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called pixels
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Rater Displays
Screen is represented by 2D array of locations 
called pixels
At each pixel 2N intensities/colors can be generated

Grayscale 28 = 256
Color (28 + 28 + 28)

Colors are stored in a frame buffer
physical memory on a 
graphics card 

Primitive operations
setpixel (x,y,c)
getpixel (x,y)
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Scan Conversion
Convert basic CG objects (2D) into corresponding 
pixelmap representation
Since objects are often specified using real valued 
mathematical primitives (e.g. lines, circles, arcs, etc.), 
often an approximation to object
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Scan Conversion for Lines

Set pixels to desired line color to approximate the 
line from (x0, y0) to (x1, y1)

Goals
Accuracy: pixels should approximate the line as closely as 
possible
Speed: line drawing should be as efficient as possible
Visual quality: uniform brightness
Usability: independent of point order, independent of the 
slope



Equation of the Line
bmxy +=

Points that are on the line must satisfy equation 
above (where m = slope, b = y-intercept)
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This is the form we’ll prefer to use for this lecture



Line Drawing: Basic Idea

Simple Algorithm
Digital line

We need to determine the pixels that lie closest to the 
mathematical line

1. Draw pixel at line start 
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Line Drawing: Basic Idea

Simple Algorithm
Digital line

?

We need to determine the pixels that lie closest to the 
mathematical line

1. Draw pixel at line start 
2. Increment x pixel position

by 1 
3. Determine the y position

of the pixel lying closest
to the line 



Line Drawing: Basic Algoruithm

Digital line

?

We need to determine the pixels that lie closest to the 
mathematical line

compute m
for (x=x0, x<=x1, x++)

y = m (x-x0) + y0
setpixel (x, round(y), c)

end

Problem: What if points are given in the wrong order?

y is real if m is real

Simple Algorithm

Solution: Detect (x1 < x0) and switch order of points



Line Drawing: Basic Algorithm
Let’s test with m = 1

Simple Algorithm

compute m
for (x=x0, x<=x1, x++)

y = m (x-x0) + y0
setpixel (x, round(y), c)

end



Line Drawing: Basic Algorithm
Let’s test with m = 1/2

Simple Algorithm

compute m
for (x=x0, x<=x1, x++)

y = m (x-x0) + y0
setpixel (x, round(y), c)

end



Line Drawing: Basic Algorithm
Let’s test with m = 2

Simple Algorithm

compute m
for (x=x0, x<=x1, x++)

y = m (x-x0) + y0
setpixel (x, round(y), c)

end

Problem: When m > 1

Solution: Loop over y instead of x when m > 1



Line Drawing: Basic Algorithm
Let’s test with m = 2 Simple Algorithm (extended)

compute m
if (m <= 1)

for (x = x0, x <= x1, x++)
y = m (x-x0) + y0
setpixel (x, round(y), c)

end
else

for (y = y0, y <= y1, y++)
x = (y-y0)/m + x0
setpixel (round(x), y, c)

end
end



Line Drawing: Basic Algorithm

Key disadvantage: inefficiency
relies on floating-point operations to compute pixel 
positions
floating-point operations are slow

Alternative: Bresnham’s Algorithm
Incremental integer approach



Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on 
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1: 
Q = m (xi + 1 – x0) + y0

1. Test if Q < is above or 
bellow M

yi+1

yi

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi

(also known as Midpoint Algorithm)



Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on 
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1: 
Q = m (xi + 1 – x0) + y0

1. Test if Q < is above or 
bellow M

yi+1

yi

2. If Q bellow M turn on (xi+1, yi)

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi

(also known as Midpoint Algorithm)



Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on 
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1: 
Q = m (xi + 1 – x0) + y0

1. Test if Q < is above or 
bellow M

yi+1

yi

2. If Q bellow M turn on (xi+1, yi)

3. If Q above M turn on (xi+1, yi+1)

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi

(also known as Midpoint Algorithm)



Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on 
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1: 
Q = m (xi + 1 – x0) + y0

1. Test if Q < is above or 
bellow M

yi+1

yi

2. If Q bellow M turn on (xi+1, yi)

3. If Q above M turn on (xi+1, yi+1)

4. Repeat above steps for the
newly draw point

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi Steps guarantee that closest
pixel to line is always chosen

(also known as Midpoint Algorithm)



Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on 
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1: 
Q = m (xi + 1 – x0) + y0 How do we decide if Q is 

above or bellow M ?

yi+1

yi

Look at the implicit function 
of the line f(x,y)

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi



Implicit function of the line
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If f(x,y) = 0 then (x,y) on the line

If f(x,y) < 0 then (x,y) above lineExercise for home,
show that indeed If f(x,y) > 0 then (x,y) bellow line



Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on 
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1: 
Q = y = m (xi + 1 – x0) + y0 How do we decide if Q is 

above or bellow M ?

xi xi+1

yi+1

yi

Midpoint:
M = (xi+1, yi+ 0.5)

Look at the implicit function 
of the line f(x,y) @ the midpoint

If  f(xi+1, yi+0.5) < 0 then  xj = xi+1
yj = yi

If  f(xi+1, yi+0.5) < 0 then  xj =xi+1
yj = yi+1



Now, why did we multiply by 2?

)(2)(20),( 00 yyWxxHyxf −−−==

)5.0(2)1(20)5.0,1( 00 yyWxxHyxf iiii −+−−+==++

Now this computation can be done in terms of integers



Now, why did we multiply by 2?

)(2)(20),( 00 yyWxxHyxf −−−==

)5.0(2)1(20)5.0,1( 00 yyWxxHyxf iiii −+−−+==++

Note, that we only need to keep track of f(x,y) at the 
mid points, which can be done efficiently incrementally

Hyxfyxf 2),(),1( +=+

)(2),()1,1( WHyxfyxf −+=++



Now, why did we multiply by 2?

)(2)(20),( 00 yyWxxHyxf −−−==

)5.0(2)1(20)5.0,1( 00 yyWxxHyxf iiii −+−−+==++

Note, that we only need to keep track of f(x,y) at the 
mid points, which can be done efficiently incrementally

Hyxfyxf 2),(),1( +=+
Very

Efficient
)(2),()1,1( WHyxfyxf −+=++



Bresenham’s Algorithm
y = y0
H = y1 – y0
W = x1 – x0
f =  2H – W

for (x = x0, x <= x1, x++)
setpixel (x, y, c)
if (f <0)

f += 2H
else

y++
f += 2(H-W)

end
end

Note, initially f(x0,y0)=0, so first test is
@ f(x0+1, y0+0.5)
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// y stays the same 

// y increases



Bresenham’s Algorithm

Limitations: same as the basic line drawing, the 
Bresenham’s algorithm in the last slide only works 
for m < 1 and has to be altered for a more general 
cases

To make it general need to (as in the basic line 
drawing algorithm)

Switch order of points if necessary
Iterate over y if m > 1



Aliasing
An unfortunate artifact of the line scan conversion 
discussed is that lines have “jaggy” appearance
This phenomenon is called aliasing



Anti-aliasing
Main idea: rather than just drawing in 0’s and 1’s, 
use “in-between” values in neighborhood of the 
mathematical line

Anti-aliased lineAliased line



Anti-aliasing Comparison



Polygon Filling – Scan Conversion

Goal: find pixels that occupy inside of the 
polygon and fill them with a given color

Polygon Filling

x3x2

x5

x4x1

),,,,( 54321 xxxxxP =



Polygon Filling Idea

Polygon Filling

x3x2

x5

x4x1

Simple Idea

For each horizontal scanline L

Goal: find pixels that occupy inside of the 
polygon and fill them with a given color

L



Polygon Filling Idea

Polygon Filling

x3x2

x5

x4x1

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P
(store in active edge list AEL) 

Goal: find pixels that occupy inside of the 
polygon and fill them with a given color

L



Polygon Filling Idea

Polygon Filling

x3x2

x5

x4x1

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P
(store in active edge list AEL) 

2. Sort intersections by 
increasing value of x 

Goal: find pixels that occupy inside of the 
polygon and fill them with a given color

L 1 2



Polygon Filling Idea

Polygon Filling

x3x2

x5

x4x1

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P
(store in active edge list AEL) 

2. Sort intersections by 
increasing value of x 

Goal: find pixels that occupy inside of the 
polygon and fill them with a given color

3. Fill pixels between pairs of
intersections 

L 1 2



Polygon Filling Algorithm
Algorithm

for each edge [(x0, y0), (x1,y1)] in P
x=x0;
compute m
for (y=y0, y<=y1, y++)

x = x + 1/m
place (round(x), y) in AEL

end
end

Active Edge List (AEL)

.

.

.

x1 x2 x3

y=N

Does this remind you of anything?

y=0



Polygon Filling – Special Cases

Intersections:
one @ A
two @ B
one @ C

CA
B

CBA D

Intersections:
one @ A
two @ B
one @ C
one @ D



Polygon Filling – Special Cases

Intersections:
one @ A
two @ B
one @ C

C
B

A

works
 !!!

CBA D

Intersections:
one @ A
two @ B
one @ C
one @ D

problem
 !!!



Polygon Filling – Handling Special Cases

All problems can be handled by 2 simple 
rules

only rasterize edges (not intersections)
Ignore horizontal edges



Clipping
Clipping: used to determine which parts of the 
line/polygon lie inside viewing window 

allows efficient rendering and rastering

(WR, WT)

(WL, WB)



Clipping Algorithm
Every line segment of the polygon is either 

trivially inside (both endpoints lie inside the 
window)
trivially outside (both endpoints lie outside of one 
of the half-spaces that define the window)
candidate for clipping

(WR, WT)

(WL, WB)



Clipping Algorithm
Every line segment of the polygon is either 

trivially inside (both endpoints lie inside the 
window) 
trivially outside (both endpoints lie outside of one 
of the half-spaces that define the window)
candidate for clipping

(WR, WT)

Keep

Remove

(WL, WB)



Clipping Algorithm
Every line segment of the polygon is either 

trivially inside (both endpoints lie inside the 
window) 
trivially outside (both endpoints lie outside of one 
of the half-spaces that define the window)
candidate for clipping

Find the intersection with the window (if exists)
Disregard irrelevant part of the segment

Keep

Remove
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