Announcements

- Assignment 1
- theory (due Wednesday)
- programming (due next Friday)
- Tutorial this week
- Surface of revolution, normals, polygonal meshes, and polygonal approximation to surface of revolution
- Office Hours today 1-2 pm

Last week's review

- Coordinate Free Geometry
- 3D Geometric Curves
- Forms: Implicit, Parametric
- Primitives: plane, bilinear patch, spherical cones, ellipsoids, surface of revolution, ...
- Normals and Tangents
- Polygonal \& Triangular Meshes
- 3D Transforms
- Types: Affine (also in Homogeneous Coordinates)
- Examples: Translation, Rotation, Scaling

Big Picture

- What can we do so far?
- Model a 2D/3D object (hierarchical objects)
- Transform a 2D/3D object
- Raster 2D object
- What else do we need?
- Camera
- Know interplay between light and surfaces
- Why?
- We need to project model of the 3D world to 2D film plane (or screen) ... we need to know how to convert 3D object into 2D representation we know how to raster.

Camera Models
 Part 1

Computer Graphics, CSCD18
 Fall 2008
 Instructor: Leonid Sigal

Can we just put a film in front of an

 object?

Pinhole Camera

Pinhole Camera

- Room size pinhole cameras date back to $18^{\text {th }}$ century

Self-made room-size pinhole camera

Small hole, about the size of a quarter

Pinhole camera

- Problems
a Small pinhole -> sharp image, but little light, slow image acquisition
\square Large pinhole -> reduces sharpness, but faster acquisition

Photograph made with small pinhole

Photograph made with larger pinhole

Images from lecture notes of Matthias Zwicker

Lenses

- Focus the light, so that enough light can be captured in sufficiently short amount of time (i.e. allows the pinhole to be made larger)

6 sec. exposure

0.01 sec exposure

Lenses

- Lens models in real cameras can be very complex
- We will only consider a simple "Thin Lens" model

Thin Lens Model

- All parallel rays converge at focal length f
- Rays through the center are not deflected

Thin Lens Model

- For rays that are not parallel, we can derive the thin lens equation

Thin Lens Model

- For rays that are not parallel, we can derive the thin lens equation
- Similar triangles: $\mathbf{y}_{0} / \mathbf{y}_{1}=\mathbf{z}_{0} / \mathbf{z}_{1}$

Thin Lens Model

- For rays that are not parallel, we can derive the thin lens equation
- Similar triangles: $\mathbf{y}_{0} / \mathbf{y}_{1}=\mathbf{z}_{0} / \mathbf{z}_{1}$
- Similar triangles: $\mathbf{y}_{0} / \mathbf{y}_{1}=\left(\mathbf{z}_{0}-\mathbf{f}\right) / \mathbf{f}$

Thin Lens Model

- For rays that are not parallel, we can derive the thin lens equation
- Similar triangles: $\mathbf{y}_{0} / \mathbf{y}_{1}=\mathbf{z}_{0} / \mathbf{z}_{1}$
- Similar triangles: $\mathbf{y}_{0} / \mathbf{y}_{1}=\left(\mathbf{z}_{0}-\mathbf{f}\right) / \mathbf{f}$

Thin Lens Model Derivation

$$
\begin{gathered}
\frac{\mathbf{z}_{0}}{\mathbf{z}_{1}}=\frac{\mathbf{z}_{0}-\mathbf{f}}{\mathbf{f}} \\
\mathbf{z}_{0} \mathbf{f}=\mathbf{z}_{1} \mathbf{z}_{0}-\mathbf{z}_{1} \mathbf{f} \\
\mathbf{f}\left(\mathbf{z}_{0}+\mathbf{z}_{1}\right)=\mathbf{z}_{1} \mathbf{z}_{0} \\
\frac{\mathbf{z}_{0}+\mathbf{z}_{1}}{\mathbf{z}_{1} \mathbf{z}_{0}}=\frac{1}{\mathbf{f}} \\
\frac{1}{\mathbf{z}_{0}}+\frac{1}{\mathbf{z}_{1}}=\frac{1}{\mathbf{f}}
\end{gathered}
$$

What if we put view plane elsewhere?

Relationship of Thin Lens Camera and

 Pinhole Camera- Pinhole camera is the idealization of the thin lens camera model, where the aperture shrinks to a tiny hole
- Let's go back to the pin hole camera, it is simpler to deal with

Conceptual Pinhole Camera

Film

Our eye is also a camera

Except the image plane is curved
(brain inverts the images)
object

Brain is very smart

Perspective Projection

- Using similar triangles:

Perspective Projection

- Using similar triangles:

Perspective Projection

- Using similar triangles:

Perspective Projection

- Using similar triangles: $\frac{\mathbf{y}^{*}}{\mathbf{p}_{y}}=\frac{\mathbf{f}}{\mathbf{p}_{z}}$

$$
\mathbf{y}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}} \mathbf{p}_{\mathbf{y}}
$$

Perspective Projection

- Using similar triangles:

$$
\begin{aligned}
& \frac{\mathbf{x}^{*}}{\mathbf{p}_{\mathbf{x}}}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}} \\
& \mathbf{x}^{*}=\frac{\mathbf{f}}{\mathbf{p}_{\mathbf{z}}} \mathbf{p}_{\mathrm{x}}
\end{aligned}
$$

Perspective Projection

- What does prospective projection gives us?
- Depth perception - objects that are far away appear smaller

Perspective Projection Properties

- Not a linear transform
- Important properties
- Lines are preserved
- Distances along the lines are not
- Parallel lines are not preserved (vanishing point)

Perspective Projection Properties

- Not a linear transform
- Important properties
- Lines are preserved
- Distances along the lines are not
- Parallel lines are not preserved (vanishing point)

Perspective Projection Properties

- Not a linear transform
- Important properties
- Lines are preserved
- Distances along thetines are not
- Paralletlines are not preserved (vanishing point)

Orthographic Projection

- What if objects are sufficiently far away?
- Rays almost perpendicular
\square Variation in $\mathbf{p}_{\mathbf{z}}$ is insignificant
\square For both points $\mathbf{y}^{*} \approx \alpha \mathbf{p}_{\mathbf{y}}$

