Announcements

- Assignment 1 (due next Wednesday)
- Midterm is Wednesday October 15, 5-7pm
- Office Hours Monday 1-2 pm (again)
- Homework questions?

Last class

- Coordinate Free Geometry
- Style of expressing geometric objects and relations that avoids reliance on coordinate systems
- Defined: 9 basic CFG operations
- 3D Surfaces
- Implicit and parametric forms
- Basic surfaces: plane, bilinear patch, cylinder
- Tangents and Normals
- Surface of revolution

Review: Basic Sunfaces

Right Circular Cylinder

$$
\begin{array}{cc}
\overline{\mathbf{s}}(\alpha, \beta)=(\mathbf{r} \cos (\alpha), \mathbf{r} \sin (\alpha), \beta) & 0 \leq \alpha \leq 2 \pi \\
0 \leq \beta \leq 1
\end{array}
$$

Computing a Nomal for a Sunface

- Parametric Form
- The surface $\overline{\mathbf{s}}(\alpha, \beta)=(\mathbf{x}(\alpha, \beta), \mathbf{y}(\alpha, \beta), \mathbf{z}(\alpha, \beta))$ has two tangents in a tangent plane at a point

$$
\left.\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha}\right|_{\alpha_{0}, \beta_{0}} \frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta}\right|_{\alpha_{0}, \beta_{0}}
$$

- Normal to the surface at a point is then given by:

$$
\overrightarrow{\mathbf{n}}\left(\alpha_{0}, \beta_{0}\right)=\left(\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha}\right|_{\alpha_{0}, \beta_{0}}\right) \times\left(\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta}\right|_{\alpha_{0}, \beta_{0}}\right)
$$

- Implicit Form

$$
\overrightarrow{\mathbf{n}}\left(\overline{\mathbf{p}}_{0}\right)=\left.\nabla \mathbf{f}(\overline{\mathbf{p}})\right|_{\overline{\mathbf{p}}_{0}}=\left(\left.\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{x}}\right|_{\overline{\mathbf{p}}_{0}},\left.\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{y}}\right|_{\overline{\mathbf{p}}_{0}},\left.\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{z}}\right|_{\overline{\mathbf{p}}_{0}}\right)
$$

Surface of Revolution

Demo

Quadrics

- Generalization of conic section 3D

$$
\begin{aligned}
& \mathbf{a x}^{2}+\mathbf{b} \mathbf{y}^{2}+\mathbf{c z}{ }^{2}+\mathbf{d}=0 \\
& \mathbf{a x}^{2}+\mathbf{b} \mathbf{y}^{2}+\mathbf{e z}=0
\end{aligned}
$$

- Basic types of surface depend on signs of $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$, and \mathbf{e} (i.e. -, +, 0).
- Examples
- Ellipsoid, elliptic cones
- Hyperboloid of 1 sheet, of 2 sheets
- Poraboloid

- Hyperbolic poraboloid

Quadrics

Ellipsoid

Example: Ellipsoid

- Parametric Form:

$$
\overline{\mathbf{s}}(\alpha, \beta)=(\underbrace{\mathbf{a} \cos (\alpha}_{2 \text { Ellipse }}) \sin (\beta), \underbrace{\mathbf{b} \sin (\alpha)} \sin (\beta), \mathbf{c} \cos (\beta))
$$

- Implicit Form:

$$
\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\frac{\mathbf{x}^{2}}{\mathbf{a}^{2}}+\frac{\mathbf{y}^{2}}{\mathbf{b}^{2}}+\frac{\mathbf{z}^{2}}{\mathbf{c}^{2}}-1=0
$$

Ellipsoid

Super quadrics

Polygonal Mesh

- Polygons are used to approximate curves
- Polygonal meshes are used to approximate surfaces
- Polygonal mesh - collection of polygons
- A polyhedron is a closed, connected polygonal mesh. Each edge must be shared by two faces.
- A face refers to a planar polygonal patch within a mesh.
- A mesh is simple when its topology is equivalent to that of a sphere. That is, it has no holes.

Polygonal Mesh

- Polygons are used to approximate curves
- Polygonal meshes are used to approximate surfaces
- Polygonal mesh - collection of polygons

Polygonal Mesh: Example

Triangular Mesh

- Triangular mesh - collection of triangles

Mesh Models: Example

input triangular mesh

output square grid sampling

3D Transfommations

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal

3D Transformations

- Why do we need them?
- Coordinate transforms
- Shape modeling (e.g. surfaces of revolution)
- Alex will do this in the tutorial next week
- Hierarchical object models
- Camera modeling

3D Coordinate Frame

- In 3D there are two conventions for coordinate frames

3D Coordinate Frame

- In 3D there are two conventions for coordinate frames

Right-handed Coordinate System
(OpenGL uses this convention ... so will we)

Affine Transformations

- Affine transformations in 3D look the same as in 2D

$$
F(\vec{p})=A \vec{p}+\overrightarrow{\boldsymbol{t}}
$$

$\overrightarrow{\boldsymbol{p}}$ - point mapped, $\in \boldsymbol{R}^{3}$
$\overrightarrow{\boldsymbol{t}}$ - translation, $\in \boldsymbol{R}^{3}$
\boldsymbol{A} - transformation matrix, $\in \boldsymbol{R}^{3 \times 3}$

- Many of the transformations we will talk about today are of this type

Properties of Affine Transfommations

- Collinearity of points is preserved
- Ratio of distances along the line is preserved
- Concatenation of affine transformations is also an affine transformation

Homogeneous Affine Transformations

- We can rewrite the affine transformation

$$
\mathbf{F}(\overrightarrow{\mathbf{p}})=\mathbf{A} \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{t}}
$$

in homogeneous coordinates as follows:

$$
\begin{gathered}
\mathbf{F}(\hat{\mathbf{p}})=\mathbf{M} \hat{\mathbf{p}} \\
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{A} & \overrightarrow{\mathbf{t}} \\
{[0,0,0]} & 1
\end{array}\right] \quad \hat{\mathbf{p}}=\left[\begin{array}{c}
\overrightarrow{\mathbf{p}} \\
1
\end{array}\right]
\end{gathered}
$$

- This has nice properties, as we have seen before (and will see again)

3D Translation

- Simple extension of the 2D translations

$$
\mathbf{T}_{2 \mathbf{D}}=\left[\begin{array}{ccc}
1 & 0 & \mathbf{t}_{\mathbf{x}} \\
0 & 1 & \mathbf{t}_{\mathbf{y}} \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{T}_{3 \mathrm{D}}=\left[\begin{array}{cccc}
1 & 0 & 0 & \mathbf{t}_{\mathrm{x}} \\
0 & 1 & 0 & \mathbf{t}_{\mathbf{y}} \\
0 & 0 & 1 & \mathbf{t}_{\mathbf{z}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Scaling

- Simple extension of the 2D translations

$$
\mathbf{S}_{2 \mathrm{D}}=\left[\begin{array}{ccc}
\mathbf{s}_{\mathbf{x}} & 0 & 0 \\
0 & \mathbf{s}_{\mathbf{y}} & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathbf{S}_{3 \mathrm{D}}=\left[\begin{array}{cccc}
\mathbf{s}_{\mathbf{x}} & 0 & 0 & 0 \\
0 & \mathbf{s}_{\mathbf{y}} & 0 & 0 \\
0 & 0 & \mathbf{s}_{\mathbf{z}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Rotation

- In general, rotations in 3D are much more complicated then 2D rotations
- There is typically no unique rotation that does what you want
- You can specify rotations in variety of ways that are convenient for different tasks (e.g. Euler angles, Axis/Angle, Quaternion, Exponential Map)
- We will only consider elementary rotations (Euler Angles)

3D Rotation

- 2D rotation introduced previously is simply a 3D rotation about the Z-axis

$$
\mathbf{R}_{\mathbf{z}}(\theta)=\left[\begin{array}{cc|c|c}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1
\end{array}\right]
$$

- But we also have rotations about the X - and Y -axis

$$
\mathbf{R}_{\mathrm{x}}(\theta)=\left[\begin{array}{c|ccc}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{R}_{\mathrm{y}}(\theta)=\left[\begin{array}{ccccc}
\cos \theta & 0 & \sin \theta & 0 \\
\hline 0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right], ~}
\end{array}\right]
$$

3D Rotation - Examples

Composing Rotations

- Rotation order matters !!!
- For example,

$$
\mathbf{R}_{\mathbf{z}}\left(\theta_{\mathrm{z}}\right) \mathbf{R}_{\mathrm{x}}\left(\theta_{\mathrm{x}}\right) \neq \mathbf{R}_{\mathrm{x}}\left(\theta_{\mathrm{x}}\right) \mathbf{R}_{\mathrm{z}}\left(\theta_{\mathrm{z}}\right)
$$

- So one needs to be careful

Rotation about Arbitrary Axis

- In general we want to rotate a point or an object about arbitrary axis $\overrightarrow{\mathbf{u}}$ by some θ
- How do we do this using what we already know?

- Hint: Can be done by composing elementary rotations

Rotation about Arbitrary Axis

- Idea: Align $\overrightarrow{\mathbf{u}}$ with z -axis, then rotate about z axis by desired angle θ

1) Rotate $\overrightarrow{\mathbf{u}}$ into $x-z$ plane $\mathbf{R}_{z}(\phi)$

2) Rotate $\overrightarrow{\mathbf{u}}$ in $x-z$ plane $\mathbf{R}_{y}(\psi)$
3) Rotate by θ about z-axis
4) Undo (1) and (2), i.e. $\left(\mathbf{R}_{\mathbf{z}}(\phi) \mathbf{R}_{\mathbf{y}}(\psi)\right)^{-1}=\left(\mathbf{R}_{\mathbf{y}}(\psi)\right)^{-1}\left(\mathbf{R}_{\mathbf{z}}(\phi)\right)^{-1}=\mathbf{R}_{\mathbf{y}}(-\psi) \mathbf{R}_{\mathbf{z}}(-\phi)$

Rotation about Anbitrary Axis

- Hence rotation about an arbitrary axis can always be expressed as a series of elementary rotations

$$
\mathbf{R}(\overrightarrow{\mathbf{u}}, \theta)=\mathbf{R}_{\mathbf{z}}(\phi) \mathbf{R}_{\mathbf{x}}(\psi) \mathbf{R}_{\mathbf{z}}(\theta) \mathbf{R}_{\mathbf{x}}(-\psi) \mathbf{R}_{\mathbf{z}}(-\phi)
$$

- How do we obtain values for angles ϕ, ψ ?

Non-Linear Transformations

- Affine transformations

$$
\mathbf{F}(\overrightarrow{\mathbf{p}})=\mathbf{A} \overrightarrow{\mathbf{p}}+\overrightarrow{\mathbf{t}}
$$

are $1^{\text {st }}$ order shape deformations

- Higher order deformations are also possible, let's consider general differentiable deformation $\mathbf{F}(\overrightarrow{\mathbf{p}})$ then we can express deformation as a Taylor series

$$
\mathbf{F}(\overrightarrow{\mathbf{p}})=\overrightarrow{\mathbf{t}}+\mathbf{A} \overrightarrow{\mathbf{p}}+\mathbf{B} \overrightarrow{\mathbf{p}}^{2}+\ldots
$$

- Common non-linear transformations: tapering, twisting, bending

Non-Linear Transformations

Original

Tapering

Twisting

Bending

Tapering

Scaling

$$
\mathbf{S}_{3 \mathrm{D}}=\left[\begin{array}{cccc}
\mathbf{s}_{\mathbf{x}} & 0 & 0 & 0 \\
0 & \mathbf{s}_{\mathbf{y}} & 0 & 0 \\
0 & 0 & \mathbf{s}_{\mathbf{z}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Linear Taper
$\operatorname{Taper}_{3 \mathrm{D}}=\left[\begin{array}{cccc}\mathbf{s}_{\mathbf{x}}\left(\mathbf{p}_{\mathbf{z}}\right) & 0 & 0 & 0 \\ 0 & \mathbf{s}_{\mathbf{y}}\left(\mathbf{p}_{\mathbf{z}}\right) & 0 & 0 \\ 0 & 0 & \mathbf{s}_{\mathbf{z}} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \mathbf{s}_{\mathbf{x}}\left(\mathbf{p}_{\mathbf{z}}\right)=\alpha_{0}+\alpha_{1} \mathbf{p}_{\mathbf{z}} \\
& \mathbf{s}_{\mathbf{y}}\left(\mathbf{p}_{\mathbf{z}}\right)=\alpha_{0}+\alpha_{1} \mathbf{p}_{\mathbf{z}}
\end{aligned}
$$

