using a single 4x4 matrix)

o Homogeneous Prospective Projection with Pseudodepth

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi' =M., P/

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi' =M., P/

W

o Transform from world to camera coordinates p; =M,.p;

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi' =M, p;
a Transform from world to camera coordinates p; =M,,.p;"
o Apply homogeneous perspective p; =M p;

= Divide by last component

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi' =M, p;
a Transform from world to camera coordinates p; =M,,.p;"
o Apply homogeneous perspective p; =M p;

= Divide by last component

Visibility

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

‘ Clipping

= Idea: Remove points and parts of objects outside
view volume

= Sounds simple, but consider if we have an object
on a boundary

& camera A
V

near plane
(image)

view volume

world
coordinates
origin

far plane

‘ View Volume

= Consider what we can actually see

A
YL

Optical axis
(z-axis)

‘ Side note: Field of View
T

% tan(o) = Y 2T =B)

f

A
A

‘ View Volume

= What does homogeneous perspective projection do
to our view volume?

10 0 0]
01 0 0
Mi=log o 25 _E(”_Fj

f-F flf-F
0 0 1f 0 |

parallepiped

‘ Canonical View Volume

= Can we alter homogeneous perspective projection
to help us clip?

2 0 R+L 0
R-L R-L
2 T+B
0
|\/|p= T-B T-B
0 o 2F _1(f+F
f-F fif-F
0 0 1/f 0

cube (1,1,1)

(-1,-1,-1)

‘ Back-face Removal

= Idea: Remove surface patches that point away from
the camera (like backside of the object as it viewed
from the front)

= Consider a cube

3 Back Faces 4 Back Faces 5 Back Faces

Top

Back Back Back

Right Left\. Right

Bottom

Left Left

We only need to render at most half of the sides
depending on the view

‘ Back-face Removal

= How do we know If the patch (triangle) points away
from the camera?

Consider a normal of the patch (triangle)

v
ol

= If (p—€)-An>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this is a planar patch

Consider a normal of the patch (triangle)

~
=l
I
|
~

v
ol

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this is a planar patch

= How do we compute N
o If PP, P; are patch vertices in CCW order
P,

ol

= If (p—€)-An>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this is a planar patch

= How do we compute n= (?2 _?1”((?3 _?1)
[P, D)< (P, - ,)|

(P-e)

>

ol

n

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

' Z-Buffer (ak.a Depth Buffen)

= We have a frame-buffer (this is where an image that
we see on the screen is stored)

= We also have a z-buffer that keeps track of the z*
coordinate for every pixel in the frame-buffer

= To draw point in the world with color ¢ that projects to
(x*, y* z*) we can execute the following algorithm

If z* < z-buffer(x*, y*) then
frame-buffer(x*, y*) =c¢
Z-buffer(x*, y*) = z*

end

' Z-Buffer (ak.a Depth Buffen)

= We need to initialize the z-buffer with some value.
What is the good value to initialize with?

o If we are using canonical view volume then 1 would work

= To draw point in the world with color ¢ that projects to
(x*, y* z*) we can execute the following algorithm

If z* < z-buffer(x*, y*) then
frame-buffer(x*, y*) =c¢
Z-buffer(x*, y*) = z*

end

Z-Buffer (ak.a Depth Buffer)

= Advantages of Z-buffering
o Simple and accurate
o Independent of the order the polygons are drawn

= Disadvantages of Z-buffering
o Memory for a Z-buffer (small consideration)

o Wasted computation in drawing distant points first (this
potentially can be a large drawback)

Z-Buffer (ak.a Depth Buffer)

= We represent a patch using vertices

= How do we get a pseudodeph and proper rendering
everywhere else?

(X1, Y1:27)

(X5,Y5,25) (X3,Y3,23)

Z-Buffer (ak.a Depth Buffer)

= We represent a patch using vertices

= How do we get a pseudodeph and proper rendering
everywhere else?

(X1,Y1:2;)

(X5,Y5,25) (X3,Y3,23)

Linearly interpolate Z along a scan line

‘ Painter’s Algorithm

= Idea: Order the patches and draw them in the order
of depth (with most distant patches first)
o This is an alternative to Z-buffering

(X1,Y1:2;)

(X5,Y5,25) (X3,Y3,23)

‘ Painter’s Algorithm

= How do we deal with intersecting patches?
o Break patches into smaller patches

(X5,Y5,25) (X3,Y3,23)

‘ BSP Trees

= Binary space partition tree (BSP tree) is an algorithm
for making back-to-front ordering of polygons efficient
and to break polygons to avoid intersections

(X1,Y1:2;)

(X5,Y5,25) (X3,Y3,23)

‘ BSP Tree

= Ife and T, on the same side of T, (left) then draw T,
firstthen T,

= Ifeand T, are on different sides of T, (right) then draw
T, first then T,

= How do we know if points are on the same side?

f,(X)=(X-p,) N, f,(X)=0 on the plane
f.(X)>0 "outside"
f,(X)<0 "inside"

‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

The tree will be the same regardless of the

camera placement

‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

inside

8 @
5
;7 '\\ 19

‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

inside
——

e

19

6
“\
5
V4 N
\
\
Jop
g
- 1
4
3

‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

inside
——

19

6
~
5
4 \
N
N
o
8
2 li1
4
3

‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

inside

‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

inside

‘ BSP Tree Traversal

= Tree traversal algorithm

if eye in the outside half-space of the root inside
Draw faces on inside sub-tree of the root P —
Draw the root
Draw faces is the outside of sub-tree of the root
else
Draw faces is the outside of sub-tree of the root
Draw the root
Draw faces on inside sub-tree of the root
end

= Easy to modify to do back-
face removal

‘ BSP Tree

= Advantages

o Can easily discard portions of the scene behind the camera
o Artifacts of z-buffer quantization are not seen
o Tree construction fixed for the static scenes

= Disadvantages
o How can we handle dynamic scenes?

This is what is typically done in games, because it's fast

