
Announcements

Assignment 1
theory (due Today)
programming (due next Friday)

You should draw polygons (not line strips) for the parts of the
penguin
Issues with OpenGL should be resolved soon

Practice midterms are now on-line
Solutions will not be made available, but you can ask TA or
myself questions during office hours (and tutorial)
We will have extra office hours before the exam

Last class review …

Camera models
Pinhole camera

Film

Last class review …

Camera models
Pinhole camera
Thin Lens Model – lens is used to focus the light

view plane
lens

z
0

surface point

optical axis

z
1

Last class review …

Virtual Film

ff

Film

Camera models
Pinhole camera
Thin Lens Model – lens is used to focus the light
Relationship between thin lens model and pinhole camera
Conceptual pinhole camera

Last class review …

Camera models
Pinhole camera
Thin Lens Model – lens is used to focus the light
Relationship between thin lens model and pinhole camera
Conceptual pinhole camera
Perspective Projection

y
z

p
p
fy =*

x
z

p
p
fx =*

Lets step back again …

What do we need to render a scene
Scene with 3D objects
Position and orientation of camera in the world
coordinates
Transformation of objects from world to camera
coordinates
Project the objects onto film
Visibility (with respect to the view volume)
No need to render everything, only things we can
see

Camera Models
Part 2

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

Position and Orientation of Camera

Bullet Time effect – Movie “The Matrix”

How can we specify a camera coordinate frame
We need an origin (at the pinhole) – lets call it , and 3 unit
vectors to define the camera coordinate frame

In general,
Camera can be anywhere in the world
Can move as a function of time

wvu rrr ,,
e

y

x

z

wr
e

ur

vr

Position and Orientation of Camera
How can we specify a camera coordinate frame

We need an origin (at the pinhole) – lets call it , and 3 unit
vectors to define the camera coordinate frame

How can we intuitively specify
Let’s pick a point in the scene where we want to look -

Designate up direction , then

must be perpendicular to

wt
wtu rr

rr
r

×
×

=

uwv rrr
×=

ep
epw

−
−

=
r

t
r

p

wvu rrr ,,
wvu rrr ,,

p

t
r

e

vr

y

x

z

wr
e

ur

vr

Position and Orientation of Camera

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?

y

x

z

wr
e

ur

vr

Camera to World Transformation

y

x

z

wr
e

ur

vr

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates

()0,0,0

Camera to World Transformation

y

x

z

wr
e

ur

vr

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates

()0,0,0
()f,0,0

e

Camera to World Transformation

y

x

z

wr
e

ur

vr

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates

()0,0,0
()f,0,0
()0,1,0

e
wfe r

+

Camera to World Transformation

y

x

z

wr
e

ur

vr

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates

()0,0,0
()f,0,0
()0,1,0
()f,1,0

e

ve r
+

wfe r
+

Camera to World Transformation

y

x

z

wr
e

ur

vr

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates

()0,0,0
()f,0,0
()0,1,0
()f,1,0

e

ve r
+

wfve rr
++

wfe r
+

Camera to World Transformation

It’s relatively easy to show that any point in camera
coordinate frame can be expressed in world
coordinate frame using the following homogenized
transformation:

See lecture notes for details

c
cw

w pMp =

⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
],,[ewvu

Mcw

rrr

Camera to World Transformation

It’s relatively easy to show that any point in camera
coordinate frame can be expressed in world
coordinate frame using the following homogenized
transformation:

Actually, what we need is the inverse:

c
cw

w pMp =

w
wc

c pMp =

Inverting the Camera to World
Transformation

We have:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
c

cw
w pMp =

We want:

w
wc

c pMp =

Inverting the Camera to World
Transformation

We have:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
c

cw
w pMp =

()epAp
epAp

wc

cw

−=

+=
−1

We want:

w
wc

c pMp =

Inverting the Camera to World
Transformation

c
cw

w pMp = ⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

()epAp
epAp

wc

cw

−=

+=
−1

Since A is orthonormal (easy to check), the inverse of A is simply a transpose

()
eApAp

epAp
TwTc

wTc

−=

−=

We have:

We want:

w
wc

c pMp =

Inverting the Camera to World
Transformation

c
cw

w pMp = ⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

()epAp
epAp

wc

cw

−=

+=
−1

Since A is orthonormal (easy to check), the inverse of A is simply a transpose

()
eApAp

epAp
TwTc

wTc

−=

−=

w
wc

c pMp = ⎥
⎦

⎤
⎢
⎣

⎡ −
=

1]0,0,0[
eAA

M
TT

wc
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→←
→←
→←

=
w
v
u

AT

r

r

r

We have:

We want:

Perspective Projection (Again)

Earlier we derive perspective projection using
similar triangles
Now, we will go through an exercise of doing it
algebraically (it’s a good exercise)

y

x

z

wr
e

ur

vr

Perspective Projection
Lets consider everything in the camera coordinate frame

)0()(−= cpr λλ

)1,0,0(=nr
),0,0(ff =

()0,0,0=e *x

f

() 0=⋅− nfxc r
Equation of the image plane (film)

cp

pinhole

Perspective Projection
Lets consider everything in the camera coordinate frame

)0()(−= cpr λλ

)1,0,0(=nr
),0,0(ff =

()0,0,0=e *x

f

() 0=⋅− nfxc r
Equation of the image plane (film)

cp

If we solve for that satisfies the plane equation
we get

*λ

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== 1,,**

c
z

c
y

c
z

c
x

p
p

p
pfrx λ

pinhole

Perspective Projection
cpThe mapping from a point in camera coordinates

to point in the image plane, is what we will ()1,, ** yx
call the perspective projection

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== 1,,**

c
z

c
y

c
z

c
x

p
p

p
pfrx λ

Just a scaling factor, we can ignore

Homogeneous Perspective
The mapping of point to

is the form of scaling transformation,
but since it depends on the depth of the point , it is
not linear (remember the tapering example from last
week)

It would be very useful if we can express this non-
linear transformation as a linear transformation
(matrix). Why?

()c
z

c
y

c
x

c pppp ,,=
()1,, *** yxx =

c
zp

Homogeneous Perspective

c
zp

()c
z

c
y

c
x

c pppp ,,=
()1,, *** yxx =

w
wcp pMMx =*

The mapping of point to
is the form of scaling transformation,

but since it depends on the depth of the point , it is
not linear (remember the tapering example from last
week)

It would be very useful if we can express this non-
linear transformation as a linear transformation
(matrix). Why?

Homogeneous Perspective

We can express it a a linear transformation in
homogeneous coordinates (this is one of the benefits
of using homogeneous coordinates!)
Here’s the transformation that does what we want:

Let’s prove this is true

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0/100
0100
0010
0001

f

Mp

Homogeneous Perspective

Claim:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

10/100
0100
0010
0001

1
1
/
/

1
1

*

*

c
z

c
y

c
x

c
p

c
z

c
y

c
z

c
x

p
p
p

f

pMpp
pp

fy
x

f

Homogeneous Perspective

Claim:

Proof:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

10/100
0100
0010
0001

1
1
/
/

1
1

*

*

c
z

c
y

c
x

c
p

c
z

c
y

c
z

c
x

p
p
p

f

pMpp
pp

fy
x

f

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

fp
p
p
p

p
p
p

f c
z

c
z

c
y

c
x

c
z

c
y

c
x

/10/100
0100
0010
0001

Point in homogeneous coordinates can be scaled arbitrarily

Homogeneous Perspective

Claim:

Proof:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

10/100
0100
0010
0001

1
1
/
/

1
1

*

*

c
z

c
y

c
x

c
p

c
z

c
y

c
z

c
x

p
p
p

f

pMpp
pp

fy
x

f

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

/
/

/

/10/100
0100
0010
0001

f
pfp
pfp

fp

fp
p
p
p

p
p
p

f

c
z

c
y

c
z

c
x

c
z

c
z

c
z

c
y

c
x

c
z

c
y

c
x

Point in homogeneous coordinates can be scaled arbitrarily

Putting together a camera model
Projecting a world point to image (film) plane

w
wcp pMMx =*

w
TT

p
eAA

f

x ⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
1]0,0,0[

0/100
0100
0010
0001

*

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→←
→←
→←

=
w
v
u

AT

r

r

r

y

x

z

wr
e

ur

vr

where

Pseudodepth
We would like to change the projection transform
so that z-component of the projection gives us
useful information (not just a constant f)
We want it to encode something about depth of
a point. Why?

)1,0,0(=nr
),0,0(ff =

()0,0,0=e *x

cp

pinhole

Z-buffering

Pseudodepth

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0/100
0100
0010
0001

f

Mp

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0/100
00

0010
0001

f
ba

Mp

Standard homogeneous perspective projection

Pseudodepth projection matrix

()bap
p
fz c

zc
z

+=*

Pseudodepth

How do we pick a and b?

()bap
p
fz c

zc
z

+=*

far plane

world

coordinates

origin

near plane

(image)

view volume

camera

F

f

Pseudodepth

How do we pick a and b?

⎩
⎨
⎧

=
=−

=
Fpwhen
fpwhen

z c
z

c
z

1
1*()bap

p
fz c

zc
z

+=*

far plane

world

coordinates

origin

near plane

(image)

view volume

camera

F

f

Pseudodepth

How do we pick a and b?

F
fbaf

baf

+=

+=−

1

1
()bap

p
fz c

zc
z

+=*

far plane

world

coordinates

origin

near plane

(image)

view volume

camera

F

f

Pseudodepth

()bap
p
fz c

zc
z

+=*

far plane

world

coordinates

origin

near plane

(image)

view volume

camera

F

f

⎟
⎠
⎞

⎜
⎝
⎛

−
+

−=

−
=

Ff
Ff

f
a

Ff
Fb

1

2How do we pick a and b?

Pseudodepth

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−
−

=

0/100

1200

0010
0001

f
Ff
Ff

fFf
FM p

Standard homogeneous perspective with pseudodepth

Near and Far Planes

far plane

world

coordinates

origin

near plane

(image)

view volume

camera

Anything closer than near plane is considered to be
behind the camera and does not need to be rendered
Anything further away from the camera than far plane
is too far to be visible, so it is not rendered
Practical issue: far plane too far away will lead to
imprecision in the computed pseudodeph and hence
rendering

Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as
three vertices

op2 x

y
op1

op3z

Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as
three vertices
Transform to world coordinated

wp2

y

xz

wp1

wp3
x

y

z

o
iow

w
i pMp =

Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as
three vertices
Transform to world coordinated
Transform from world to camera coordinates

cp2 x

y

z

cp1

cp3

o
iow

w
i pMp =

w
iwc

c
i pMp =

y

xz

wr

e

vr

ur

Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as
three vertices
Transform to world coordinated
Transform from world to camera coordinates
Apply homogeneous perspective

Divide by last component

cp2

ur

wr

e

vr

x

y

z

cp1

cp3

*
2p

*
1p

*
3p

o
iow

w
i pMp =

w
iwc

c
i pMp =

c
ipi pMp =*

y

xz

Projecting Triangle

ur

wr

e

vr

Lets review steps in the rendering hierarchy
Triangle is given in the object-based coordinate frame as
three vertices
Transform to world coordinated
Transform from world to camera coordinates
Apply homogeneous perspective

Divide by last component

cp2 x

y

z

cp1

cp3

*
2p

*
1p

*
3p

o
iow

w
i pMp =

w
iwc

c
i pMp =

c
ipi pMp =*

y

xz

