
Announcements
Assignment 1

programming (due Friday)
submission directories are fixed use (submit -N A1b cscd18f08 a1_solution.tgz)
theory will be returned (Wednesday)

Midterm
Will cover all of the materials so far including today's lecture

Lecture notes, lecture slides, readings, assignment are all fair game
Practice midterms are on-line (no solutions will be given)

Tutorial this week
Life of the polygon
A1 theory questions

Office Hours
I will have office hours today 1-2 pm
Alex will have office hours later in the week
I will also have office hours on Tuesday 4-5pm

Last week’s review …
Cameras (theory)

Pinhole Camera
Thin Lens model
Virtual pinhole camera
Perspective and orthographic projections

Cameras (practice)
Location of camera in space
Transformation of geometry from camera to world coordinate
frame and (vice versa)
Homogeneous Perspective Projection (how do we
represent perspective using a single 4x4 matrix)
Homogeneous Prospective Projection with Pseudodepth

Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as
three vertices

op2 x

y
op1

op3z

Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as
three vertices
Transform to world coordinated

wp2

y

xz

wp1

wp3
x

y

z

o
iow

w
i pMp =

Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as
three vertices
Transform to world coordinated
Transform from world to camera coordinates

cp2 x

y

z

cp1

cp3

o
iow

w
i pMp =

w
iwc

c
i pMp =

y

xz

wr

e

vr

ur

Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as
three vertices
Transform to world coordinated
Transform from world to camera coordinates
Apply homogeneous perspective

Divide by last component

cp2

ur

wr

e

vr

x

y

z

cp1

cp3

*
2p

*
1p

*
3p

o
iow

w
i pMp =

w
iwc

c
i pMp =

c
ipi pMp =*

y

xz

Projecting Triangle

ur

wr

e

vr

Lets review steps in the rendering hierarchy
Triangle is given in the object-based coordinate frame as
three vertices
Transform to world coordinated
Transform from world to camera coordinates
Apply homogeneous perspective

Divide by last component

cp2 x

y

z

cp1

cp3

*
2p

*
1p

*
3p

o
iow

w
i pMp =

w
iwc

c
i pMp =

c
ipi pMp =*

y

xz

Visibility

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

Clipping
Idea: Remove points and parts of objects outside
view volume
Sounds simple, but consider if we have an object
on a boundary

View Volume

R

T

α

f

e

Consider what we can actually see

Far Plane
L

B
Optical axis

(z-axis)

Near Plane

Side note: Field of View

Near Plane Far Plane

R

L

B

T

α

f
BT)(2/1)tan(

2
1 −

=α

f

e

T

B

e f
α

View Volume
What does homogeneous perspective projection do
to our view volume?

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

−
+

−
−

=

0/100

1200

0010
0001

f
Ff
Ff

fFf
FMp

parallepiped

R
L

B

T

R
L

B

T

-1 1

Canonical View Volume
Can we alter homogeneous perspective projection
to help us clip?

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

−
+

−
−

−
+

−

−
+

−

=

0/100

1200

020

002

f
Ff
Ff

fFf
F
BT
BT

BT

LR
LR

LR

Mp

(1,1,1)cube

R
L

B

T

(-1,-1,-1)

Back-face Removal
Idea: Remove surface patches that point away from
the camera (like backside of the object as it viewed
from the front)

Consider a cube

We only need to render at most half of the sides
depending on the view

Back

Left

Bottom

Back

Left Right

Bottom

Top

Left Right

Bottom

Back

3 Back Faces 4 Back Faces 5 Back Faces

Back-face Removal
How do we know if the patch (triangle) points away
from the camera?

Consider a normal of the patch (triangle)

e nr
)(ep −p

If then triangle is part of the back-face
and needs to be removed
If then triangle may be visible

0)(>⋅− nep
r

0)(<⋅− nep
r

Back-face Removal
Does it matter which point we consider on the patch?

Not if this is a planar patch

Consider a normal of the patch (triangle)

e nr
)(ep −p

If then triangle is part of the back-face
and needs to be removed
If then triangle may be visible

0)(>⋅− nep
r

0)(<⋅− nep
r

Back-face Removal

e

Does it matter which point we consider on the patch?
Not if this is a planar patch

How do we compute
If are patch vertices in CCW order

nr
)(ep −p

nr

2p
3p

1p
321 ,, ppp

If then triangle is part of the back-face
and needs to be removed
If then triangle may be visible

0)(>⋅− nep
r

0)(<⋅− nep
r

Back-face Removal
Does it matter which point we consider on the patch?

Not if this is a planar patch
How do we compute

)()(
)()(

1312

1312

pppp
ppppn

−×−
−×−

=
r

e nr
)(ep −p

2p
3p

1p

If then triangle is part of the back-face
and needs to be removed
If then triangle may be visible

0)(>⋅− nep
r

0)(<⋅− nep
r

Z-Buffer (a.k.a Depth Buffer)
We have a frame-buffer (this is where an image that
we see on the screen is stored)
We also have a z-buffer that keeps track of the z*
coordinate for every pixel in the frame-buffer

To draw point in the world with color c that projects to
(x*, y* z*) we can execute the following algorithm

if z* < z-buffer(x*, y*) then
frame-buffer(x*, y*) = c
z-buffer(x*, y*) = z*

end

Z-Buffer (a.k.a Depth Buffer)
We need to initialize the z-buffer with some value.
What is the good value to initialize with?

If we are using canonical view volume then 1 would work

To draw point in the world with color c that projects to
(x*, y* z*) we can execute the following algorithm

if z* < z-buffer(x*, y*) then
frame-buffer(x*, y*) = c
z-buffer(x*, y*) = z*

end

Z-Buffer (a.k.a Depth Buffer)

Advantages of Z-buffering
Simple and accurate
Independent of the order the polygons are drawn

Disadvantages of Z-buffering
Memory for a Z-buffer (small consideration)
Wasted computation in drawing distant points first (this
potentially can be a large drawback)

Z-Buffer (a.k.a Depth Buffer)

We represent a patch using vertices
How do we get a pseudodeph and proper rendering
everywhere else?

),,(*
1

*
1

*
1 zyx

),,(*
3

*
3

*
3 zyx),,(*

2
*
2

*
2 zyx

Z-Buffer (a.k.a Depth Buffer)

We represent a patch using vertices
How do we get a pseudodeph and proper rendering
everywhere else?

),,(*
1

*
1

*
1 zyx

),,(*
3

*
3

*
3 zyx),,(*

2
*
2

*
2 zyx

Linearly interpolate along a scan line*z

Painter’s Algorithm
Idea: Order the patches and draw them in the order
of depth (with most distant patches first)

This is an alternative to Z-buffering

),,(*
1

*
1

*
1 zyx

),,(*
3

*
3

*
3 zyx),,(*

2
*
2

*
2 zyx

Painter’s Algorithm
How do we deal with intersecting patches?

Break patches into smaller patches

),,(*
1

*
1

*
1 zyx

),,(*
3

*
3

*
3 zyx),,(*

2
*
2

*
2 zyx

BSP Trees
Binary space partition tree (BSP tree) is an algorithm
for making back-to-front ordering of polygons efficient
and to break polygons to avoid intersections

),,(*
1

*
1

*
1 zyx

),,(*
3

*
3

*
3 zyx),,(*

2
*
2

*
2 zyx

BSP Tree
If e and T2 on the same side of T1 (left) then draw T1
first then T2

If e and T2 are on different sides of T1 (right) then draw
T2 first then T1

How do we know if points are on the same side?

1T

2T

1nr

2n
r 1T

2T

1nr

2n
r

111)()(npxxf r
⋅−=

""0)(
""0)(

0)(

1

1

1

insidexf
outsidexf

planetheonxf

<
>
=

outside-facing normalse e

BSP Tree Example

Let’s try building a BSP tree for this scene

1
2

3
4

5

6

7

8
10

11

e

9

The tree will be the same regardless of the
camera placement

BSP Tree Example

1
2

3
4

5

6

7

8
10

11

Let’s try building a BSP tree for this scene

1

inside outside

9

BSP Tree Example

1
2

3
4

5

6

7

8

9
10

11

Let’s try building a BSP tree for this scene

1

inside outside

2

BSP Tree Example

1
2

3
4

5

6

7

8

9
10

11

Let’s try building a BSP tree for this scene

1

inside outside

2

3

BSP Tree Example

Let’s try building a BSP tree for this scene
inside outside

1

2

3

4

1
2

3
4

5

6

7

8
10

11

9

BSP Tree Example

Let’s try building a BSP tree for this scene
inside outside

1

2

3

4

5

6 8

9b7

9a

1
2

3
4

5

6

7

8
10

11

9

BSP Tree Traversal
Tree traversal algorithm

Easy to modify to do back-
face removal

if eye in the outside half-space of the root
Draw faces on inside sub-tree of the root
Draw the root
Draw faces is the outside of sub-tree of the root

else
Draw faces is the outside of sub-tree of the root
Draw the root
Draw faces on inside sub-tree of the root

end

1

2

3

4

5

6 8

9b7

9a

inside outside

BSP Tree

Advantages
Can easily discard portions of the scene behind the camera
Artifacts of z-buffer quantization are not seen
Tree construction fixed for the static scenes

Disadvantages
How can we handle dynamic scenes?

This is what is typically done in games, because it’s fast

