Announcements

- Assignment 1 (due next Wednesday)
- Keep checking Discussion Board on Blackboard for Assignment Q and A
 - Q1, Part 3: No formal proof required but a description of the algorithm is needed.
- Tutorial this week
 - Hierarchical Models and continuation of OpenGL for Assignment 1
- Office Hours today 1-2 pm

Last week's review

2D Geometric Curves

- Forms: Explicit, Implicit, Parametric
- Primitives: Lines, Circles, Ellipse, Super-ellipse
- Normals and Tangents
- Polygons

2D Transforms

- Types: Rigid, Conformal, Affine
- Examples: Translation, Rotation, Scaling, Sheering
- Properties: preserves parallelism, preserves linearity (for affine)
- Interpretations and Uses:
 - changing of coordinate frames
 - hierarchical models

Homogeneous Coordinates

Homogeneous Coordinates Review

Homogeneous point

 $\overline{\mathbf{p}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \longrightarrow \widehat{\overline{\mathbf{p}}} = \alpha \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \mathbf{x} \\ \alpha \mathbf{y} \\ \alpha \end{bmatrix} \qquad \alpha \neq 0$

Points

$$\hat{\vec{\mathbf{v}}} = \begin{bmatrix} \mathbf{v}_{\mathbf{x}} \\ \mathbf{v}_{\mathbf{y}} \\ \mathbf{0} \end{bmatrix}$$

Homogeneous vector (third component 0!)

Cartesian point

Homogeneous point

Cartesian point

Cartesian vector

Coordinate Free Geometry: Introduction to Basic Ideas

Computer Graphics, CSCD18 Fall 2008 Instructor: Leonid Sigal

Coordinate Free Geometry

- Coordinate Free Geometry style of expressing geometric objects and relations that avoids reliance on coordinate systems
- Useful in CG where many coordinate systems are in play
- Defines a restricted class of operations on points and vectors (provides a type of type checking)

Coordinate Geometric Representation

Coordinate Free Geometric Representation

CFG Defines a set of Valid Operates on Basic Quantities

- Scalar real number
- Point location in space
- Vector a direction and magnitude

 Points and vectors may be represented the same but are not

- vector has no location in space, but point does
- point has no magnitude, but vector does
- we cannot add two points; we can add two vectors

CFG Style Operations with Lines

Think back to last week

point-vector addition

$$\overline{\mathbf{p}}_1 + \overline{\mathbf{v}}_1 = \overline{\mathbf{p}}_2$$
$$\overline{\mathbf{v}}_1 = \overline{\mathbf{p}}_2 - \overline{\mathbf{p}}_1$$

vector-vector addition

magnitude of the vector

$$\mathbf{m} = \left\| \vec{\mathbf{v}} \right\|$$

Inear combination of vectors

$$\sum_i \lambda_i \vec{v}_i = \vec{v}$$

affine combination of points

- These are the only valid operations in CFG
- All other operations are undefined

3D Surfaces

Computer Graphics, CSCD18

Fall 2008 Instructor: Leonid Sigal

3D surfaces

 Similar to 2D, 3D surfaces can be expressed in implicit and explicit form

Implicit Equation for the Plane

 Similar to 2D, 3D surfaces can be expressed in implicit and explicit form

Parametric Equation for the Plane

Parametric Form:

$$\overline{\mathbf{s}}(\alpha,\beta) = \overline{\mathbf{p}}_1 + \alpha \, \overline{\mathbf{a}} + \beta \, \overline{\mathbf{b}} \qquad \alpha,\beta \in \mathfrak{R}$$

Are two equations consistent?

Parametric Form:

$$\overline{\mathbf{s}}(\alpha,\beta) = \overline{\mathbf{p}}_1 + \alpha \, \overline{\mathbf{a}} + \beta \, \overline{\mathbf{b}} \qquad \alpha,\beta \in \mathfrak{R}$$

Implicit Form:

$$(\overline{\mathbf{p}}-\overline{\mathbf{p}}_1)\cdot\vec{\mathbf{n}}=0$$

Proof:

$$\left(\vec{\mathbf{p}}_{1} + \alpha \vec{\mathbf{a}} + \beta \vec{\mathbf{b}} - \vec{\mathbf{p}}_{1} \right) \cdot \vec{\mathbf{n}} = 0$$

$$\left(\alpha \vec{\mathbf{a}} + \beta \vec{\mathbf{b}} \right) \cdot \vec{\mathbf{n}} = 0$$

$$\left(\alpha \vec{\mathbf{a}} + \beta \vec{\mathbf{b}} \right) \cdot \left(\vec{\mathbf{a}} \times \vec{\mathbf{b}} \right) = 0$$

$$\alpha \vec{\mathbf{a}} \cdot \left(\vec{\mathbf{a}} \times \vec{\mathbf{b}} \right) + \beta \vec{\mathbf{b}} \cdot \left(\vec{\mathbf{a}} \times \vec{\mathbf{b}} \right) = 0$$

Surface Tangents and Normals

- Tangent to a surface at a point is the instantaneous direction of the surface at that point
- Tangent plane to surface is plane containing all tangent vectors at that point
- Normal to a surface is a vector perpendicular to the tangent plane

Parametric Form

Tangent to a curve at a point is given by:

$$ec{ au}(\lambda) = rac{d\overline{p}(\lambda)}{d\lambda} = \left(rac{dx(\lambda)}{d\lambda}, rac{dy(\lambda)}{d\lambda}
ight)$$

evaluated at a given point

• The surface $\overline{\mathbf{s}}(\alpha,\beta) = (\mathbf{x}(\alpha,\beta), \mathbf{y}(\alpha,\beta), \mathbf{z}(\alpha,\beta))$

has two tangents in a tangent plane at a point

Normal to the surface at a point is then given by:

$$\vec{\mathbf{n}}(\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}) = \left(\frac{\partial \overline{\mathbf{s}}(\boldsymbol{\alpha},\boldsymbol{\beta})}{\partial \boldsymbol{\alpha}}\Big|_{\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}}\right) \times \left(\frac{\partial \overline{\mathbf{s}}(\boldsymbol{\alpha},\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\Big|_{\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}}\right)$$

Parametric Form

Tangent plane is then given by:

must intersect the surface at a given point

$$\vec{\mathbf{n}}(\boldsymbol{\alpha}_0,\boldsymbol{\beta}_0)\cdot\left(\overline{\mathbf{p}}-\overline{\mathbf{s}}(\boldsymbol{\alpha}_0,\boldsymbol{\beta}_0)\right)=0$$

• The surface $\overline{s}(\alpha,\beta) = (x(\alpha,\beta), y(\alpha,\beta), z(\alpha,\beta))$ has two tangents in a tangent plane at a point

Normal to the surface at a point is then given by:

$$\vec{\mathbf{n}}(\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}) = \left(\frac{\partial \overline{\mathbf{s}}(\boldsymbol{\alpha},\boldsymbol{\beta})}{\partial \boldsymbol{\alpha}}\Big|_{\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}}\right) \times \left(\frac{\partial \overline{\mathbf{s}}(\boldsymbol{\alpha},\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\Big|_{\boldsymbol{\alpha}_{0},\boldsymbol{\beta}_{0}}\right)$$

Implicit Form

• **Normal** to a curve at a point is given by:

$$\vec{\mathbf{n}}(\overline{\mathbf{p}}_0) = \nabla \mathbf{f}(\overline{\mathbf{p}}) |_{\overline{\mathbf{p}}_0} = \left(\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{x}} \bigg|_{\overline{\mathbf{p}}_0}, \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}} \bigg|_{\overline{\mathbf{p}}_0} \right)$$

Normal to the surface at a point is then given by a gradient (same as in 2D)

$$\vec{\mathbf{n}}(\overline{\mathbf{p}}_{0}) = \nabla \mathbf{f}(\overline{\mathbf{p}}) |_{\overline{\mathbf{p}}_{0}} = \left(\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{x}} \Big|_{\overline{\mathbf{p}}_{0}}, \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{y}} \Big|_{\overline{\mathbf{p}}_{0}}, \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{z}} \Big|_{\overline{\mathbf{p}}_{0}} \right)$$

Example: Plane

Implicit Form:
$$\mathbf{f}(\overline{\mathbf{p}}) = (\overline{\mathbf{p}} - \overline{\mathbf{p}}_1) \cdot \vec{\mathbf{n}} = 0$$

 $\nabla \mathbf{f}(\overline{\mathbf{p}}) = \nabla (\overline{\mathbf{p}} \cdot \vec{\mathbf{n}} - \overline{\mathbf{p}}_1 \cdot \vec{\mathbf{n}})$
not a function of p
 $\nabla \mathbf{f}(\overline{\mathbf{p}}) = \vec{\mathbf{n}}$

Parametric Form:

 $\overline{\mathbf{s}}(\alpha,\beta) = \overline{\mathbf{p}}_{1} + \alpha \, \overline{\mathbf{a}} + \beta \, \overline{\mathbf{b}} \qquad \alpha,\beta \in \Re$ $\frac{\partial \overline{\mathbf{s}}(\alpha,\beta)}{\partial \alpha} = \frac{\partial}{\partial \alpha} (\overline{\mathbf{p}}_{1} + \alpha \, \overline{\mathbf{a}} + \beta \, \overline{\mathbf{b}}) = \overline{\mathbf{a}}$ $\frac{\partial \overline{\mathbf{s}}(\alpha,\beta)}{\partial \beta} = \frac{\partial}{\partial \beta} (\overline{\mathbf{p}}_{1} + \alpha \, \overline{\mathbf{a}} + \beta \, \overline{\mathbf{b}}) = \overline{\mathbf{b}}$ $\overline{\mathbf{n}} = \overline{\mathbf{a}} \times \overline{\mathbf{b}}$

Bilinear Patch

Defined by 4 points, no 3 of which are co-linear

Cylinder

 Constructed by moving a point on a line along a planar curve (directrix) such that direction of line Is held constant

 Right cylinder: direction of the line perpendicular to the plane containing the curve (directrix)

Circular cylinder: directrix is a circle

Example: Right Circular Cylinder

$$\overline{\mathbf{s}}(\alpha,\beta) = \overline{\mathbf{p}}_0(\alpha) + \beta \vec{\mathbf{d}}$$

 $\overline{\mathbf{p}}_0(\alpha) = \left(\mathbf{r}\cos(\alpha), \mathbf{r}\sin(\alpha), 0\right) \qquad 0 \le \alpha \le 2\pi$ $\vec{\mathbf{d}} = (0, 0, 1)$

$$\overline{\mathbf{s}}(\alpha,\beta) = (\mathbf{r}\cos(\alpha),\mathbf{r}\sin(\alpha),\beta) \qquad 0 \le \beta \le 1$$

Example: Right Circular Cylinder

$$\overline{\mathbf{s}}(\alpha,\beta) = (\mathbf{r}\cos(\alpha),\mathbf{r}\sin(\alpha),\beta) \qquad 0 \le \beta \le 1$$

How do we find a normal?

$$\frac{\partial \overline{\mathbf{s}}(\alpha,\beta)}{\partial \alpha} = \left(-\mathbf{r}\sin(\alpha),\mathbf{r}\cos(\alpha),0\right)$$

$$\frac{\partial \bar{\mathbf{s}}(\alpha,\beta)}{\partial \beta} = (0,0,1)$$
$$\vec{\mathbf{n}}(\alpha,\beta) = \frac{\partial \bar{\mathbf{s}}(\alpha,\beta)}{\partial \alpha} \times \frac{\partial \bar{\mathbf{s}}(\alpha,\beta)}{\partial \beta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\mathbf{r}\sin(\alpha) & \mathbf{r}\cos(\alpha) & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
$$= (\mathbf{r}\cos(\alpha), \mathbf{r}\sin(\alpha), 0)$$

Surface of Revolution

- Cylinder is a special case of more general Surface of Revolution idea
- Idea: take any curve in x-z plane and revolve around z-axis

Example: Torus

- Cylinder is a special case of more general Surface of Revolution idea
- Idea: take any curve in x-z plane and revolve around z-axis

 $\overline{\mathbf{s}}(\alpha,\beta) = \left(\left(\mathbf{d} + \mathbf{r}\cos(\beta) \right) \cos(\alpha), \left(\mathbf{d} + \mathbf{r}\cos(\beta) \right) \sin(\alpha), \mathbf{r}\sin(\beta) \right)$