Announcements

- Assignment 1 (due next Wednesday)
- Midterm is Wednesday October 15, 5-7pm
- Office Hours Monday 1-2 pm (again)
- Homework questions?

Last class

Coordinate Free Geometry

- Style of expressing geometric objects and relations that avoids reliance on coordinate systems
- Defined: 9 basic CFG operations

3D Surfaces

- Implicit and parametric forms
- Basic surfaces: plane, bilinear patch, cylinder
- Tangents and Normals
- Surface of revolution

Review: Basic Surfaces

Computing a Normal for a Surface Parametric Form

• The surface $\overline{\mathbf{s}}(\alpha,\beta) = (\mathbf{x}(\alpha,\beta), \mathbf{y}(\alpha,\beta), \mathbf{z}(\alpha,\beta))$

has two tangents in a tangent plane at a point

$$\frac{\partial \overline{\mathbf{s}}(\boldsymbol{\alpha},\boldsymbol{\beta})}{\partial \boldsymbol{\alpha}}\bigg|_{\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}} \quad \frac{\partial \overline{\mathbf{s}}(\boldsymbol{\alpha},\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\bigg|_{\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}}$$

Normal to the surface at a point is then given by:

$$\vec{\mathbf{n}}(\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}) = \left(\frac{\partial \overline{\mathbf{s}}(\boldsymbol{\alpha},\boldsymbol{\beta})}{\partial \boldsymbol{\alpha}}\Big|_{\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}}\right) \times \left(\frac{\partial \overline{\mathbf{s}}(\boldsymbol{\alpha},\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\Big|_{\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}}\right)$$

Implicit Form

$$\vec{\mathbf{n}}(\overline{\mathbf{p}}_{0}) = \nabla \mathbf{f}(\overline{\mathbf{p}}) |_{\overline{\mathbf{p}}_{0}} = \left(\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{x}} \Big|_{\overline{\mathbf{p}}_{0}}, \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{y}} \Big|_{\overline{\mathbf{p}}_{0}}, \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{z}} \Big|_{\overline{\mathbf{p}}_{0}} \right)$$

Surface of Revolution

Demo

Quadrics

Generalization of conic section 3D

$$ax^{2} + by^{2} + cz^{2} + d = 0$$
$$ax^{2} + by^{2} + ez = 0$$

Basic types of surface depend on signs of a, b, c, d, and e (i.e. -, +, 0).

Examples

- Ellipsoid, elliptic cones
- Hyperboloid of 1 sheet, of 2 sheets
- Poraboloid
- Hyperbolic poraboloid

Surfaces of revolution

Example: Ellipsoid

Parametric Form:

Implicit Form:

Super quadrics

Polygonal Mesh

- Polygons are used to approximate curves
- Polygonal meshes are used to approximate surfaces
- Polygonal mesh collection of polygons
- A polyhedron is a closed, connected polygonal mesh.
 Each edge must be shared by two faces.
- A face refers to a planar polygonal patch within a mesh.
- A mesh is simple when its topology is equivalent to that of a sphere. That is, it has no holes.

Polygonal Mesh

- Polygons are used to approximate curves
- Polygonal meshes are used to approximate surfaces
- Polygonal mesh collection of polygons

Polygonal Mesh: Example

Triangular Mesh

Triangular mesh - collection of triangles

Mesh Models: Example

3D Transformations

Computer Graphics, CSCD18

Fall 2007 Instructor: Leonid Sigal

3D Transformations

- Why do we need them?
 - Coordinate transforms
 - Shape modeling (e.g. surfaces of revolution)
 - Alex will do this in the tutorial next week
 - Hierarchical object models
 - Camera modeling

3D Coordinate Frame

 In 3D there are two conventions for coordinate frames

3D Coordinate Frame

 In 3D there are two conventions for coordinate frames

Affine Transformations

Affine transformations in 3D look the same as in 2D

$$F(\vec{p}) = A\vec{p} + \vec{t}$$

- $ec{\pmb{p}}$ point mapped, $\in \pmb{R}^3$
- \vec{t} translation, $\in \mathbf{R}^3$
- A transformation matrix, $\in R^{3x^3}$

Many of the transformations we will talk about today are of this type

Properties of Affine Transformations

- Collinearity of points is preserved
- Ratio of distances along the line is preserved
- Concatenation of affine transformations is also an affine transformation

Homogeneous Affine Transformations

We can rewrite the affine transformation

$$\mathbf{F}(\vec{\mathbf{p}}) = \mathbf{A}\vec{\mathbf{p}} + \vec{\mathbf{t}}$$

in homogeneous coordinates as follows:

$$F(\hat{p}) = M\hat{p}$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \vec{\mathbf{t}} \\ [0,0,0] & 1 \end{bmatrix} \qquad \hat{\mathbf{p}} = \begin{bmatrix} \vec{\mathbf{p}} \\ 1 \end{bmatrix}$$

 This has nice properties, as we have seen before (and will see again)

3D Translation

Simple extension of the 2D translations

3D Scaling

Simple extension of the 2D translations

3D Rotation

- In general, rotations in 3D are much more complicated then 2D rotations
 - There is typically no unique rotation that does what you want
 - You can specify rotations in variety of ways that are convenient for different tasks (e.g. Euler angles, Axis/Angle, Quaternion, Exponential Map)
- We will only consider elementary rotations (Euler Angles)

3D Rotation

2D rotation introduced previously is simply a 3D rotation about the Z-axis

$$\mathbf{R}_{\mathbf{z}}(\boldsymbol{\theta}) = \begin{bmatrix} \cos \boldsymbol{\theta} & -\sin \boldsymbol{\theta} & 0 & 0 \\ \sin \boldsymbol{\theta} & \cos \boldsymbol{\theta} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

But we also have rotations about the X- and Y-axis

$$\mathbf{R}_{\mathbf{x}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Rotation - Examples

Composing Rotations

- Rotation order matters !!!
- For example,

$\mathbf{R}_{z}(\theta_{z})\mathbf{R}_{x}(\theta_{x}) \neq \mathbf{R}_{x}(\theta_{x})\mathbf{R}_{z}(\theta_{z})$

So one needs to be careful

Rotation about Arbitrary Axis

- In general we want to rotate a point or an object about arbitrary axis \vec{u} by some θ
- How do we do this using what we already know?

Rotation about Arbitrary Axis

Idea: Align u
 with z-axis, then rotate about z-axis by desired angle θ

Rotation about Arbitrary Axis

 Hence rotation about an arbitrary axis can always be expressed as a series of elementary rotations

 $\mathbf{R}(\vec{\mathbf{u}}, \theta) = \mathbf{R}_{z}(\phi)\mathbf{R}_{x}(\psi)\mathbf{R}_{z}(\theta)\mathbf{R}_{x}(-\psi)\mathbf{R}_{z}(-\phi)$

• How do we obtain values for angles ϕ, ψ ?

Non-Linear Transformations

Affine transformations

 $\mathbf{F}(\vec{\mathbf{p}}) = \mathbf{A}\vec{\mathbf{p}} + \vec{\mathbf{t}}$

are 1st order shape deformations

• Higher order deformations are also possible, let's consider general differentiable deformation $F(\vec{p})$ then we can express deformation as a Taylor series

$$\mathbf{F}(\vec{\mathbf{p}}) = \vec{\mathbf{t}} + \mathbf{A}\vec{\mathbf{p}} + \mathbf{B}\vec{\mathbf{p}}^2 +$$

 Common non-linear transformations: tapering, twisting, bending

Non-Linear Transformations

Tapering

