Announcements

- Assignment 1
- theory (due Today)
- programming (due next Friday)
- You should draw polygons (not line strips) for the parts of the penguin
- Issues with OpenGL should be resolved soon
- Practice midterms are now on-line
- Solutions will not be made available, but you can ask TA or myself questions during office hours (and tutorial)
- We will have extra office hours before the exam

Last class review ...

- Camera models
- Pinhole camera

Last class review ...

- Camera models
- Pinhole camera
- Thin Lens Model - lens is used to focus the light

Last class review ...

- Camera models
- Pinhole camera
- Thin Lens Model - lens is used to focus the light
- Relationship between thin lens model and pinhole camera
- Conceptual pinhole camera

Last class review ...

- Camera models
- Pinhole camera
- Thin Lens Model - lens is used to focus the light
- Relationship between thin lens model and pinhole camera
- Conceptual pinhole camera
- Perspective Projection

$$
\mathbf{y}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}} \mathbf{p}_{\mathrm{y}} \quad \mathbf{x}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}} \mathbf{p}_{\mathrm{x}}
$$

Lets step back again ...

- What do we need to render a scene
- Scene with 3D objects
- Position and orientation of camera in the world coordinates
- Transformation of objects from world to camera coordinates
- Project the objects onto film
- Visibility (with respect to the view volume)
- No need to render everything, only things we can see

Camera Models
 Part 2

Computer Graphics, CSCD18
 Fall 2008
 Instructor: Leonid Sigal

Position and Orientation of Camera

- How can we specify a camera coordinate frame
- We need an origin (at the pinhole) - lets call it $\overline{\mathbf{e}}$, and 3 unit vectors to define the camera coordinate frame $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$
- In general,
- Camera can be anywhere in the world
- Can move as a function of time

[^0]
Position and Orientation of Camera

- How can we specify a camera coordinate frame
- We need an origin (at the pinhole) - lets call it $\overline{\mathbf{e}}$, and 3 unit vectors to define the camera coordinate frame $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$
- How can we intuitively specify $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$
- Let's pick a point in the scene where we want to look - $\overline{\mathbf{p}}$

$$
\overrightarrow{\mathbf{w}}=\frac{\overline{\mathbf{p}}-\overline{\mathbf{e}}}{\|\overline{\mathbf{p}}-\overline{\mathbf{e}}\|}
$$

- Designate up direction $\overrightarrow{\mathbf{t}}$, then

$$
\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{t}} \times \overrightarrow{\mathbf{w}}}{\|\overrightarrow{\mathbf{t}} \times \overrightarrow{\mathbf{w}}\|}
$$

- $\overrightarrow{\mathbf{V}}$ must be perpendicular to

$$
\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}}
$$

Position and Orientation of Camera

- Now that we have a camera defined in world coordinate frame, how do we take a point in the camera coordinate frame and map to the world coordinate frame?

Camera to World Transformation

- Now that we have a camera defined in world coordinate frame, how do we take a point in the camera coordinate frame and map to the world coordinate frame?
- Let's try some points

Camera Coordinates	World Coordinates
$(0,0,0)$	

Camera to World Transformation

- Now that we have a camera defined in world coordinate frame, how do we take a point in the camera coordinate frame and map to the world coordinate frame?
- Let's try some points

Camera Coordinates	World Coordinates
$(0,0,0)$	$\overline{\mathbf{e}}$
$(0,0, \mathbf{f})$	

Camera to World Transformation

- Now that we have a camera defined in world coordinate frame, how do we take a point in the camera coordinate frame and map to the world coordinate frame?
- Let's try some points

Camera Coordinates	World Coordinates
$(0,0,0)$	$\overline{\mathbf{e}}$
$(0,0, \mathbf{f})$	$\overline{\mathbf{e}}+\mathbf{f} \overrightarrow{\mathbf{w}}$
$(0,1,0)$	

Camera to World Transformation

- Now that we have a camera defined in world coordinate frame, how do we take a point in the camera coordinate frame and map to the world coordinate frame?
- Let's try some points

Camera Coordinates	World Coordinates
$(0,0,0)$	$\overline{\mathbf{e}}$
$(0,0, \mathbf{f})$	$\overline{\mathbf{e}}+\mathbf{f} \overrightarrow{\mathbf{w}}$
$(0,1,0)$	$\overline{\mathbf{e}}+\overrightarrow{\mathbf{v}}$
$(0,1, \mathbf{f})$	

Camera to World Transformation

- Now that we have a camera defined in world coordinate frame, how do we take a point in the camera coordinate frame and map to the world coordinate frame?
- Let's try some points

Camera Coordinates	World Coordinates
$(0,0,0)$	$\overline{\mathbf{e}}$
$(0,0, \mathbf{f})$	$\overline{\mathbf{e}}+\mathbf{f} \overrightarrow{\mathbf{w}}$
$(0,1,0)$	$\overline{\mathbf{e}}+\overrightarrow{\mathbf{v}}$
$(0,1, \mathbf{f})$	$\overline{\mathbf{e}}+\overrightarrow{\mathbf{v}}+\mathbf{f} \overrightarrow{\mathbf{w}}$

Camera to World Transformation

- It's relatively easy to show that any point in camera coordinate frame can be expressed in world coordinate frame using the following homogenized transformation:

$$
\begin{gathered}
\overline{\mathbf{p}}^{\mathrm{w}}=\mathbf{M}_{\mathrm{cw}} \overline{\mathbf{p}}^{\mathbf{c}} \\
\mathbf{M}_{\mathrm{cw}}=\left[\begin{array}{cc}
{[\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}]} & \overline{\mathbf{e}} \\
{[0,0,0]} & 1
\end{array}\right]
\end{gathered}
$$

- See lecture notes for details

Camera to World Transformation

- It's relatively easy to show that any point in camera coordinate frame can be expressed in world coordinate frame using the following homogenized transformation:

$$
\overline{\mathbf{p}}^{\mathrm{w}}=\mathbf{M}_{\mathrm{cw}} \overline{\mathbf{p}}^{\mathbf{c}}
$$

- Actually, what we need is the inverse:

$$
\overline{\mathbf{p}}^{\mathbf{c}}=\mathbf{M}_{\mathbf{w c}} \overline{\mathbf{p}}^{\mathbf{w}}
$$

Inverting the Camera to World Transformation

We have:

$$
\overline{\mathbf{p}}^{\mathrm{w}}=\mathbf{M}_{\mathrm{cw}} \overline{\mathbf{p}}^{\mathbf{c}} \quad \mathbf{M}_{\mathrm{cw}}=\left[\begin{array}{cc}
\mathbf{A} & \overline{\mathbf{e}} \\
{[0,0,0]} & 1
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\overrightarrow{\mathbf{u}} & \overrightarrow{\mathbf{v}} & \overrightarrow{\mathbf{w}} \\
\downarrow & \downarrow & \downarrow
\end{array}\right]
$$

We want:

$$
\overline{\mathbf{p}}^{\mathrm{c}}=\mathbf{M}_{\mathrm{wc}} \overline{\mathbf{p}}^{\mathrm{w}}
$$

Inverting the Camera to World Transformation

We have:

$$
\begin{aligned}
\overline{\mathbf{p}}^{\mathrm{w}}=\mathbf{M}_{\mathrm{cw}} \overline{\mathbf{p}}^{\mathbf{c}} & \mathbf{M}_{\mathrm{cw}}
\end{aligned}=\left[\begin{array}{cc}
\mathbf{A} & \overline{\mathbf{e}} \\
{[0,0,0]} & 1
\end{array}\right]
$$

We want:

$$
\overline{\mathbf{p}}^{\mathrm{c}}=\mathbf{M}_{\mathrm{wc}} \overline{\mathbf{p}}^{\mathrm{w}}
$$

Inverting the Camera to World

 TransformationWe have:

$$
\begin{aligned}
& \overline{\mathbf{p}}^{\mathrm{w}}=\mathbf{M}_{\mathrm{cw}} \overline{\mathbf{p}}^{\mathbf{c}} \mathbf{M}_{\mathrm{cw}}=\left[\begin{array}{cc}
\mathbf{A} & \overline{\mathbf{e}} \\
{[0,0,0]} & 1
\end{array}\right] \\
& \overline{\mathbf{p}}^{\mathrm{w}}=\mathbf{A} \overline{\mathbf{p}}^{\mathrm{c}}+\overline{\mathbf{e}} \\
& \overline{\mathbf{p}}^{\mathbf{c}}=\mathbf{A}^{-1}\left(\overline{\mathbf{p}}^{\mathrm{w}}-\overline{\mathbf{e}}\right)
\end{aligned}
$$

Since \mathbf{A} is orthonormal (easy to check), the inverse of \mathbf{A} is simply a transpose

$$
\begin{aligned}
& \overline{\mathbf{p}}^{\mathbf{c}}=\mathbf{A}^{\mathrm{T}}\left(\overline{\mathbf{p}}^{\mathrm{w}}-\overline{\mathbf{e}}\right) \\
& \overline{\mathbf{p}}^{\mathbf{c}}=\mathbf{A}^{\mathrm{T}} \overline{\mathbf{p}}^{\mathrm{w}}-\mathbf{A}^{\mathrm{T}} \overline{\mathbf{e}}
\end{aligned}
$$

We want:

$$
\overline{\mathbf{p}}^{\mathrm{c}}=\mathbf{M}_{\mathrm{wc}} \overline{\mathbf{p}}^{\mathrm{w}}
$$

Inverting the Camera to World

 TransformationWe have:

$$
\begin{aligned}
\overline{\mathbf{p}}^{\mathrm{w}}=\mathbf{M}_{\mathrm{cw}} \overline{\mathbf{p}}^{\mathbf{c}} & \mathbf{M}_{\mathrm{cw}}=\left[\begin{array}{cc}
\mathbf{A} & \overline{\mathbf{e}} \\
{[0,0,0]} & 1
\end{array}\right] \\
& \overline{\mathbf{p}}^{\mathrm{w}}=\mathbf{A} \overline{\mathbf{p}}^{\mathbf{c}}+\overline{\mathbf{e}} \\
& \overline{\mathbf{p}}^{\mathbf{c}}=\mathbf{A}^{-1}\left(\overline{\mathbf{p}}^{\mathrm{w}}-\overline{\mathbf{e}}\right)
\end{aligned}
$$

Since \mathbf{A} is orthonormal (easy to check), the inverse of \mathbf{A} is simply a transpose

$$
\begin{aligned}
& \overline{\mathbf{p}}^{\mathbf{c}}=\mathbf{A}^{\mathrm{T}}\left(\overline{\mathbf{p}}^{\mathrm{w}}-\overline{\mathbf{e}}\right) \\
& \overline{\mathbf{p}}^{\mathbf{c}}=\mathbf{A}^{\mathrm{T}} \overline{\mathbf{p}}^{\mathrm{w}}-\mathbf{A}^{\mathrm{T}} \overline{\mathbf{e}}
\end{aligned}
$$

We want:

$$
\overline{\mathbf{p}}^{\mathbf{c}}=\mathbf{M}_{\mathbf{w c}} \overline{\mathbf{p}}^{\mathbf{w}} \quad \mathbf{M}_{\mathrm{wc}}=\left[\begin{array}{cc}
\mathbf{A}^{\mathbf{T}} & -\mathbf{A}^{\mathrm{T}} \overline{\mathbf{e}}^{\prime} \\
{[0,0,0]} & 1
\end{array}\right] \quad \mathbf{A}^{\mathbf{T}}=\left[\begin{array}{ccc}
\leftarrow & \overrightarrow{\mathbf{u}} & \rightarrow \\
\leftarrow & \overrightarrow{\mathbf{v}} & \rightarrow \\
\leftarrow & \overrightarrow{\mathbf{w}} & \rightarrow
\end{array}\right]
$$

Perspective Projection (Again)

- Earlier we derive perspective projection using similar triangles
- Now, we will go through an exercise of doing it algebraically (it's a good exercise)

Perspective Projection

Lets consider everything in the camera coordinate frame

Perspective Projection

Lets consider everything in the camera coordinate frame

Perspective Projection

- The mapping from a point $\overline{\mathbf{p}}^{\mathbf{c}}$ in camera coordinates to point $\left(\mathbf{x}^{*}, \mathbf{y}^{*}, 1\right)$ in the image plane, is what we will call the perspective projection

$$
\overline{\mathbf{x}}^{*}=\mathbf{r}\left(\lambda^{*}\right)=\mathbf{f}\left(\frac{\mathbf{p}_{\mathrm{x}}^{\mathrm{c}}}{\mathbf{p}_{\mathrm{z}}^{\mathrm{c}}}, \frac{\mathbf{p}_{\mathrm{y}}^{\mathrm{c}}}{\mathbf{p}_{\mathrm{z}}^{\mathrm{c}}}, 1\right)
$$

Just a scaling factor, we can ignore

Homogeneous Perspective

- The mapping of point $\overline{\mathbf{p}}^{\mathrm{c}}=\left(\mathbf{p}_{x}^{c}, \mathbf{p}_{y}^{c}, \mathbf{p}_{\mathrm{z}}^{\mathrm{c}}\right)$ to $\overline{\mathbf{x}}^{*}=\left(\mathbf{x}^{*}, \mathbf{y}^{*}, 1\right)$ is the form of scaling transformation, but since it depends on the depth of the point \mathbf{p}_{z}^{c}, it is not linear (remember the tapering example from last week)
- It would be very useful if we can express this nonlinear transformation as a linear transformation (matrix). Why?

Homogeneous Perspective

- The mapping of point $\overline{\mathbf{p}}^{\mathrm{c}}=\left(\mathbf{p}_{x}^{c}, \mathbf{p}_{y}^{c}, \mathbf{p}_{\mathrm{z}}^{\mathrm{c}}\right)$ to $\overline{\mathbf{x}}^{*}=\left(\mathbf{x}^{*}, \mathbf{y}^{*}, 1\right)$ is the form of scaling transformation, but since it depends on the depth of the point \mathbf{p}_{z}^{c}, it is not linear (remember the tapering example from last week)
- It would be very useful if we can express this nonlinear transformation as a linear transformation (matrix). Why?

$$
\overline{\mathbf{x}}^{*}=\mathbf{M}_{\mathbf{p}} \mathbf{M}_{\mathbf{w c}} \overline{\mathbf{p}}^{\mathbf{w}}
$$

Homogeneous Perspective

- We can express it a a linear transformation in homogeneous coordinates (this is one of the benefits of using homogeneous coordinates!)
- Here's the transformation that does what we want:

$$
\mathbf{M}_{\mathrm{p}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]
$$

- Let's prove this is true

Homogeneous Perspective

Claim:

$$
\left[\begin{array}{c}
\left(\begin{array}{c}
\mathbf{x}^{*} \\
\mathbf{y}^{*} \\
1
\end{array}\right) \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathbf{f}\left(\begin{array}{c}
\mathbf{p}_{\mathrm{x}}^{\mathrm{c}} / \mathbf{p}_{\mathrm{z}}^{\mathrm{c}} \\
\mathbf{p}_{\mathbf{y}}^{\mathrm{c}} / \mathbf{p}_{\mathrm{z}}^{\mathrm{c}} \\
1
\end{array}\right) \\
1
\end{array}\right]=\mathbf{M}_{\mathrm{p}} \overline{\mathbf{p}}^{\mathrm{c}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]\left(\begin{array}{c}
\mathbf{p}_{\mathrm{x}}^{\mathrm{c}} \\
\mathbf{p}_{\mathrm{y}}^{\mathrm{c}} \\
\mathbf{p}_{\mathrm{z}}^{\mathrm{c}} \\
1
\end{array}\right)
$$

Homogeneous Perspective

Claim:

$$
\left[\begin{array}{c}
\left(\begin{array}{c}
\mathbf{x}^{*} \\
\mathbf{y}^{*} \\
1
\end{array}\right) \\
1
\end{array}\right]=\left[\begin{array}{c}
\left(\begin{array}{c}
\mathbf{p}_{x}^{c} / \mathbf{p}_{z}^{c} \\
\mathbf{p}_{y}^{c} / \mathbf{p}_{z}^{c} \\
1
\end{array}\right) \\
1
\end{array}\right]=\mathbf{M}_{\mathbf{p}} \overline{\mathbf{p}}^{\mathbf{c}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]\left(\begin{array}{c}
\mathbf{p}_{x}^{c} \\
\mathbf{p}_{\mathbf{x}}^{c} \\
\mathbf{p}_{z}^{c} \\
1
\end{array}\right)
$$

Proof:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{x}^{c} \\
\mathbf{p}_{y}^{c} \\
\mathbf{p}_{z}^{c} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{x}^{c} \\
\mathbf{p}_{y}^{c} \\
\mathbf{p}_{x}^{c} \\
\mathbf{p}_{z}^{c} / \mathbf{f}
\end{array}\right]
$$

Point in homogeneous coordinates can be scaled arbitrarily

Homogeneous Perspective

Claim:

$$
\left[\begin{array}{c}
\left(\begin{array}{c}
\mathbf{x}^{*} \\
\mathbf{y}^{*} \\
1
\end{array}\right) \\
1
\end{array}\right]=\left[\begin{array}{c}
\left(\begin{array}{c}
\mathbf{p}_{x}^{c} / \mathbf{p}_{z}^{c} \\
\mathbf{p}_{y}^{c} / \mathbf{p}_{z}^{c} \\
1
\end{array}\right) \\
1
\end{array}\right]=\mathbf{M}_{\mathbf{p}} \overline{\mathbf{p}}^{\mathbf{c}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]\left(\begin{array}{c}
\mathbf{p}_{x}^{c} \\
\mathbf{p}_{\mathbf{x}}^{c} \\
\mathbf{p}_{z}^{c} \\
1
\end{array}\right)
$$

Proof:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{x}^{c} \\
\mathbf{p}_{y}^{c} \\
\mathbf{p}_{z}^{c} \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{x}^{c} \\
\mathbf{p}_{y}^{c} \\
\mathbf{p}_{z}^{c} \\
\mathbf{p}_{z}^{c} / \mathbf{f}
\end{array}\right]=\mathbf{p}<\left[\begin{array}{c}
f \mathbf{f}_{x}^{c} / \mathbf{f}_{z}^{c} \\
\mathbf{f}_{\mathrm{z}}^{c} / \mathbf{p}_{z}^{c} \\
\mathbf{f} \\
1
\end{array}\right]
$$

Point in homogeneous coordinates can be scaled arbitrarily

Putting together a camera model

 Projecting a world point to image (film) plane$$
\overline{\mathbf{x}}^{*}=\mathbf{M}_{\mathbf{p}} \mathbf{M}_{\mathrm{wc}} \overline{\mathbf{p}}^{\mathbf{w}}
$$

Pseudodepth

- We would like to change the projection transform so that z-component of the projection gives us useful information (not just a constant f)
- We want it to encode something about depth of a point. Why?

Pseudodepth

- Standard homogeneous perspective projection

$$
\mathbf{M}_{\mathbf{p}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / \mathbf{f} & 0
\end{array}\right]
$$

- Pseudodepth projection matrix

$$
\mathbf{M}_{\mathbf{p}}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \mathbf{a} & \mathbf{b}
\end{array}\right] \quad \mathbf{z}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}^{c}}\left(\mathbf{a p}_{\mathbf{z}}^{\mathbf{c}}+\mathbf{b}\right)
$$

Pseudodepth

How do we pick a and b?

$$
\mathbf{z}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}^{c}}\left(\mathbf{a p}_{z}^{\mathbf{c}}+\mathbf{b}\right)
$$

Pseudodepth

How do we pick a and b?

$$
\mathbf{z}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}^{c}}\left(\mathbf{p}_{\mathbf{z}}^{\mathbf{c}}+\mathbf{b}\right) \quad \mathbf{z}^{*}=\left\{\begin{array}{ccc}
-1 & \text { when } \mathbf{p}_{\mathbf{z}}^{\mathrm{c}}=\mathbf{f} \\
1 & \text { when } & \mathbf{p}_{\mathrm{z}}^{\mathrm{c}}=\mathbf{F}
\end{array}\right.
$$

Pseudodepth

How do we pick \mathbf{a} and \mathbf{b} ?

$$
\mathbf{z}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}^{\mathrm{c}}}\left(\mathbf{a p}_{\mathrm{z}}^{\mathrm{c}}+\mathbf{b}\right)
$$

$$
\begin{aligned}
& -1=\mathbf{a f}+\mathbf{b} \\
& 1=\mathbf{a f}+\mathbf{b} \frac{\mathbf{f}}{\mathbf{F}}
\end{aligned}
$$

Pseudodepth

How do we pick \mathbf{a} and \mathbf{b} ?

$$
\mathbf{z}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}^{c}}\left(\mathbf{a p}_{\mathbf{z}}^{\mathrm{c}}+\mathbf{b}\right)
$$

$$
\begin{aligned}
& \mathbf{b}=\frac{2 \mathbf{F}}{\mathbf{f}-\mathbf{F}} \\
& \mathbf{a}=-\frac{1}{\mathbf{f}}\left(\frac{\mathbf{f}+\mathbf{F}}{\mathbf{f}-\mathbf{F}}\right)
\end{aligned}
$$

Pseudodepth

Standard homogeneous perspective with pseudodepth

$$
\boldsymbol{M}_{\boldsymbol{p}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{2 \boldsymbol{F}}{\boldsymbol{f}-\boldsymbol{F}} & -\frac{1}{\boldsymbol{f}}\left(\frac{\boldsymbol{f}+\boldsymbol{F}}{\boldsymbol{f}-\boldsymbol{F}}\right) \\
0 & 0 & 1 / \boldsymbol{f} & 0
\end{array}\right]
$$

Near and Far Planes

- Anything closer than near plane is considered to be behind the camera and does not need to be rendered
- Anything further away from the camera than far plane is too far to be visible, so it is not rendered
- Practical issue: far plane too far away will lead to imprecision in the computed pseudodeph and hence rendering

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices
- Transform to world coordinated $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{w}}=\mathbf{M}_{\mathrm{ow}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{o}}$

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices
- Transform to world coordinated $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{w}}=\mathbf{M}_{\mathrm{ow}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{o}}$
- Transform from world to camera coordinates $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{c}}=\mathbf{M}_{\mathrm{wc}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathrm{w}}$

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices
- Transform to world coordinated $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{w}}=\mathbf{M}_{\mathrm{ow}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{o}}$
- Transform from world to camera coordinates $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{c}}=\mathbf{M}_{\mathrm{wc}} \overline{\mathbf{p}}_{\mathrm{i}}^{\mathrm{w}}$
- Apply homogeneous perspective $\overline{\mathbf{p}}_{\mathbf{i}}^{*}=\mathbf{M}_{\mathrm{p}} \overline{\mathbf{p}}_{\mathbf{i}}^{\text {c }}$
- Divide by last component

Projecting Triangle

- Lets review steps in the rendering hierarchy
- Triangle is given in the object-based coordinate frame as three vertices
- Transform to world coordinated $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{w}}=\mathbf{M}_{\mathrm{ow}} \overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{o}}$
- Transform from world to camera coordinates $\overline{\mathbf{p}}_{\mathbf{i}}^{\mathbf{c}}=\mathbf{M}_{\text {wc }} \overline{\mathbf{p}}_{\mathbf{i}}^{\text {w }}$
- Apply homogeneous perspective $\overline{\mathbf{p}}_{\mathbf{i}}^{*}=\mathbf{M}_{\mathrm{p}} \overline{\mathbf{p}}_{\mathbf{i}}^{\text {c }}$
- Divide by last component

[^0]: Bullet Time effect - Movie "The Matrix"

