
Announcements
Assignment 1 (due next Wednesday)

Keep checking Discussion Board on Blackboard for 
Assignment Q and A

Q1, Part 3: No formal proof required but a description of the 
algorithm is needed.

Tutorial this week
Hierarchical Models and continuation of OpenGL for 
Assignment 1

Office Hours today 1-2 pm



Last week’s review
2D Geometric Curves

Forms: Explicit, Implicit, Parametric
Primitives: Lines, Circles, Ellipse, Super-ellipse
Normals and Tangents
Polygons 

2D Transforms
Types: Rigid, Conformal, Affine
Examples: Translation, Rotation, Scaling, Sheering
Properties: preserves parallelism, preserves linearity (for 
affine)
Interpretations and Uses:

changing of coordinate frames
hierarchical models

Homogeneous Coordinates



Homogeneous Coordinates Review
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Coordinate Free Geometry:
Introduction to Basic Ideas

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal



Coordinate Free Geometry 

Coordinate Free Geometry - style of expressing 
geometric objects and relations that avoids reliance 
on coordinate systems

Useful in CG where many coordinate systems are in 
play

Defines a restricted class of operations on points 
and vectors (provides a type of type checking)



Basic Idea

Coordinate Free Geometric
Representation

Coordinate Geometric
Representation



CFG Defines a set of Valid Operates on 
Basic Quantities

Scalar – real number
Point – location in space
Vector – a direction and magnitude

Points and vectors may be represented the same 
but are not 

vector has no location in space, but point does
point has no magnitude, but vector does
we cannot add two points; we can add two vectors



CFG Style Operations with Lines

Think back to last week
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Valid CFG Operations

point-vector addition

vector-vector addition

vector scaling
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Valid CFG Operations

magnitude of the vector

dot product

cross product
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Valid CFG Operations

linear combination of vectors

affine combination of points
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Valid CFG Operations
These are the only valid operations in CFG

All other operations are undefined
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3D Surfaces

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal



3D surfaces
Similar to 2D, 3D surfaces can be expressed in 
implicit and explicit form



Implicit Equation for the Plane
Similar to 2D, 3D surfaces can be expressed in 
implicit and explicit form

Implicit Form:
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Parametric Equation for the Plane
Parametric Form:
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Are two equations consistent?

( ) 01 =⋅− npp r
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rr

Parametric Form:

Implicit Form:
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Surface Tangents and Normals
Tangent to a surface at a point is the instantaneous 
direction of the surface at that point
Tangent plane to surface is plane containing all tangent 
vectors at that point
Normal to a surface is a vector perpendicular to the 
tangent plane



Parametric Form

( )),(),,(),,(),( βαβαβαβα zyxs =

Tangent to a curve at a point is given by:

The surface
has two tangents in a tangent plane at a point

Normal to the surface at a point is then given by:

⎟
⎠
⎞

⎜
⎝
⎛==

λ
λ

λ
λ

λ
λ

λτ
d

dy
d

dx
d
pd )(,)()()(r evaluated at a 

given point

0000 ,,

),(),(

βαβα β
βα

α
βα

∂
∂

∂
∂ ss

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
∂

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

=
0000 ,,

00
),(),(),(

βαβα β
βα

α
βα

βα
ssnr



Parametric Form

( )),(),,(),,(),( βαβαβαβα zyxs =

Tangent plane is then given by:

The surface
has two tangents in a tangent plane at a point

Normal to the surface at a point is then given by:

( ) 0),(),( 0000 =−⋅ βαβα spn
r

must intersect the
surface at a given point
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Implicit Form
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Normal to a curve at a point is given by:

Normal to the surface at a point is then given by a 
gradient (same as in 2D)
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Example: Plane
( ) 0)( 1 =⋅−= npppf r
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Implicit Form:
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Bilinear Patch
Defined by 4 points, no 3 of which are co-linear
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Cylinder
Constructed by moving a point on a line along a 
planar curve (directrix) such that direction of line Is 
held constant

Right cylinder: direction of the line perpendicular to 
the plane containing the curve (directrix)
Circular cylinder: directrix is a circle
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Example: Right Circular Cylinder
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Example: Right Circular Cylinder
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Surface of Revolution
Cylinder is a special case of more general Surface of 
Revolution idea
Idea: take any curve in x-z plane and revolve around 
z-axis
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Example: Torus
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Cylinder is a special case of more general Surface of 
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