Announcements

- Assignment 1 is out
- Writing portion
 - a 4 question
 - When we ask for "prove" something, we mean proof in a mathematical sense
 - Electronic submissions are preferred
- Programming
 - Start early
 - Starter code available for Linux and VC++

Last class review

	Line	Circle	Ellipse
Explicit:	$\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{b}$	N/A	N/A
Implicit:	$(\overline{\mathbf{x}} - \overline{\mathbf{x}}_0) \vec{\mathbf{n}} = 0$	$\left\ \overline{\mathbf{p}}-\overline{\mathbf{p}}_{\mathbf{c}}\right\ ^{2}-\mathbf{r}^{2}=0$	$\frac{\mathbf{x}^2}{\mathbf{a}^2} + \frac{\mathbf{y}^2}{\mathbf{b}^2} - 1 = 0$
Parametric	$: \overline{\mathbf{p}}(\lambda) = \overline{\mathbf{p}}_0 + \lambda \vec{\mathbf{d}}$	$\overline{\mathbf{p}}(\lambda) = \begin{bmatrix} \mathbf{r}\cos(2\pi\lambda) \\ \mathbf{r}\sin(2\pi\lambda) \end{bmatrix}$	$\overline{\mathbf{p}}(\lambda) = \begin{bmatrix} \mathbf{a}\cos(2\pi\lambda) \\ \mathbf{b}\sin(2\pi\lambda) \end{bmatrix}$

Tangents and Normals

Tangent from parametric form:

$$\vec{\tau}(\lambda) = \left(\frac{dx(\lambda)}{d\lambda}, \frac{dy(\lambda)}{d\lambda}\right)$$

Normal from implicit form:

$$\vec{\mathbf{n}}(\lambda) = \left(\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{x}}, \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}}\right)$$

gradient

2D Transformations (continuation)

Computer Graphics, CSCD18

Fall 2008 Instructor: Leonid Sigal

Transformations

Rigid transformations

- Examples: Translations, Rotations
- Properties: preserve distance and angles

Conformal transformations

- Examples: translations, rotations, uniform scale
- Properties: preserves angles (not distance)

Affine transformations

- Examples: translations, rotations, general scaling, reflections
- Properties: preserves parallelism, preserves linearity (lines remain lines

Affine Transformation

$$\overline{q} = A \, \overline{p} + \overline{t}$$

- Any linear transformation A (can be rotation, scaling, reflection, etc.) followed by a translation t
- Thereby translation, rotation, scaling, sheer are all special cases of affine transformation

Properties

- inverse of affine transformation is also affine
- lines are preserved
- given closed region (polygon) area under the affine transformation is scaled by det(A)
- compositions of affine transformations is still affine transformation

Proof: Inverse of Affine Transformation is also an Affine Transformation

Proof: compositions of affine transformations is still affine transformation

 $\mathbf{F}_1(\overline{\mathbf{p}}) = \mathbf{A}_1 \overline{\mathbf{p}} + \overline{\mathbf{t}}_1$ $\mathbf{F}_2(\overline{\mathbf{p}}) = \mathbf{A}_2 \overline{\mathbf{p}} + \overline{\mathbf{t}}_2$

Why composing transformations useful?

Rotations as we have seen It in the last class rotate the object about the origin in CCW, what if we want to rotate about some other point c?

Additional Affine Transformation Properties Proofs

In the Lecture Notes

Changing Coordinate Frames

Can be interpreted as the transformation from object coordinate frame (red) to world coordinate frame (blue)

Hierarchical Models

 $\mathbf{p}_{global} = global \mathbf{T}_{torso} \mathbf{X}_{torso} \mathbf{T}_{uparm} \mathbf{X}_{uparm} \mathbf{T}_{lowarm} \mathbf{X} \mathbf{p}_{lowarm}$

Homogeneous Coordinates

Computer Graphics, CSCD18

Fall 2008 Instructor: Leonid Sigal

Homogeneous Coordinates

- Problem: affine transformations often become complex and unwieldy to keep track of
- Homogeneous coordinates allow all the transformations to be specified by a single matrix multiply (OpenGL)
- How do we express a Cartesian point in homogeneous coordinates?

Cartesian point

Homogeneous point

Homogeneous Coordinates

Converting from Homogeneous Coordinates

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{\alpha} \end{bmatrix} = \begin{bmatrix} \mathbf{x} / \boldsymbol{\alpha} \\ \mathbf{y} / \boldsymbol{\alpha} \\ 1 \end{bmatrix} \qquad \boldsymbol{\alpha} \neq 0 \qquad \longrightarrow \qquad \begin{bmatrix} \mathbf{x} / \boldsymbol{\alpha} \\ \mathbf{y} / \boldsymbol{\alpha} \end{bmatrix}$$

Homogeneous point

Cartesian point

Note: two homogeneous points are not equal if they are not scalar multiples of one another

Homogeneous Transformations

 Turns out that many transformations become linear in homogeneous coordinates (mainly affine)

 But it's easier to always keep track of homogeneous representation, so

$$\hat{\mathbf{q}} = \begin{bmatrix} \mathbf{A} & \bar{\mathbf{t}} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \hat{\mathbf{p}}$$

This is linear and easy to keep track of

Properties of Affine Transformation (cont.)

- With homogeneous representation for affine transformation, several additional properties of affine transformations become apparent
 - affine transformations are associative

$$\left(\mathbf{F}_{3} \ \mathbf{F}_{2}\right)\mathbf{F}_{1} = \mathbf{F}_{3}\left(\mathbf{F}_{2} \ \mathbf{F}_{1}\right)$$

 Affine transformations are **not** in general **commutative** (proof of this is a homework question)

$$\mathbf{F}_2 \ \mathbf{F}_1 \neq \mathbf{F}_1 \ \mathbf{F}_2$$

Vectors in Homogeneous Coordinates

$$\hat{\vec{\mathbf{v}}} = \begin{bmatrix} \mathbf{v}_{\mathbf{x}} \\ \mathbf{v}_{\mathbf{y}} \\ \mathbf{0} \end{bmatrix}$$

Homogeneous vector (third component 0!)

Example:

What else can we do with Homogeneous Coordinates?

The equation of the line

$$y = mx + d$$
$$0 = ax + by + c$$

$$a = -bm$$
$$c = -bd$$

In homogeneous coordinates

Finding Line Passing Through 2 Points

Equation of the line in homogeneous coordinates:

$$\begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{\mathbf{x}} \\ \mathbf{p}_{\mathbf{y}} \\ 1 \end{bmatrix} = \bar{\mathbf{l}}^{\mathrm{T}} \ \hat{\mathbf{p}} = \mathbf{0}$$

If two homogeneous points \hat{p}_1 and \hat{p}_2 are on the line then

$$\bar{\mathbf{l}}^{\mathrm{T}} \,\, \hat{\mathbf{p}}_1 = 0 \qquad \qquad \mathbf{l}^{\mathrm{T}} \,\, \hat{\mathbf{p}}_2 = 0$$

(vector I must perpendicular to two 3D vectors)

$$\bar{\mathbf{l}} = \hat{\mathbf{p}}_1 \times \hat{\mathbf{p}}_2$$

Finding Intersection of Two Lines

If two homogeneous points \mathbf{p}_0 and \mathbf{p}_1 are on the line then

$$\bar{\mathbf{l}}_1^{\mathbf{T}} \,\, \hat{\mathbf{p}} = 0 \qquad \qquad \bar{\mathbf{l}}_2^{\mathbf{T}} \,\, \hat{\mathbf{p}} = 0$$

(point $\hat{\mathbf{p}}$ must perpendicular to two 3D vectors holding the line parameters)

$$\hat{\mathbf{p}} = \bar{\mathbf{l}}_1 \times \bar{\mathbf{l}}_2$$