
Announcements

Assignment 1 is out

Writing portion
4 question
When we ask for “prove” something, we mean proof in a 
mathematical sense
Electronic submissions are preferred

Programming
Start early
Starter code available for Linux and VC++



Last class review 
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Tangents and Normals
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2D Transformations
(continuation)

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal



Transformations

Rigid transformations
Examples: Translations, Rotations
Properties: preserve distance and angles

Conformal transformations
Examples: translations, rotations, uniform scale
Properties: preserves angles (not distance)

Affine transformations
Examples: translations, rotations, general scaling, reflections
Properties: preserves parallelism, preserves linearity (lines 
remain lines



Affine Transformation

Any linear transformation A (can be rotation, 
scaling, reflection, etc.) followed by a translation t
Thereby translation, rotation, scaling, sheer are all 
special cases of affine transformation

Properties
inverse of affine transformation is also affine
lines are preserved
given closed region (polygon) area under the affine 
transformation is scaled by det(A)
compositions of affine transformations is still affine 
transformation
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Proof: Inverse of Affine Transformation is 
also an Affine Transformation
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Proof: compositions of affine 
transformations is still affine transformation
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Why composing transformations useful?
Rotations as we have seen It in the last class rotate 
the object about the origin in CCW, what if we want 
to rotate about some other point c?
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Solution:
Translate by -c (so that c is the new origin)
Rotate 
Translate back by c
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Additional Affine Transformation 
Properties Proofs

In the Lecture Notes



Changing Coordinate Frames

1x

0x

Affine transformation 
(rotation + translation)

Can be interpreted as the transformation from object coordinate frame 
(red) to world coordinate frame (blue)

worldTobject



Hierarchical Models

uparmTlowarm

torsoTuparm

globalTtorso

pglobal = globalTtorso x torsoTuparm x uparmTlowarm x plowarm



Homogeneous Coordinates

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal



Homogeneous Coordinates
Problem: affine transformations often become complex 
and unwieldy to keep track of 

Homogeneous coordinates allow all the 
transformations to be specified by a single matrix 
multiply (OpenGL)

How do we express a Cartesian point in homogeneous 
coordinates?
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Homogeneous Coordinates
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Converting from Homogeneous 
Coordinates

Note: two homogeneous points are not equal if they 
are not scalar multiples of one another
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Homogeneous Transformations
Turns out that many transformations become linear 
in homogeneous coordinates (mainly affine)

But it’s easier to always keep track of homogeneous 
representation, so

tpAq +=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

y

x

y

x

y

x

t
t

p
p

dc
ba

q
q

[ ] p
tA

q ˆ
100

ˆ ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

1
y

x

y

x

y

x p
p

tdc
tba

q
q

Affine in Cartesian Coordinates Affine in Homogeneous Coordinates

[ ]ptAq ˆ=

This is linear and easy 
to keep track of



Properties of Affine Transformation (cont.)

With homogeneous representation for affine 
transformation, several additional properties of affine 
transformations become apparent

affine transformations are associative

Affine transformations are not in general commutative
(proof of this is a homework question)
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Vectors in Homogeneous Coordinates
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What else can we do with Homogeneous 
Coordinates?

The equation of the line

In homogeneous coordinates
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Finding Line Passing Through 2 Points

Equation of the line in homogeneous coordinates:

If two homogeneous points p1 and p2 are on the line then

(vector l must perpendicular to two 3D vectors)
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Finding Intersection of Two Lines

If two homogeneous points p0 and p1 are on the line then

(point p must perpendicular to two 3D vectors holding the 
line parameters)
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