Announcements

- Assignment 1 is out
- Writing portion
- 4 question
- When we ask for "prove" something, we mean proof in a mathematical sense
- Electronic submissions are preferred
- Programming
- Start early
- Starter code available for Linux and VC++

Last class review

Line

Explicit: $\quad \mathbf{y}=\mathbf{m x}+\mathbf{b}$

$$
\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}
$$

N/A
N/A

Implicit:

$$
\left(\overline{\mathbf{x}}-\overline{\mathbf{x}}_{0}\right) \overrightarrow{\mathbf{n}}=0
$$

$$
\left\|\overline{\mathbf{p}}-\overline{\mathbf{p}}_{c}\right\|^{2}-\mathbf{r}^{2}=0
$$

$$
\frac{\mathbf{x}^{2}}{\mathbf{a}^{2}}+\frac{\mathbf{y}^{2}}{\mathbf{b}^{2}}-1=0
$$

Parametric: $\quad \overline{\mathbf{p}}(\lambda)=\overline{\mathbf{p}}_{0}+\lambda \overrightarrow{\mathbf{d}} \quad \overline{\mathbf{p}}(\lambda)=\left[\begin{array}{c}\mathbf{r} \cos (2 \pi \lambda) \\ \mathbf{r} \sin (2 \pi \lambda)\end{array}\right] \quad \overline{\mathbf{p}}(\lambda)=\left[\begin{array}{l}\mathbf{a} \cos (2 \pi \lambda) \\ \mathbf{b} \sin (2 \pi \lambda)\end{array}\right]$

Tangents and Nommals

- Tangent from parametric form:

$$
\vec{\tau}(\lambda)=\left(\frac{d x(\lambda)}{d \lambda}, \frac{d y(\lambda)}{d \lambda}\right)
$$

derivative

- Normal from implicit form:

$$
\underbrace{\overrightarrow{\mathbf{n}}(\lambda)=\left(\frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{x}}, \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{y})}{\partial \mathbf{y}}\right)}_{\text {gradient }}
$$

2D Transformations (continuation)

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

Transformations

- Rigid transformations
- Examples: Translations, Rotations
- Properties: preserve distance and angles
- Conformal transformations
- Examples: translations, rotations, uniform scale
- Properties: preserves angles (not distance)
- Affine transformations
- Examples: translations, rotations, general scaling, reflections
- Properties: preserves parallelism, preserves linearity (lines remain lines

Affine Transformation

$$
\overline{\mathbf{q}}=\mathbf{A} \overline{\mathbf{p}}+\overline{\mathbf{t}}
$$

- Any linear transformation A (can be rotation, scaling, reflection, etc.) followed by a translation \mathbf{t}
- Thereby translation, rotation, scaling, sheer are all special cases of affine transformation
- Properties
- inverse of affine transformation is also affine
- lines are preserved
- given closed region (polygon) area under the affine transformation is scaled by $\operatorname{det}(\mathbf{A})$
- compositions of affine transformations is still affine transformation

Proof: Inverse of Affine Transformation is also an Affine Transformation

$$
\begin{aligned}
& \overline{\mathbf{q}}=\mathbf{A} \overline{\mathbf{p}}+\overline{\mathbf{t}} \\
& \overline{\mathbf{q}}-\overline{\mathbf{t}}=\mathbf{A} \overline{\mathbf{p}} \\
& \mathbf{A}^{-1}(\overline{\mathbf{q}}-\overline{\mathbf{t}})=\overline{\mathbf{p}} \quad \text { assime } \mathbf{A}^{-1} \text { exists } \\
& \mathbf{A}^{-1} \overline{\mathbf{q}}-\mathbf{A}^{-1} \overline{\mathbf{t}}=\overline{\mathbf{p}} \\
& \overline{\mathbf{p}}=\mathbf{B} \overline{\mathbf{q}}+\overline{\mathbf{v}}
\end{aligned}
$$

where

$$
\mathbf{B}=\mathbf{A}^{-1} \quad \overline{\mathbf{v}}=\mathbf{A}^{-1} \overline{\mathbf{t}}
$$

Proof: compositions of affine

 transformations is still affine transformation$$
\begin{gathered}
\mathbf{F}_{1}(\overline{\mathbf{p}})=\mathbf{A}_{1} \overline{\mathbf{p}}+\overline{\mathbf{t}}_{1} \\
\mathbf{F}_{2}(\overline{\mathbf{p}})=\mathbf{A}_{2} \overline{\mathbf{p}}+\overline{\mathbf{t}}_{2} \\
\mathbf{F}_{2}\left(\mathbf{F}_{1}(\overline{\mathbf{p}})\right)=\mathbf{A}_{2}\left(\mathbf{A}_{1} \overline{\mathbf{p}}+\overline{\mathbf{t}}_{1}\right)+\overline{\mathbf{t}}_{2} \\
=\mathbf{A}_{2} \mathbf{A}_{1} \overline{\mathbf{p}}+\mathbf{A}_{2} \overline{\mathbf{t}}_{1}+\overline{\mathbf{t}}_{2} \\
=\mathbf{A} \overline{\mathbf{p}}+\overline{\mathbf{t}}
\end{gathered}
$$

where

$$
\mathbf{A}=\mathbf{A}_{2} \mathbf{A}_{1} \quad \overline{\mathbf{t}}=\mathbf{A}_{2} \overline{\mathbf{t}}_{1}+\overline{\mathbf{t}}_{2}
$$

Why composing transformations useful?

- Rotations as we have seen It in the last class rotate the object about the origin in CCW, what if we want to rotate about some other point \mathbf{c} ?

- Translate by $-\overline{\mathbf{c}}$ (so that $\overline{\mathbf{c}}$ is the new origin)
- Rotate
- Translate back by $\overline{\mathbf{c}}$

Additional Affine Transformation

 Properties Proofs
In the Lecture Notes

Changing Coordinate Frames

Can be interpreted as the transformation from object coordinate frame (red) to world coordinate frame (blue)

Hierarchical Models

$\overline{\mathbf{p}}_{\text {global }}={ }_{\text {global }} \boldsymbol{T}_{\text {torso }} \mathbf{X}_{\text {torso }} \mathbf{T}_{\text {uparm }} \mathbf{X}$ uparm $\mathbf{T}_{\text {lowarm }} \times \overline{\mathbf{p}}_{\text {lowarm }}$

Homogeneous Coordinates

Computer Graphics, CSCD18

Fall 2008
Instructor: Leonid Sigal

Homogeneous Coordinates

- Problem: affine transformations often become complex and unwieldy to keep track of
- Homogeneous coordinates allow all the transformations to be specified by a single matrix multiply (OpenGL)
- How do we express a Cartesian point in homogeneous coordinates?

$$
\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] \longrightarrow \alpha\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\alpha \mathbf{x} \\
\alpha \mathbf{y} \\
\alpha
\end{array}\right] \quad \alpha \neq 0
$$

Homogeneous Coordinates

Example:

$$
\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right] \longrightarrow \alpha\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\alpha \mathbf{x} \\
\alpha \mathbf{y} \\
\alpha
\end{array}\right] \quad \alpha \neq 0
$$

Cartesian point
Homogeneous point

Converting from Homogeneous

Coordinates

$$
\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
\alpha
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x} / \alpha \\
\mathbf{y} / \alpha \\
1
\end{array}\right] \quad \alpha \neq 0 \quad\left[\begin{array}{l}
\mathbf{x} / \alpha \\
\mathbf{y} / \alpha
\end{array}\right]
$$

Homogeneous point
Cartesian point

- Note: two homogeneous points are not equal if they are not scalar multiples of one another

Homogeneous Transformations

- Turns out that many transformations become linear in homogeneous coordinates (mainly affine)

Affine in Cartesian Coordinates

$$
\begin{gathered}
\overline{\mathbf{q}}=\mathbf{A} \overline{\mathbf{p}}+\overline{\mathbf{t}} \\
{\left[\begin{array}{l}
\mathbf{q}_{\mathbf{x}} \\
\mathbf{q}_{\mathbf{y}}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{\mathbf{x}} \\
\mathbf{p}_{\mathbf{y}}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{t}_{\mathbf{x}} \\
\mathbf{t}_{\mathbf{y}}
\end{array}\right]}
\end{gathered}
$$

Affine in Homogeneous Coordinates

$$
\begin{aligned}
\overline{\mathbf{q}} & =\left[\begin{array}{ll}
\mathbf{A} & \overline{\mathbf{t}}
\end{array}\right] \hat{\mathbf{p}} \\
{\left[\begin{array}{l}
\mathbf{q}_{\mathbf{x}} \\
\mathbf{q}_{\mathbf{y}}
\end{array}\right] } & =\left[\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{t}_{\mathrm{x}} \\
\mathbf{c} & \mathbf{d} & \mathbf{t}_{\mathrm{y}}
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{\mathrm{x}} \\
\mathbf{p}_{\mathbf{y}} \\
1
\end{array}\right]
\end{aligned}
$$

- But it's easier to always keep track of homogeneous representation, so

$$
\hat{\mathbf{q}}=\left[\begin{array}{cc}
\mathbf{A} & \overline{\mathbf{t}} \\
{[0} & 0
\end{array}\right]
$$

This is linear and easy to keep track of

Properties of Affine Transformation (cont.)

- With homogeneous representation for affine transformation, several additional properties of affine transformations become apparent
- affine transformations are associative

$$
\left(\mathbf{F}_{3} \mathbf{F}_{2}\right) \mathbf{F}_{1}=\mathbf{F}_{3}\left(\mathbf{F}_{2} \mathbf{F}_{1}\right)
$$

- Affine transformations are not in general commutative
(proof of this is a homework question)

$$
\mathbf{F}_{2} \mathbf{F}_{1} \neq \mathbf{F}_{1} \mathbf{F}_{2}
$$

Vectors in Homogeneous Coordinates

$$
\hat{\overrightarrow{\mathbf{v}}}=\left[\begin{array}{c}
\mathbf{v}_{\mathbf{x}} \\
\mathbf{v}_{\mathbf{y}} \\
0
\end{array}\right]
$$

Homogeneous vector
(third component 0!)

Example:

Homogeneous vector
Homogeneous point
Homogeneous point

What else can we do with Homogeneous

Coordinates?

- The equation of the line

$$
\begin{aligned}
& \mathbf{y}=\mathbf{m x}+\mathbf{d} \\
& 0=\mathbf{a x}+\mathbf{b y}+\mathbf{c}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}=-\mathbf{b m} \\
& \mathbf{c}=-\mathbf{b d}
\end{aligned}
$$

- In homogeneous coordinates

Finding Line Passing Through 2 Points

- Equation of the line in homogeneous coordinates:

$$
\left[\begin{array}{lll}
\mathbf{a} & \mathbf{b} & \mathbf{c}
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{\mathbf{x}} \\
\mathbf{p}_{\mathbf{y}} \\
1
\end{array}\right]=\overline{\mathbf{l}}^{\mathrm{T}} \hat{\mathbf{p}}=0
$$

- If two homogeneous points $\hat{\mathbf{p}}_{1}$ and $\hat{\mathbf{p}}_{2}$ are on the line then

$$
\overline{\mathbf{I}}^{\mathrm{T}} \hat{\mathbf{p}}_{1}=0 \quad \overline{\mathbf{l}}^{\mathrm{T}} \hat{\mathbf{p}}_{2}=0
$$

(vector Ī must perpendicular to two 3D vectors)

$$
\overline{\mathbf{l}}=\hat{\mathbf{p}}_{1} \times \hat{\mathbf{p}}_{2}
$$

Finding Intersection of Two Lines

- If two homogeneous points $\mathbf{p}_{\mathbf{0}}$ and $\mathbf{p}_{\mathbf{1}}$ are on the line then

$$
\overline{\mathbf{l}}_{1}^{\mathrm{T}} \hat{\mathbf{p}}=0 \quad \overline{\mathbf{I}}_{2}^{\mathrm{T}} \hat{\mathbf{p}}=0
$$

(point $\hat{\mathbf{p}}$ must perpendicular to two 3D vectors holding the
line parameters)

$$
\hat{\mathbf{p}}=\overline{\mathbf{l}}_{1} \times \overline{\mathbf{I}}_{2}
$$

