Raster Displays and

 Scan Conversion

 Scan Conversion}

Computer Graphics, CSCD18

Fall 2008
Instructor: Leonid Sigal

Rater Displays

- Screen is represented by 2D array of locations called pixels

Rater Displays

- Screen is represented by 2D array of locations called pixels
- At each pixel 2^{N} intensities/colors can be generated
- Grayscale $2^{8}=256$
- Color $\left(2^{8}+2^{8}+2^{8}\right)$

Rater Displays

- Screen is represented by 2D array of locations called pixels
- At each pixel 2^{N} intensities/colors can be generated
- Grayscale $2^{8}=256$
- Color $\left(2^{8}+2^{8}+2^{8}\right)$
- Colors are stored in a frame buffer
a physical memory on a graphics card
- Primitive operations
setpixel ($\mathbf{x}, \mathrm{y}, \mathrm{c}$) getpixel (x, y)

Scan Conversion

- Convert basic CG objects (2D) into corresponding pixelmap representation
- Since objects are often specified using real valued mathematical primitives (e.g. lines, circles, arcs, etc.), often an approximation to object

Continuous line

$\rightarrow X$

Digital line

Scan Conversion for Lines

- Set pixels to desired line color to approximate the line from ($\mathbf{x}_{0}, \mathbf{y}_{\mathbf{0}}$) to $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
- Goals
- Accuracy: pixels should approximate the line as closely as possible
- Speed: line drawing should be as efficient as possible
- Visual quality: uniform brightness
- Usability: independent of point order, independent of the slope

Equation of the Line

$$
\mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

- Points that are on the line must satisfy equation above (where $\mathbf{m}=$ slope, $\mathbf{b}=\mathrm{y}$-intercept)

$$
\begin{gathered}
\mathbf{y}_{0}=\mathbf{m} \mathbf{x}_{0}+\mathbf{b} \\
\mathbf{y}_{1}=\mathbf{m} \mathbf{x}_{1}+\mathbf{b} \\
\mathbf{m}=\frac{\mathbf{y}_{1}-\mathbf{y}_{0}}{\mathbf{x}_{1}-\mathbf{x}_{0}} \\
\mathbf{b}=\mathbf{y}_{0}-\mathbf{m} \mathbf{x}_{0} \\
\mathbf{y}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\mathbf{y}_{0}
\end{gathered}
$$

Continuous line

This is the form we'll prefer to use for this lecture

Line Drawing: Basic Idea

- We need to determine the pixels that lie closest to the mathematical line

Digital line

Simple Algorithm

1. Draw pixel at line start

Line Drawing: Basic Idea

- We need to determine the pixels that lie closest to the mathematical line

Digital line

Simple Algorithm

1. Draw pixel at line start
2. Increment x pixel position by 1

Line Drawing: Basic Idea

- We need to determine the pixels that lie closest to the mathematical line

Digital line

Simple Algorithm

1. Draw pixel at line start
2. Increment x pixel position by 1
3. Determine the y position of the pixel lying closest to the line

Line Drawing: Basic Algonuithm

- We need to determine the pixels that lie closest to the mathematical line

Digital line

Simple Algorithm
compute m for ($\mathrm{x}=\mathrm{x}_{0}, \mathrm{x}<=\mathrm{x}_{1}, \mathrm{x}++$)
$y=m\left(x-x_{0}\right)+y_{0}$ setpixel (x , round(y), c) end
\mathbf{y} is real if \mathbf{m} is real
Problem: What if points are given in the wrong order?
Solution: Detect $\left(x_{1}<x_{0}\right)$ and switch order of points

Line Drawing: Basic Algonithm

- Let's test with $\mathrm{m}=1$

Simple Algorithm

compute m
for ($\mathrm{x}=\mathrm{x}_{0}, \mathrm{x}<=\mathrm{x}_{1}, \mathrm{x}++$)
$\mathrm{y}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{y}_{0}$
setpixel (x , round(y), c)
end

Line Drawing: Basic Algonithm

- Let's test with $m=1 / 2$

Simple Algorithm

compute m
for ($\mathrm{x}=\mathrm{x}_{0}, \mathrm{x}<=\mathrm{x}_{1}, \mathrm{x}++$)
$\mathrm{y}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{y}_{0}$
setpixel (x , round(y), c)
end

Line Drawing: Basic Algonithm

- Let's test with m = 2

Simple Algorithm
compute m
for ($\mathrm{x}=\mathrm{x}_{0}, \mathrm{x}<=\mathrm{x}_{1}, \mathrm{x}++$)
$\mathrm{y}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{y}_{0}$
setpixel (x , round(y), c)
end

Problem: When $\mathrm{m}>1$
Solution: Loop over y instead of x when $\mathrm{m}>1$

Line Drawing: Basic Algonithm

- Let's test with m = 2

Simple Algorithm (extended)
compute m

if ($\mathrm{m}<=1$)
for ($\mathrm{x}=\mathrm{x}_{0}, \mathrm{x}<=\mathrm{x}_{1}, \mathrm{x}++$)
$y=m\left(x-x_{0}\right)+y_{0}$
setpixel (x , round(y), c)
end
else
for $\left(\mathrm{y}=\mathrm{y}_{0}, \mathrm{y}<=\mathrm{y}_{1}, \mathrm{y}++\right)$
$x=\left(y-y_{0}\right) / m+x_{0}$
setpixel (round(x), y, c)
end
end

Line Drawing: Basic Algonithm

- Key disadvantage: inefficiency
- relies on floating-point operations to compute pixel positions
- floating-point operations are slow
- Alternative: Bresnham's Algorithm
- Incremental integer approach

Bresenham's Algonithm

- Incremental approach: assume pixel $\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathbf{i}}\right)$ is on how do we tell which pixel to turn on next?

Line point @ $\mathrm{x}_{\mathrm{i}+1}$:

Basic Idea

1. Test if $\mathbf{Q}<$ is above or bellow \mathbf{M}
(also known as Midpoint Algorithm)

Bresenham's Algonithm

- Incremental approach: assume pixel $\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathbf{i}}\right)$ is on how do we tell which pixel to turn on next?

Line point @ $\mathrm{x}_{\mathrm{i}+1}$:

Basic Idea

1. Test if $\mathbf{Q}<$ is above or bellow \mathbf{M}
2. If \mathbf{Q} bellow \mathbf{M} turn on $\left(\mathbf{x}_{\mathbf{i}+1}, \mathbf{y}_{\mathbf{i}}\right)$
(also known as Midpoint Algorithm)

Bresenham's Algonithm

- Incremental approach: assume pixel $\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathbf{i}}\right)$ is on how do we tell which pixel to turn on next?

Line point @ $\mathrm{x}_{\mathrm{i}+1}$:

(also known as Midpoint Algorithm)

Basic Idea

1. Test if $\mathbf{Q}<$ is above or bellow \mathbf{M}
2. If \mathbf{Q} bellow \mathbf{M} turn on $\left(\mathbf{x}_{\mathbf{i}+1}, \mathbf{y}_{\mathbf{i}}\right)$
3. If \mathbf{Q} above \mathbf{M} turn on $\left(\mathbf{x}_{\mathbf{i}+1}, \mathbf{y}_{\mathbf{i}+1}\right)$

Bresenham's Algonithm

- Incremental approach: assume pixel $\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathbf{i}}\right)$ is on how do we tell which pixel to turn on next?

Line point @ $\mathrm{x}_{\mathrm{i}+1}$:

Basic Idea

1. Test if $\mathbf{Q}<$ is above or bellow \mathbf{M}
2. If \mathbf{Q} bellow \mathbf{M} turn on $\left(\mathbf{x}_{\mathbf{i}+\mathbf{1}}, \mathbf{y}_{\mathbf{i}}\right)$
3. If \mathbf{Q} above \mathbf{M} turn on $\left(\mathbf{x}_{\mathbf{i + 1}}, \mathbf{y}_{\mathbf{i + 1}}\right)$
4. Repeat above steps for the newly draw point

Steps guarantee that closest pixel to line is always chosen
(also known as Midpoint Algorithm)

Bresenham's Algonithm

- Incremental approach: assume pixel $\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}_{\mathbf{i}}\right)$ is on how do we tell which pixel to turn on next?

Line point @ $\mathrm{x}_{\mathrm{i}+1}$:

Basic Idea

How do we decide if \mathbf{Q} is above or bellow \mathbf{M} ?

Look at the implicit function of the line $f(x, y)$

Implicit function of the line

$$
\begin{aligned}
\mathbf{y} & =\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\mathbf{y}_{0} \\
\mathbf{y} & =\frac{\mathbf{H}}{\mathbf{W}}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\mathbf{y}_{0} \\
\mathbf{W y} & =\mathbf{H}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\mathbf{W} \mathbf{y}_{0}
\end{aligned}
$$

$$
\mathbf{H}=\mathbf{y}_{1}-\mathbf{y}_{0}
$$

$\mathbf{H}=\mathbf{y}_{1}-\mathbf{y}_{0}$
$\mathbf{W}=\mathbf{x}_{1}-\mathbf{x}_{0}$
\mathbf{w}

$$
\mathbf{W}=\mathbf{x}_{1}-\mathbf{x}_{0}
$$

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})=0=\mathbf{H}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\mathbf{W}\left(\mathbf{y}_{0}-\mathbf{y}\right)
$$

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})=0=2 \mathbf{H}\left(\mathbf{x}-\mathbf{x}_{0}\right)-2 \mathbf{W}\left(\mathbf{y}-\mathbf{y}_{0}\right)
$$

If $f(x, y)=0$ then (x, y) on the line

Exercise for home, show that indeed

If $f(x, y)<0$ then (x, y) above line
If $f(x, y)>0$ then (x, y) bellow line

Bresenham's Algonithm

- Incremental approach: assume pixel $\left(x_{i}, y_{i}\right)$ is on how do we tell which pixel to turn on next?

Line point @ $\mathrm{x}_{\mathrm{i}+1}$:

$$
\mathbf{Q}=\mathrm{y}=\mathbf{m}\left(\mathbf{x}_{\mathbf{i}}+1-\mathbf{x}_{\mathbf{0}}\right)+\mathbf{y}_{\mathbf{0}}
$$

$$
\begin{array}{ll}
\mathbf{x}_{\mathbf{i}} & \mathbf{x}_{\mathbf{i}}+1 \quad \text { Midpoint: } \\
& \mathbf{M}=\left(\mathbf{x}_{\mathbf{i}}+1, \mathbf{y}_{\mathbf{i}}+0.5\right)
\end{array}
$$

Basic Idea

How do we decide if \mathbf{Q} is above or bellow \mathbf{M} ?

Look at the implicit function of the line $\mathbf{f}(\mathbf{x}, \mathbf{y})$ @ the midpoint

$$
\begin{aligned}
& \text { If } \begin{aligned}
f\left(x_{i}+1, y_{i}+\mathbf{0 . 5}\right)<0 \text { then } x_{j} & =x_{i}+\mathbf{1} \\
y_{j} & =y_{i} \\
\text { If } \mathbf{f}\left(\mathbf{x}_{\mathrm{i}}+\mathbf{1}, \mathbf{y}_{\mathrm{i}}+\mathbf{0 . 5}\right)<\mathbf{0} \text { then } \mathbf{x}_{j} & =x_{i}+\mathbf{1} \\
\mathbf{y}_{j} & =y_{i}+\mathbf{1}
\end{aligned}
\end{aligned}
$$

Now, why did we multiply by 2 ?

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})=0=2 \mathbf{H}\left(\mathbf{x}-\mathbf{x}_{0}\right)-2 \mathbf{W}\left(\mathbf{y}-\mathbf{y}_{0}\right)
$$

Now this computation can be done in terms of integers

Now, why did we multiply by 2 ?

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})=0=2 \mathbf{H}\left(\mathbf{x}-\mathbf{x}_{0}\right)-2 \mathbf{W}\left(\mathbf{y}-\mathbf{y}_{0}\right)
$$

$$
\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}+1, \mathbf{y}_{\mathbf{i}}+0.5\right)=0=2 \mathbf{H}\left(\mathbf{x}_{\mathbf{i}}+1-\mathbf{x}_{0}\right)-2 \mathbf{W}\left(\mathbf{y}_{\mathbf{i}}+0.5-\mathbf{y}_{0}\right)
$$

- Note, that we only need to keep track of $f(\mathbf{x}, \mathbf{y})$ at the mid points, which can be done efficiently incrementally

$$
\begin{aligned}
\mathbf{f}(\mathbf{x}+1, \mathbf{y}) & =\mathbf{f}(\mathbf{x}, \mathbf{y})+2 \mathbf{H} \\
\mathbf{f}(\mathbf{x}+1, \mathbf{y}+1) & =\mathbf{f}(\mathbf{x}, \mathbf{y})+2(\mathbf{H}-\mathbf{W})
\end{aligned}
$$

Now, why did we multiply by 2 ?

$$
\mathbf{f}(\mathbf{x}, \mathbf{y})=0=2 \mathbf{H}\left(\mathbf{x}-\mathbf{x}_{0}\right)-2 \mathbf{W}\left(\mathbf{y}-\mathbf{y}_{0}\right)
$$

$\mathbf{f}\left(\mathbf{x}_{\mathbf{i}}+1, \mathbf{y}_{\mathbf{i}}+0.5\right)=0=2 \mathbf{H}\left(\mathbf{x}_{\mathbf{i}}+1-\mathbf{x}_{0}\right)-2 \mathbf{W}\left(\mathbf{y}_{\mathbf{i}}+\underset{0}{0.5}-\mathbf{y}_{0}\right)$

- Note, that we only need to keep track of $f(\mathbf{x}, \mathbf{y})$ at the mid points, which can be done efficiently incrementally

Very Efficient

$$
\mathbf{f}(\mathbf{x}+1, \mathbf{y})=\mathbf{f}(\mathbf{x}, \mathbf{y})+2 \mathbf{H}
$$

$$
\mathbf{f}(\mathbf{x}+1, \mathbf{y}+1)=\mathbf{f}(\mathbf{x}, \mathbf{y})+2(\mathbf{H}-\mathbf{W})
$$

Bresenham's Algonithm

$$
\begin{aligned}
& \mathrm{y}=\mathrm{y}_{0} \\
& \mathrm{H}=\mathrm{y}_{1}-\mathrm{y}_{0} \\
& \mathrm{~W}=\mathrm{x}_{1}-\mathrm{x}_{0} \\
& \mathrm{f}=2 \mathrm{H}-\mathrm{W}
\end{aligned}
$$

$$
\text { for }\left(\mathrm{x}=\mathrm{x}_{0}, \mathrm{x}<=\mathrm{x}_{1}, \mathrm{x}++\right)
$$

$$
\text { setpixel (} \mathrm{x}, \mathrm{y}, \mathrm{c} \text {) }
$$

$$
\text { if (} \mathrm{f}<0 \text {) }
$$

$$
\mathrm{f}+=2 \mathrm{H} \quad \mid l \mathrm{y} \text { stays the same }
$$

else

$$
\begin{aligned}
& \mathrm{y}++\quad \text { II y increases } \\
& \mathrm{f}+=2(\mathrm{H}-\mathrm{W})
\end{aligned}
$$

end
end

Note, initially $f\left(x_{0}, y_{0}\right)=0$, so first test is @ $f\left(\mathrm{x}_{0}+1, \mathrm{y}_{0}+\mathbf{0 . 5}\right.$)

$$
\begin{aligned}
\mathbf{f}\left(\mathbf{x}_{0}+1, \mathbf{y}_{0}+0.5\right)= & 2 \mathbf{H}\left(\mathbf{x}_{0}+1-\mathbf{x}_{0}\right) \\
& -2 \mathbf{W}\left(\mathbf{y}_{0}+0.5-\mathbf{y}_{0}\right) \\
= & 2 \mathbf{H}-\mathbf{W}
\end{aligned}
$$

Bresenham's Algonithm

- Limitations: same as the basic line drawing, the Bresenham's algorithm in the last slide only works for $\mathbf{m}<\mathbf{1}$ and has to be altered for a more general cases
- To make it general need to (as in the basic line drawing algorithm)
- Switch order of points if necessary
- Iterate over y if $\mathbf{m}>\mathbf{1}$

Aliasing

- An unfortunate artifact of the line scan conversion discussed is that lines have "jaggy" appearance
- This phenomenon is called aliasing

Anti-aliasing

- Main idea: rather than just drawing in 0's and 1's, use "in-between" values in neighborhood of the mathematical line

Aliased line

Anti-aliased line

Anti-aliasing Comparison

Polygon Filling - Scan Conversion

- Goal: find pixels that occupy inside of the polygon and fill them with a given color

Polygon Filling

$$
\mathbf{P}=\left(\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}, \overline{\mathbf{x}}_{3}, \overline{\mathbf{x}}_{4}, \overline{\mathbf{x}}_{5}\right)
$$

Polygon Filling Idea

- Goal: find pixels that occupy inside of the polygon and fill them with a given color

Simple Idea

For each horizontal scanline L

Polygon Filling Idea

- Goal: find pixels that occupy inside of the polygon and fill them with a given color

Polygon Filling

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P (store in active edge list AEL)

Polygon Filling Idea

- Goal: find pixels that occupy inside of the polygon and fill them with a given color

Polygon Filling

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P (store in active edge list AEL)
2. Sort intersections by increasing value of x

Polygon Filling Idea

- Goal: find pixels that occupy inside of the polygon and fill them with a given color

Polygon Filling

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P (store in active edge list AEL)
2. Sort intersections by increasing value of x
3. Fill pixels between pairs of intersections

Polygon Filling Algonithm

Algorithm

Active Edge List (AEL)

for each edge $\left[\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right),\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right]$ in P

Does this remind you of anything?

Polygon Filling- Special Cases

Intersections:

$$
\begin{aligned}
& \text { one @ A } \\
& \text { two @ B } \\
& \text { one @ C }
\end{aligned}
$$

Polygon Filling - Special Cases

Polygon Filling - Handling Special Cases

- All problems can be handled by 2 simple rules
- only rasterize edges (not intersections)
- Ignore horizontal edges

Clipping

- Clipping: used to determine which parts of the line/polygon lie inside viewing window
- allows efficient rendering and rastering

Clipping Algonithm

- Every line segment of the polygon is either
- trivially inside (both endpoints lie inside the window)
- trivially outside (both endpoints lie outside of one of the half-spaces that define the window)
- candidate for clipping

Clipping Algonithm

- Every line segment of the polygon is either a trivially inside (both endpoints lie inside the window) $\sqrt{\text { Keep }}$
- trivially outside (both endpoints lie outside of one of the half-spaces that define the window) X Remove
- candidate for clipping

Clipping Algonithm

- Every line segment of the polygon is either
a trivially inside (both endpoints lie inside the window) Keep
- trivially outside (both endpoints lie outside of one of the half-spaces that define the window) X Remove
- candidate for clipping
- Find the intersection with the window (if exists)
- Disregard irrelevant part of the segment

