‘ Announcements

= Assignment 1 (due next Wednesday)
= Midterm is Wednesday October 15, 5-7pm
= Office Hours Monday 1-2 pm (again)

= Homework questions?



‘ |_ast class

= Coordinate Free Geometry

o Style of expressing geometric objects and relations
that avoids reliance on coordinate systems

o Defined: 9 basic CFG operations

= 3D Surfaces
o Implicit and parametric forms
o Basic surfaces: plane, bilinear patch, cylinder
o Tangents and Normals
o Surface of revolution



‘ Review: Basic Surfaces
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‘ Computing a Normal for a Surface

= Parametric Form
o The surface S(a,[3) = (X(OL, B), y(a,

has two tangents in a tangent

3), 2(at, B))

nlane at a point

os(a,B) os(a,B)
oo op

o Normal to the surface at a point is then given by:

- _| 95(a.,B) y os(a,B)
(o, By) ( oa BJ{ op J
= Implicit Form
n(p,) = VIi(p) |po{6f();)2/,2) _ ’ﬁf(g,yy,z) B ’af()gzy’Z) B J




‘ Surface of Revolution

Demo



‘ Quadrics

= Generalization of conic section 3D
ax® +by’+cz°+d=0
ax® +by’+ez=0

= Basic types of surface depend on signs of a, b, ¢, d,
and e (i.e. -, +, 0).

= Examples <
o Ellipsoid, elliptic cones
o Hyperboloid of 1 sheet, of 2 sheets
o Poraboloid
o Hyperbolic poraboloid

> Surfaces of revolution




\ Quadrics
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‘ Example: Ellipsoid

s Parametric Form:

5(a, B) = (acos(a) sin(B), bsin(a) sin(B),ccos(B))

\2D Ellipse ~
= Implicit Form:
X2 y2 Z2
f(X,y,z2) = v + 7 -+ = -1=0

«

Ellipsoid



‘Superquadﬂcs




‘ Polygonal Mesh

= Polygons are used to approximate curves
= Polygonal meshes are used to approximate surfaces

= Polygonal mesh - collection of polygons

= A polyhedron is a closed, connected polygonal mesh.
Each edge must be shared by two faces.

= A face refers to a planar polygonal patch within a
mesh.

= A mesh is simple when its topology is equivalent to
that of a sphere. That is, it has no holes.



‘ Polygonal Mesh

= Polygons are used to approximate curves
= Polygonal meshes are used to approximate surfaces

= Polygonal mesh - collection of polygons
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\ Polygonal Mesh:




‘ Triangular Mesh

= Triangular mesh - collection of triangles
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Example

‘ Mesh Models
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3D Transformations

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal



‘ 3D Transformations

= Why do we need them?
o Coordinate transforms

o Shape modeling (e.g. surfaces of revolution)
= Alex will do this in the tutorial next week

o Hierarchical object models
o Camera modeling



‘ 3D Coordinate Frame

= In 3D there are two conventions for coordinate
frames
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‘ 3D Coordinate Frame

= In 3D there are two conventions for coordinate

frames
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Right-handed Coordinate System
(OpenGL uses this convention ... so will we)



‘ Affine Transformations

= Affine transformations in 3D look the same as in 2D

IF(p)=Ap+t|

ﬁ - point mapped, € R’

—

| 3
t -translation, €R

. | 3x3
A - transformation matrix, € R™"

= Many of the transformations we will talk about today
are of this type



‘ Properties of Affine Transformations

= Collinearity of points Is preserved
= Ratio of distances along the line is preserved

= Concatenation of affine transformations is also an
affine transformation

Affine Transformation .




‘ Homogeneous Affine Transformations

= We can rewrite the affine transformation

F(P)=Ap+t
In homogeneous coordinates as follows:
F(p) =Mp
w_| AT 5-|P
[00,0] 1 1

= This has nice properties, as we have seen before
(and will see again)



‘ 3D Translation

= Simple extension of the 2D translations
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3D Scaling

= Simple extension of the 2D translations
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‘ 3D Rotation

= In general, rotations in 3D are much more
complicated then 2D rotations

o There is typically no unigue rotation that does
what you want

o You can specify rotations in variety of ways that
are convenient for different tasks (e.g. Euler
angles, Axis/Angle, Quaternion, Exponential Map)

= We will only consider elementary rotations

(Euler Angles)



‘ 3D Rotation

= 2D rotation introduced previously is simply a 3D
rotation about the Z-axis

R,(0) =

(cos® —sinB |0
sin@ cosO |0
| 0 0 |1

0 0 0

R O O O

= But we also have rotations about the X- and Y-axis

R, (8) =

11 0 0|0
0 |cos6 -—sin® O
10 |sin® cos6 O
0 O 0 1

R, (6)=

cos® | 0|sin® O]
o |1] oo
—sin®] 0 |Jcos® O

0 0 0 1




3D Rotation - Examples
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‘ Composing Rotations

= Rotation order matters !l
= For example,

R,(0,)R,(0,) #R,(0,)R,(0,)

= S0 one needs to be careful



'Rotation about Arbitrary Axis

= In general we want to rotate a point or an object about
arbitrary axisU by some 6

= How do we do this using what we already know?

Yy

= Hint: Can be done by composing elementary
rotations



'Rotation about Arbitrary Axis

= ldea: Align U with z-axis, then rotate about z-
axis by desired angle 6

I'4
Y4

1) Rotate U into x-z plane R, (¢) 2) Rotate U in x-z plane R, (y)

3) Rotate by § about z-axis
4) Undo (1) and (2), i.e. (R,(®)R, ()] " = (R, )] "R, (#))" =R, (~y)R, (-0)



'Rotation about Arbitrary Axis

= Hence rotation about an arbitrary axis can always
be expressed as a series of elementary rotations

R(U,0) =R, (9)R, (v)R,(O)R, (-¥)R, (-0)

= How do we obtain values for angles (I), Y ?



‘ Non-Linear Transformations

= Affine transformations
F(P)=Ap+t
are 15t order shape deformations

= Higher order deformations are also possible, let’s
consider general differentiable deformation F(p)

then we can express deformation as a Taylor series
F(P)=t+Ap+Bp° +...

= Common non-linear transformations: tapering,
twisting, bending



‘ Non-Linear Transformations
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‘ Tapering
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