Announcements

- Assignment 1 (due next Wednesday)
- Keep checking Discussion Board on Blackboard for Assignment \mathbf{Q} and \mathbf{A}
- Q1, Part 3: No formal proof required but a description of the algorithm is needed.
- Tutorial this week
- Hierarchical Models and continuation of OpenGL for Assignment 1
- Office Hours today 1-2 pm

Last week's review

- 2D Geometric Curves
- Forms: Explicit, Implicit, Parametric
- Primitives: Lines, Circles, Ellipse, Super-ellipse
- Normals and Tangents
- Polygons
- 2D Transforms
- Types: Rigid, Conformal, Affine
- Examples: Translation, Rotation, Scaling, Sheering
- Properties: preserves parallelism, preserves linearity (for affine)
- Interpretations and Uses:
- changing of coordinate frames
- hierarchical models
- Homogeneous Coordinates

Homogeneous Coordinates Review

Points

$$
\overline{\mathbf{p}}=\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] \longrightarrow \hat{\overline{\mathbf{p}}}=\alpha\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\alpha \mathbf{x} \\
\alpha \mathbf{y} \\
\alpha
\end{array}\right] \quad \alpha \neq 0
$$

Cartesian point
$\hat{\overline{\mathbf{p}}}=\left[\begin{array}{l}\mathbf{x} \\ \mathbf{y} \\ \alpha\end{array}\right]=\left[\begin{array}{c}\mathbf{x} / \alpha \\ \mathbf{y} / \alpha \\ 1\end{array}\right] \quad \alpha \neq 0 \longrightarrow \overline{\mathbf{p}}=\left[\begin{array}{l}\mathbf{x} / \alpha \\ \mathbf{y} / \alpha\end{array}\right]$
Homogeneous point

Homogeneous point

Vectors

$$
\hat{\overrightarrow{\mathbf{v}}}=\left[\begin{array}{c}
\mathbf{v}_{\mathbf{x}} \\
\mathbf{v}_{\mathbf{y}} \\
0
\end{array}\right]
$$

Homogeneous vector (third component 0!)

$$
\overrightarrow{\mathbf{v}}=\left[\begin{array}{l}
\mathbf{v}_{\mathbf{x}} \\
\mathbf{v}_{\mathbf{y}}
\end{array}\right]
$$

Cartesian vector

Coordinate Free Geometry: Introduction to Basic Ideas

Computer Graphics, CSCD18

Fall 2008
Instructor: Leonid Sigal

Coordinate Free Geometry

- Coordinate Free Geometry - style of expressing geometric objects and relations that avoids reliance on coordinate systems
- Useful in CG where many coordinate systems are in play
- Defines a restricted class of operations on points and vectors (provides a type of type checking)

Basic Idea

Coordinate Geometric Representation

Coordinate Free Geometric Representation

CFG Defines a set of Valid Operates on Basic Quantities

- Scalar - real number
- Point - location in space
- Vector - a direction and magnitude
- Points and vectors may be represented the same but are not
- vector has no location in space, but point does
- point has no magnitude, but vector does
- we cannot add two points; we can add two vectors

CFG Style Operations with Lines

Think back to last week

$$
\overline{\mathrm{I}}=\hat{\mathbf{p}}_{1} \times \hat{\mathbf{p}}_{2}
$$

$$
\hat{\mathbf{p}}=\overline{\mathbf{I}}_{1} \times \overline{\mathbf{I}}_{2}
$$

Valid CFG Operations

point-vector addition

$$
\begin{aligned}
& \overline{\mathbf{p}}_{1}+\overrightarrow{\mathbf{v}}_{1}=\overline{\mathbf{p}}_{2} \\
& \overrightarrow{\mathbf{v}}_{1}=\overline{\mathbf{p}}_{2}-\overline{\mathbf{p}}_{1}
\end{aligned}
$$

- vector-vector addition

$$
\overrightarrow{\mathbf{v}}_{1}+\overrightarrow{\mathbf{v}}_{2}=\overrightarrow{\mathbf{v}}_{3}
$$

- vector scaling

$$
\lambda \overrightarrow{\mathbf{v}}_{1}=\overrightarrow{\mathbf{v}}_{2}
$$

Valid CFG Operations

- magnitude of the vector

$$
\mathbf{m}=\|\overrightarrow{\mathbf{v}}\|
$$

- dot product

$$
\overrightarrow{\mathbf{v}}_{1} \cdot \overrightarrow{\mathbf{v}}_{2}=\left\|\overrightarrow{\mathbf{v}}_{1}\right\|\left\|\overrightarrow{\mathbf{v}}_{2}\right\| \cos (\theta)
$$

- cross product

$$
\overrightarrow{\mathbf{v}}_{1} \times \overrightarrow{\mathbf{v}}_{2}=\overrightarrow{\mathbf{v}}_{3} \quad \text { where } \begin{gathered}
\overrightarrow{\mathbf{v}}_{3} \perp \overrightarrow{\mathbf{v}}_{1} \\
\overrightarrow{\mathbf{v}}_{3} \perp \overrightarrow{\mathbf{v}}_{2} \\
\left\|\overrightarrow{\mathbf{v}}_{3}\right\|=\left\|\overrightarrow{\mathbf{v}}_{1}\right\|\left\|\overrightarrow{\mathbf{v}}_{2}\right\| \cos (\theta)
\end{gathered}
$$

Valid CFG Operations

- linear combination of vectors

$$
\sum_{i} \lambda_{i} \overrightarrow{\mathbf{v}}_{\mathrm{i}}=\overrightarrow{\mathbf{v}}
$$

affine combination of points

$$
\begin{array}{ll}
\sum_{i} \lambda_{i} \overline{\mathbf{p}}_{i}=\overline{\mathbf{p}}, & \sum_{i} \lambda_{i}=1 \\
\sum_{i} \lambda_{i} \overline{\mathbf{p}}_{\mathrm{i}}=\overrightarrow{\mathbf{v}}, & \sum_{\mathrm{i}} \lambda_{i}=0
\end{array}
$$

Valid CFG Operations

- These are the only valid operations in CFG
- All other operations are undefined

$$
\overline{\mathbf{p}}_{1}+\overline{\mathbf{p}}_{2}=(1,1)
$$

$$
\overline{\mathbf{p}}_{1}+\overline{\mathbf{p}}_{2}=(3,3)
$$

3D Surfaces

Computer Graphics, CSCD18

Fall 2008
Instructor: Leonid Sigal

3D surfaces

- Similar to 2D, 3D surfaces can be expressed in implicit and explicit form

Implicit Equation for the Plane

- Similar to 2D, 3D surfaces can be expressed in implicit and explicit form
- Implicit Form:

Plane can be defined uniquely from 3 non-collinear points $\overline{\mathbf{p}}_{1}, \overline{\mathbf{p}}_{2}, \overline{\mathbf{p}}_{3}$

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=\overline{\mathbf{p}}_{2}-\overline{\mathbf{p}}_{1} \\
& \overrightarrow{\mathbf{b}}=\overline{\mathbf{p}}_{3}-\overline{\mathbf{p}}_{1} \\
& \overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}
\end{aligned}
$$

Parametric Equation for the Plane

- Parametric Form:

$$
\overline{\mathbf{s}}(\alpha, \beta)=\overline{\mathbf{p}}_{1}+\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}} \quad \alpha, \beta \in \mathfrak{R}
$$

Plane can be defined uniquely from 3 non-collinear points $\overline{\mathbf{p}}_{1}, \overline{\mathbf{p}}_{2}, \overline{\mathbf{p}}_{3}$

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=\overline{\mathbf{p}}_{2}-\overline{\mathbf{p}}_{1} \\
& \overrightarrow{\mathbf{b}}=\overline{\mathbf{p}}_{3}-\overline{\mathbf{p}}_{1}
\end{aligned}
$$

Are two equations consistent?

Parametric Form:

$$
\overline{\mathbf{s}}(\alpha, \beta)=\overline{\mathbf{p}}_{1}+\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}} \quad \alpha, \beta \in \mathfrak{R}
$$

Implicit Form:

$$
\left(\overline{\mathbf{p}}-\overline{\mathbf{p}}_{1}\right) \cdot \overrightarrow{\mathbf{n}}=0
$$

Proof:

$$
\begin{aligned}
& \left(\overline{\mathbf{p}}_{1}+\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}-\overline{\mathbf{p}}_{1}\right) \cdot \overrightarrow{\mathbf{n}}=0 \\
& (\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}) \cdot \overrightarrow{\mathbf{n}}=0 \\
& (\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})=0 \\
& \alpha \overrightarrow{\mathbf{a}} \cdot\langle\underset{0}{\mathbf{a}} \times(\overrightarrow{\mathbf{b}})+\beta \overrightarrow{\mathbf{b}} \cdot \underset{0}{(\underset{\mathbf{a}}{ } \times \overrightarrow{\mathbf{b}})}=0
\end{aligned}
$$

Surface Tangents and Normals

- Tangent to a surface at a point is the instantaneous direction of the surface at that point
- Tangent plane to surface is plane containing all tangent vectors at that point
- Normal to a surface is a vector perpendicular to the tangent plane

Parametric Form

- Tangent to a curve at a point is given by:

$$
\vec{\tau}(\lambda)=\frac{\mathbf{d} \overline{\mathbf{p}}(\lambda)}{\mathbf{d} \lambda}=\left(\frac{\mathbf{d x}(\lambda)}{\mathbf{d} \lambda}, \frac{\mathbf{d y}(\lambda)}{\mathbf{d} \lambda}\right)
$$

evaluated at a given point

- The surface $\overline{\mathbf{s}}(\alpha, \beta)=(\mathbf{x}(\alpha, \beta), \mathbf{y}(\alpha, \beta), \mathbf{z}(\alpha, \beta))$ has two tangents in a tangent plane at a point

$$
\left.\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha}\right|_{\alpha_{0}, \beta_{0}} \frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta}\right|_{\alpha_{0}, \beta_{0}}
$$

- Normal to the surface at a point is then given by:

$$
\stackrel{\overrightarrow{\mathbf{n}}}{ }\left(\alpha_{0}, \boldsymbol{\beta}_{0}\right)=\left(\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha}\right|_{\alpha_{0}, \beta_{0}}\right) \times\left(\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta}\right|_{\alpha_{0}, \beta_{0}}\right)
$$

Parametric Form

- Tangent plane is then given by:

$$
\overrightarrow{\mathbf{n}}\left(\alpha_{0}, \beta_{0}\right) \cdot\left(\overline{\mathbf{p}}-\overline{\mathbf{s}}\left(\alpha_{0}, \beta_{0}\right)\right)=0
$$

- The surface $\overline{\mathbf{s}}(\alpha, \beta)=(\mathbf{x}(\alpha, \beta), \mathbf{y}(\alpha, \beta), \mathbf{z}(\alpha, \beta))$ has two tangents in a tangent plane at a point

$$
\left.\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha}\right|_{\alpha_{0}, \beta_{0}} \frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta}\right|_{\alpha_{0}, \beta_{0}}
$$

- Normal to the surface at a point is then given by:

$$
\overrightarrow{\mathbf{n}}\left(\alpha_{0}, \beta_{0}\right)=\left(\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha}\right|_{\alpha_{0}, \beta_{0}}\right) \times\left(\left.\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta}\right|_{\alpha_{0}, \beta_{0}}\right)
$$

Implicit Form

- Normal to a curve at a point is given by:

$$
\overrightarrow{\mathbf{n}}\left(\overline{\mathbf{p}}_{0}\right)=\left.\nabla \mathbf{f}(\overline{\mathbf{p}})\right|_{\overline{\mathbf{p}}_{0}}=\left(\left.\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{x}}\right|_{\overline{\mathbf{p}}_{0}},\left.\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}}\right|_{\overline{\mathbf{p}}_{0}}\right)
$$

- Normal to the surface at a point is then given by a gradient (same as in 2D)

$$
\overrightarrow{\mathbf{n}}\left(\overline{\mathbf{p}}_{0}\right)=\left.\nabla \mathbf{f}(\overline{\mathbf{p}})\right|_{\overline{\mathrm{p}}_{0}}=\left(\left.\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{x}}\right|_{\overline{\bar{p}}_{0}},\left.\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{y}}\right|_{\overline{\mathbf{p}}_{0}},\left.\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial \mathbf{z}}\right|_{\overline{\mathrm{P}}_{0}}\right)
$$

Example: Plane

Implicit Form: $\quad \mathbf{f}(\overline{\mathbf{p}})=\left(\overline{\mathbf{p}}-\overline{\mathbf{p}}_{1}\right) \cdot \overrightarrow{\mathbf{n}}=0$

$$
\begin{aligned}
& \nabla \mathbf{f}(\overline{\mathbf{p}})=\nabla(\overline{\mathbf{p}} \cdot \overrightarrow{\mathbf{n}}-\overline{\mathbf{p}} /(\overline{\mathbf{n}}) \\
& \nabla \mathbf{n c} \\
& \nabla \mathbf{f}(\overline{\mathbf{p}})=\overrightarrow{\mathbf{n}}
\end{aligned}
$$

Parametric Form:

$$
\begin{gathered}
\overline{\mathbf{s}}(\alpha, \beta)=\overline{\mathbf{p}}_{1}+\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}} \quad \alpha, \beta \in \mathfrak{R} \\
\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha}=\frac{\partial}{\partial \alpha}\left(\overline{\mathbf{p}}_{1}+\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}\right)=\overrightarrow{\mathbf{a}} \\
\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta}=\frac{\partial}{\partial \beta}\left(\overline{\mathbf{p}}_{1}+\alpha \overrightarrow{\mathbf{a}}+\beta \overrightarrow{\mathbf{b}}\right)=\overrightarrow{\mathbf{b}} \\
\overrightarrow{\mathbf{n}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}
\end{gathered}
$$

Bilinear Patch

- Defined by 4 points, no 3 of which are co-linear

$$
\begin{array}{ll}
\overline{\mathbf{I}}_{0}(\alpha)=(1-\alpha) \overline{\mathbf{p}}_{1}+\alpha \overline{\mathbf{p}}_{2} & 0 \leq \alpha \leq 1 \\
\overline{\mathbf{I}}_{1}(\alpha)=(1-\alpha) \overline{\mathbf{p}}_{4}+\alpha \overline{\mathbf{p}}_{3} & 0 \leq \alpha \leq 1
\end{array}
$$

$$
\overline{\mathbf{s}}(\alpha, \beta)=(1-\beta) \mathbf{l}_{0}(\alpha)+\beta \mathbf{l}_{1}(\alpha) \quad \begin{array}{ll}
& 0 \leq \alpha \leq 1 \\
0 \leq \beta \leq 1
\end{array}
$$

Cylinder

- Constructed by moving a point on a line along a planar curve (directrix) such that direction of line Is held constant

- Right cylinder: direction of the line perpendicular to the plane containing the curve (directrix)
- Circular cylinder: directrix is a circle

Example: Right Circular Cylinder

$$
\overline{\mathbf{s}}(\alpha, \beta)=\overline{\mathbf{p}}_{0}(\alpha)+\beta \overrightarrow{\mathbf{d}}
$$

$$
\begin{aligned}
& \overline{\mathbf{p}}_{0}(\alpha)=(\mathbf{r} \cos (\alpha), \mathbf{r} \sin (\alpha), 0) \quad 0 \leq \alpha \leq 2 \pi \\
& \mathbf{d}=(0,0,1)
\end{aligned}
$$

$$
\overline{\mathbf{s}}(\alpha, \beta)=(\mathbf{r} \cos (\alpha), \mathbf{r} \sin (\alpha), \beta) \quad 0 \leq \beta \leq 1
$$

Example: Right Circular Cylinder

$$
\overline{\mathbf{s}}(\alpha, \beta)=(\mathbf{r} \cos (\alpha), \mathbf{r} \sin (\alpha), \beta) \quad 0 \leq \beta \leq 1
$$

How do we find a normal?

$$
\begin{aligned}
\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha} & =(-\mathbf{r} \sin (\alpha), \mathbf{r} \cos (\alpha), 0) \\
\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta} & =(0,0,1) \\
\overrightarrow{\mathbf{n}}(\alpha, \beta) & =\frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \alpha} \times \frac{\partial \overline{\mathbf{s}}(\alpha, \beta)}{\partial \beta}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\mathbf{r} \sin (\alpha) & \mathbf{r} \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right| \\
& =(\mathbf{r} \cos (\alpha), \mathbf{r} \sin (\alpha), 0)
\end{aligned}
$$

Surface of Revolution

- Cylinder is a special case of more general Surface of Revolution idea
- Idea: take any curve in x-z plane and revolve around z-axis

Example: Torus

- Cylinder is a special case of more general Surface of Revolution idea
- Idea: take any curve in x-z plane and revolve around z-axis

$$
\overline{\mathbf{c}}(\beta)=(\mathbf{d}+\mathbf{r} \cos (\beta), 0, \mathbf{r} \sin (\beta))
$$

Parameter's of revolution

$$
(r \cos (\alpha), r \sin (\alpha), 0)
$$

