‘ Announcements

= Assignment 1is out

= Writing portion
o 4 question

o When we ask for “prove” something, we mean proof in a
mathematical sense

o Electronic submissions are preferred

= Programming
o Start early
o Starter code available for Linux and VC++



‘ |_ast class review
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‘ Tangents and Normals

= Tangent from parametric form:
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(continuation)
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‘ Transformations

= Rigid transformations
o Examples: Translations, Rotations
o Properties: preserve distance and angles

= Conformal transformations
o Examples: translations, rotations, uniform scale
o Properties: preserves angles (not distance)

= Affine transformations
o Examples: translations, rotations, general scaling, reflections

o Properties: preserves parallelism, preserves linearity (lines
remain lines



‘ Affine Transformation
g=Ap~+t|

= Any linear transformation A (can be rotation,
scaling, reflection, etc.) followed by a translation t

= Thereby translation, rotation, scaling, sheer are all
special cases of affine transformation

= Properties
o Inverse of affine transformation is also affine
o lines are preserved

o given closed region (polygon) area under the affine
transformation is scaled by det(A)

o compositions of affine transformations is still affine
transformation



‘ Proof: Inverse of Affine Transformation 1S
also an Affine Transformation
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‘ Proof. compositions of affine
transformations is still affine transformation



\ Why composing transformations useful?

= Rotations as we have seen It In the last class rotate
the object about the origin in CCW, what if we want

to rotate about some other point C?
c.

= Solution: CCw
o Translate by -C (so that C is the new origin)
o Rotate

o Translate back by ¢



‘ Additional Affine Transformation
Properties Proofs

In the Lecture Notes



\ Changing Coordinate Frames

Can be interpreted as the transformation from object coordinate frame
(red) to world coordinate frame (blue)
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\ Hierarchical Models
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‘ Homogeneous Coordinates

= Problem: affine transformations often become complex
and unwieldy to keep track of

= Homogeneous coordinates allow all the
transformations to be specified by a single matrix
multiply (OpenGL)

= How do we express a Cartesian point in homogeneous
coordinates?
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‘ Homogeneous Coordinates

Example:
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\ Converting from Homogeneous

Coordinates
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= Note: two homogeneous points are not equal if they
are not scalar multiples of one another



‘ Homogeneous Transformations

= Turns out that many transformations become linear
IN homogeneous coordinates (mainly affine)

Affine in Cartesian Coordinates Affine in Homogeneous Coordinates
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\ Properties of Affine Transformation (cont.)

= With homogeneous representation for affine
transformation, several additional properties of affine
transformations become apparent

o affine transformations are associative
(Fs Fz) Fl — F3 (Fz Fl)

o Affine transformations are not in general commutative
(proof of this is a homework question)

F,F,#FF,



Vectors in Homogeneous Coordinates
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\ What else can we do with Homogeneous
Coordinates?

= The equation of the line

a=-bm
y=mx-+d _ pd
O=ax+by+c
= In homogeneous coordinates
o
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Vector holding line Vector holding homogeneous
parameters coordinate of a point



‘ Finding Line Passing Through 2 Points

= Equation of the line in homogeneous coordinates:
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= If two homogeneous points p, and p, are on the line then
" p, =0 "p, =0

(vector | must perpendicular to two 3D vectors)




‘ Finding Intersection of Two Lines

— |

o

= If two homogeneous points p, and p, are on the line then
TlT ﬁ =0 T2T ﬁ =0

(point p must perpendicular to two 3D vectors holding the
line parameters)

‘p:|1><|2‘
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