
Announcements

Assignment 1 
theory (due Today)
programming (due next Friday)

You should draw polygons (not line strips) for the parts of the 
penguin 
Issues with OpenGL should be resolved soon

Practice midterms are now on-line
Solutions will not be made available, but you can ask TA or 
myself questions during office hours (and tutorial)
We will have extra office hours before the exam 



Last class review …

Camera models
Pinhole camera

Film



Last class review …
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Last class review …

Virtual Film

ff

Film

Camera models
Pinhole camera 
Thin Lens Model – lens is used to focus the light
Relationship between thin lens model and pinhole camera
Conceptual pinhole camera



Last class review …

Camera models
Pinhole camera 
Thin Lens Model – lens is used to focus the light
Relationship between thin lens model and pinhole camera
Conceptual pinhole camera
Perspective Projection
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Lets step back again …

What do we need to render a scene
Scene with 3D objects
Position and orientation of camera in the world 
coordinates
Transformation of objects from world to camera 
coordinates
Project the objects onto film
Visibility (with respect to the view volume)
No need to render everything, only things we can 
see



Camera Models
Part 2

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal



Position and Orientation of Camera

Bullet Time effect – Movie “The Matrix”

How can we specify a camera coordinate frame
We need an origin (at the pinhole) – lets call it , and 3 unit 
vectors to define the camera coordinate frame

In general,
Camera can be anywhere in the world
Can move as a function of time
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Position and Orientation of Camera
How can we specify a camera coordinate frame

We need an origin (at the pinhole) – lets call it , and 3 unit 
vectors to define the camera coordinate frame

How can we intuitively specify 
Let’s pick a point in the scene where we want to look -

Designate up direction , then

must be perpendicular to 
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Position and Orientation of Camera

Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
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Camera to World Transformation
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Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates

( )0,0,0



Camera to World Transformation
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Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates
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Camera to World Transformation
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Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates
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Camera to World Transformation
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Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates

( )0,0,0
( )f,0,0
( )0,1,0
( )f,1,0

e

ve r
+

wfe r
+



Camera to World Transformation
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Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
Let’s try some points

Camera Coordinates World Coordinates
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Camera to World Transformation

It’s relatively easy to show that any point in camera 
coordinate frame can be expressed in world 
coordinate frame using the following homogenized 
transformation:

See lecture notes for details
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Camera to World Transformation

It’s relatively easy to show that any point in camera 
coordinate frame can be expressed in world 
coordinate frame using the following homogenized 
transformation:

Actually, what we need is the inverse:
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Inverting the Camera to World 
Transformation

We have:
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Inverting the Camera to World 
Transformation

We have:
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Inverting the Camera to World 
Transformation
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Inverting the Camera to World 
Transformation

c
cw

w pMp = ⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

( )epAp
epAp

wc

cw

−=

+=
−1

Since A is orthonormal (easy to check), the inverse of A is simply a transpose 

( )
eApAp

epAp
TwTc

wTc

−=

−=

w
wc

c pMp = ⎥
⎦

⎤
⎢
⎣

⎡ −
=

1]0,0,0[
eAA

M
TT

wc
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→←
→←
→←

=
w
v
u

AT

r

r

r

We have:

We want:



Perspective Projection (Again)

Earlier we derive perspective projection using 
similar triangles
Now, we will go through an exercise of doing it 
algebraically (it’s a good exercise)
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Perspective Projection
Lets consider everything in the camera coordinate frame
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Equation of the image plane (film)
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Perspective Projection
Lets consider everything in the camera coordinate frame

)0()( −= cpr λλ
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( )0,0,0=e *x
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( ) 0=⋅− nfxc r
Equation of the image plane (film)
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Perspective Projection
cpThe mapping from a point      in camera coordinates 

to point               in the image plane, is what we will ( )1,, ** yx
call the perspective projection
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Just a scaling factor, we can ignore



Homogeneous Perspective
The mapping of point                          to 

is the form of scaling transformation,
but since it depends on the depth of the point     , it is 
not linear (remember the tapering example from last 
week)

It would be very useful if we can express this non-
linear transformation as a linear transformation 
(matrix). Why?
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Homogeneous Perspective

c
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w
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The mapping of point                          to 
is the form of scaling transformation,

but since it depends on the depth of the point     , it is 
not linear (remember the tapering example from last 
week)

It would be very useful if we can express this non-
linear transformation as a linear transformation 
(matrix). Why?



Homogeneous Perspective

We can express it a a linear transformation in 
homogeneous coordinates (this is one of the benefits 
of using homogeneous coordinates!)
Here’s the transformation that does what we want:

Let’s prove this is true
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Homogeneous Perspective

Claim:
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Homogeneous Perspective

Claim:

Proof:
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Homogeneous Perspective

Claim:

Proof:
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Putting together a camera model
Projecting a world point to image (film) plane
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Pseudodepth
We would like to change the projection transform 
so that z-component of the projection gives us 
useful information (not just a constant f )
We want it to encode something about depth of 
a point. Why?
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Pseudodepth
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Pseudodepth

How do we pick a and b?
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Pseudodepth

How do we pick a and b?
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Pseudodepth

How do we pick a and b?
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Pseudodepth
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Pseudodepth
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Near and Far Planes

far plane

world

coordinates

origin

near plane

(image) 

view volume

camera

Anything closer than near plane is considered to be 
behind the camera and does not need to be rendered
Anything further away from the camera than far plane
is too far to be visible, so it is not rendered
Practical issue: far plane too far away will lead to 
imprecision in the computed pseudodeph and hence 
rendering



Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as 
three vertices
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Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as 
three vertices
Transform to world coordinated 
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Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as 
three vertices
Transform to world coordinated 
Transform from world to camera coordinates
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Projecting Triangle
Lets review steps in the rendering hierarchy

Triangle is given in the object-based coordinate frame as 
three vertices
Transform to world coordinated 
Transform from world to camera coordinates
Apply homogeneous perspective

Divide by last component 
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Projecting Triangle
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Lets review steps in the rendering hierarchy
Triangle is given in the object-based coordinate frame as 
three vertices
Transform to world coordinated 
Transform from world to camera coordinates
Apply homogeneous perspective 

Divide by last component 
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