‘ Announcements

= Assignment 1
o theory (due Today)

o programming (due next Friday)

= You should draw polygons (not line strips) for the parts of the
penguin

= Issues with OpenGL should be resolved soon

= Practice midterms are now on-line

o Solutions will not be made available, but you can ask TA or
myself questions during office hours (and tutorial)

o We will have extra office hours before the exam

‘ Last class review ...

= Camera models
o Pinhole camera

‘ l.ast class review ...

= Camera models
o Pinhole camera
o Thin Lens Model — lens is used to focus the light

surface point

view plane lens

| 7 SN
— v

optical axis

[e——>l< 1 >

‘ Last class review ...

= Camera models
o Pinhole camera
o Thin Lens Model — lens is used to focus the light
o Relationship between thin lens model and pinhole camera
o Conceptual pinhole camera

%

. Virtual Film

‘ l.ast class review ...

= Camera models
o Pinhole camera
o Thin Lens Model — lens is used to focus the light
o Relationship between thin lens model and pinhole camera
o Conceptual pinhole camera
o Perspective Projection

. f e
y :_py X :_px
P, P

Lets step back again ...

= What do we need to render a scene
o Scene with 3D objects

o Position and orientation of camera in the world
coordinates

o Transformation of objects from world to camera
coordinates

o Project the objects onto film
a Visibility (with respect to the view volume)

o No need to render everything, only things we can
see

Camera Models
Part 2

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

‘ Position and Orientation of Camera

= How can we specify a camera coordinate frame

o We need an origin (at the pinhole) — lets call it e, and 3 unit
vectors to define the camera coordinate frame U, Vv, W

= In general,
o Camera can be anywhere in the world
o Can move as a function of time

> <
cl

Bullet Time effect — Movie “The Matrix”

‘ Position and Orientation of Camera

= How can we specify a camera coordinate frame

o We need an origin (at the pinhole) — lets call it €, and 3 unit
vectors to define the camera coordinate frame U, V,W

= How can we intuitively specify U, V,wW
o Let's pick a point in the scene where we want to look -p

. p-@
W=-r—— _
= SRS
o Designate up direction t, then .g‘.
0= v W o.p
[txw|
o V must be perpendicular to W

V=WxU 5

‘ Position and Orientation of Camera

= Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?

y u
A

&S
v

—

W

‘ Camera to World Transformation

= Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?

= Let’s try some points y
u
A

Camera Coordinates World Coordinates
W
(0,0,0) ~

V w

‘ Camera to World Transformation

= Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?

= Let’s try some points y
u
A

Camera Coordinates World Coordinates
(0,0,0) e ~@{'
(0,0,f) v =

‘ Camera to World Transformation

= Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?

= Let’s try some points y
u
A

Camera Coordinates World Coordinates
(0,0,0) e ~@~'
(0,0,f) g +fw v

—

W

(0,1,0)

‘ Camera to World Transformation

= Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?

= Let’s try some points

Camera Coordinates

World Coordinates

(0,0,0)

(0,0,f

)
(0,1,0)
)

(01, f

y
4

u

.@:

v oW

‘ Camera to World Transformation

= Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?

= Let’s try some points

Camera Coordinates

World Coordinates

(0,0,0) g
(0,0,f) e +fw
(0,1,0) e+ V
(04f) | e+V+fw

y
4

u

.@:

v oW

‘ Camera to World Transformation

= It's relatively easy to show that any point in camera
coordinate frame can be expressed in world
coordinate frame using the following homogenized

transformation:

p" =Mp°
M. - [G,V,W] €]
| [0,00] 1

= See lecture notes for detalls

‘ Camera to World Transformation

= It's relatively easy to show that any point in camera
coordinate frame can be expressed in world
coordinate frame using the following homogenized

transformation:

= Actually, what we need is the inverse:

ﬁc = M WCEW

Inverting the Camera to World

.|

Transformation
We have:
EW — MCWEC
We want:

EC — M WCEW

A &
[0,00] 1

|

Ie - %I

— < >

%
|

Ieél

Inverting the Camera to World

Transformation
We have:
EW — MCWEC
We want:

EC — M WCEW

A ¢
I\/Icw —lr
{0,0,0] 1
p"=Ap +e
EC — A—l(ﬁw _é)

Ie - %I

— < >

%
|

Iegl

Inverting the Camera to World

Transformation
We have: ~ _
A o TT
p"=M_p° M. =| A=l0 V W
“110,0,0] 1 1Ll
P =Ap°+¢€
EC — A_l(ﬁw _é)
Since Al is orthonormal (easy to check), the inverse of A is simply a transpose
EC = AT (EW _é)
EC = ATEW _ATé
We want:

Inverting the Camera to World

Transformation
We have:
—w e A @©
— M M —
=M M|
p"=Ap +e
EC — A_l(ﬁw _é)

«— o >

— < >

%

«— S

Since Al is orthonormal (easy to check), the inverse of A is simply a transpose

EC < AT(EW _é)
EC — ATEW _ATé
We want:
A" —A'e
~C — ~W M —
p*=M,.P " {[0,0,0] 1

}AT

TT 1
=

< <l

P4

‘ Perspective Projection (Again)

= Earlier we derive perspective projection using
similar triangles

= Now, we will go through an exercise of doing it
algebraically (it's a good exercise)

‘ Perspective Projection

Lets consider everything in the camera coordinate frame

©

r(,) =A(p°-0)

— i =(0,0,1)

Equation of the image plane (film)

(x*—F)-ni=0

\ 4
- o Y- -

‘ Perspective Projection

Lets consider everything in the camera coordinate frame

©

r(,) =A(p°-0)

— i =(0,0,1)

Equation of the image plane (film)
(x°~F)-A=0
If we solve for A’ that satisfies the plane equation

— x*:r(x):f(réﬁ,lj
P, P,

‘ Perspective Projection

= The mapping from a point p° in camera coordinates
to point (x*,y*,l) in the image plane, is what we will
call the perspective projection

- r(k*)zf[p% L3]

/pz P;

Just a scaling factor, we can ignore

‘ Homogeneous Perspective

= The mapping of point p* = (p‘;,p§,p§) to
X = (x*,y*,l) is the form of scaling transformation,
but since it depends on the depth of the point P;, it is
not linear (remember the tapering example from last

week)

= It would be very useful if we can express this non-
linear transformation as a linear transformation

(matrix). Why?

‘ Homogeneous Perspective

= The mapping of point p* = (p‘;,p§,p§) to
X = (x*,y*,l) is the form of scaling transformation,
but since it depends on the depth of the point P, it is
not linear (remember the tapering example from last

week)

= It would be very useful if we can express this non-
linear transformation as a linear transformation

(matrix). Why?
X =M M P

‘ Homogeneous Perspective

= We can express it a a linear transformation in
homogeneous coordinates (this is one of the benefits
of using homogeneous coordinates!)

= Here’'s the transformation that does what we want:

10 0 O

01 0 0
M =

00 1 O

0 0 1/f O

= Let’s prove this is true

‘ Homogeneous Perspective

Claim:

X

P a <

P /P,

P, /P,

o O O -

o O — O

1/f

o O O O

‘ Homogeneous Perspective

Claim:

Proof:

X

P <

o o o k-

P /P,

c

Py

o O +— O

/p,

c

1
1/f

o O O O

o O O -
o O — O

oN
Py
P;

P, /T

Point in homogeneous coordinates can be scaled arbitrarily

‘ Homogeneous Perspective

Claim:

X

L <

Proof:

o O O B

(pSIp

C c

P, /P,

1
1/f

o O —» O

o O O

0

o o O -
o O —» O

- pt

Py
p;

P, /T

Point in homogeneous coordinates can be scaled arbitrarily

‘ Putting together a camera model

Projecting a world point to image (film) plane
X =M;M,.p"

1 0 0 O
. |01 0 o) AT -ATe|_,
y G ““loo 1 o0 P
A [0,0,0] 1
h 0 0 1/f 0
A) =
Y W (— U >
> where Al=|l« Vv —
X <~ W —

‘ Pseudodepth

= We would like to change the projection transform
so that z-component of the projection gives us
useful information (not just a constant f)

= We want it to encode something about depth of
a point. Why?

C

p
- @

— n=(0,01)

Z-buffering

' Pseudodepth

= Standard homogeneous perspective projection

10 0 0
01 0 O
M =
00 1 0
0 0 1/f 0

= Pseudodepth projection matrix

10 0 0
0 1 0 f
M, = =T (ape+b
""100 a b 7= oot)
00 Uf 0

‘ Pseudodepth

How do we pick a and b?

z = p%(apg + b)

camera ; A

<

near plane
(image)

world
coordinates
origin

view volume

far plane

‘ Pseudodepth

How do we pick a and b?

z*:ic(ap§+b) _ -1 when p, =f
P 1 when p;=F

camera ; A

<

view volume

near plane
(image)

world
coordinates
origin

far plane

‘ Pseudodepth

How do we pick a and b?

—1=af +b
z*:i(ap§+b) f
p(Z: 1:af+bE

camera ; A

<

view volume

near plane
(image)

world
coordinates
origin

far plane

‘ Pseudodepth

How do we pick a and b? h 2F
z*:i(ap§+b) F=F
o __E(f+|:
- f

camera ; A

<

view volume

near plane
(image)

world
coordinates
origin

far plane

‘ Pseudodepth

Standard homogeneous perspective with pseudodepth

10 0 0
01 0 0
My=lg o 2F _1(f+F

f-F flf—F
0 0 1/f 0o

‘ Near and Far Planes

= Anything closer than near plane is considered to be
behind the camera and does not need to be rendered

= Anything further away from the camera than far plane
IS too far to be visible, so it Is not rendered

= Practical issue: far plane too far away will lead to

Imprecision in the computed pseudodeph and hence
rendering

camera A

v

view volume

world
coordinates
origin ;

ar plane

near plane
(image)

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi' =M., P/

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi' =M., P/

W

o Transform from world to camera coordinates p; =M,.p;

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi' =M, p;
a Transform from world to camera coordinates p; =M,,.p;"
o Apply homogeneous perspective p; =M p;

= Divide by last component

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi' =M, p;
a Transform from world to camera coordinates p; =M,,.p;"
o Apply homogeneous perspective p; =M p;

= Divide by last component

