
Raster Displays and
Scan Conversion

Computer Graphics, CSCD18
Fall 2008
Instructor: Leonid Sigal

Rater Displays
Screen is represented by 2D array of locations
called pixels

x

y

Rater Displays
Screen is represented by 2D array of locations
called pixels
At each pixel 2N intensities/colors can be generated

Grayscale 28 = 256
Color (28 + 28 + 28)

x

y

Rater Displays
Screen is represented by 2D array of locations
called pixels
At each pixel 2N intensities/colors can be generated

Grayscale 28 = 256
Color (28 + 28 + 28)

Colors are stored in a frame buffer
physical memory on a
graphics card

Primitive operations
setpixel (x,y,c)
getpixel (x,y)

x

y

Scan Conversion
Convert basic CG objects (2D) into corresponding
pixelmap representation
Since objects are often specified using real valued
mathematical primitives (e.g. lines, circles, arcs, etc.),
often an approximation to object

x

(10,5)

(80,60)

y

Continuous line

x

y

Digital line

Scan Conversion for Lines

Set pixels to desired line color to approximate the
line from (x0, y0) to (x1, y1)

Goals
Accuracy: pixels should approximate the line as closely as
possible
Speed: line drawing should be as efficient as possible
Visual quality: uniform brightness
Usability: independent of point order, independent of the
slope

Equation of the Line
bmxy +=

Points that are on the line must satisfy equation
above (where m = slope, b = y-intercept)

Continuous line

x

(x0,y0)

(x1,y1)

y

Continuous line

(x,y)

00

01

01

11

00

mxyb
xx
yym

bmxy
bmxy

−=
−
−

=

+=
+=

m

00)(yxxmy +−=
This is the form we’ll prefer to use for this lecture

Line Drawing: Basic Idea

Simple Algorithm
Digital line

We need to determine the pixels that lie closest to the
mathematical line

1. Draw pixel at line start

Line Drawing: Basic Idea

Simple Algorithm
Digital line

We need to determine the pixels that lie closest to the
mathematical line

1. Draw pixel at line start
2. Increment x pixel position

by 1

Line Drawing: Basic Idea

Simple Algorithm
Digital line

?

We need to determine the pixels that lie closest to the
mathematical line

1. Draw pixel at line start
2. Increment x pixel position

by 1
3. Determine the y position

of the pixel lying closest
to the line

Line Drawing: Basic Algoruithm

Digital line

?

We need to determine the pixels that lie closest to the
mathematical line

compute m
for (x=x0, x<=x1, x++)

y = m (x-x0) + y0
setpixel (x, round(y), c)

end

Problem: What if points are given in the wrong order?

y is real if m is real

Simple Algorithm

Solution: Detect (x1 < x0) and switch order of points

Line Drawing: Basic Algorithm
Let’s test with m = 1

Simple Algorithm

compute m
for (x=x0, x<=x1, x++)

y = m (x-x0) + y0
setpixel (x, round(y), c)

end

Line Drawing: Basic Algorithm
Let’s test with m = 1/2

Simple Algorithm

compute m
for (x=x0, x<=x1, x++)

y = m (x-x0) + y0
setpixel (x, round(y), c)

end

Line Drawing: Basic Algorithm
Let’s test with m = 2

Simple Algorithm

compute m
for (x=x0, x<=x1, x++)

y = m (x-x0) + y0
setpixel (x, round(y), c)

end

Problem: When m > 1

Solution: Loop over y instead of x when m > 1

Line Drawing: Basic Algorithm
Let’s test with m = 2 Simple Algorithm (extended)

compute m
if (m <= 1)

for (x = x0, x <= x1, x++)
y = m (x-x0) + y0
setpixel (x, round(y), c)

end
else

for (y = y0, y <= y1, y++)
x = (y-y0)/m + x0
setpixel (round(x), y, c)

end
end

Line Drawing: Basic Algorithm

Key disadvantage: inefficiency
relies on floating-point operations to compute pixel
positions
floating-point operations are slow

Alternative: Bresnham’s Algorithm
Incremental integer approach

Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1:
Q = m (xi + 1 – x0) + y0

1. Test if Q < is above or
bellow M

yi+1

yi

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi

(also known as Midpoint Algorithm)

Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1:
Q = m (xi + 1 – x0) + y0

1. Test if Q < is above or
bellow M

yi+1

yi

2. If Q bellow M turn on (xi+1, yi)

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi

(also known as Midpoint Algorithm)

Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1:
Q = m (xi + 1 – x0) + y0

1. Test if Q < is above or
bellow M

yi+1

yi

2. If Q bellow M turn on (xi+1, yi)

3. If Q above M turn on (xi+1, yi+1)

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi

(also known as Midpoint Algorithm)

Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1:
Q = m (xi + 1 – x0) + y0

1. Test if Q < is above or
bellow M

yi+1

yi

2. If Q bellow M turn on (xi+1, yi)

3. If Q above M turn on (xi+1, yi+1)

4. Repeat above steps for the
newly draw point

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi Steps guarantee that closest
pixel to line is always chosen

(also known as Midpoint Algorithm)

Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1:
Q = m (xi + 1 – x0) + y0 How do we decide if Q is

above or bellow M ?

yi+1

yi

Look at the implicit function
of the line f(x,y)

Midpoint:
M = (xi+1, yi+ 0.5)

xi+1xi

Implicit function of the line

01

01

xxW
yyH
−=
−=

H

W

m

00

00

)(

)(

WyxxHWy

yxx
W
Hy

+−=

+−=

00)(yxxmy +−=

)()(0),(00 yyWxxHyxf −+−==

)(2)(20),(00 yyWxxHyxf −−−==

If f(x,y) = 0 then (x,y) on the line

If f(x,y) < 0 then (x,y) above lineExercise for home,
show that indeed If f(x,y) > 0 then (x,y) bellow line

Bresenham’s Algorithm
Incremental approach: assume pixel (xi, yi) is on
how do we tell which pixel to turn on next?

Basic IdeaLine point @ xi+1:
Q = y = m (xi + 1 – x0) + y0 How do we decide if Q is

above or bellow M ?

xi xi+1

yi+1

yi

Midpoint:
M = (xi+1, yi+ 0.5)

Look at the implicit function
of the line f(x,y) @ the midpoint

If f(xi+1, yi+0.5) < 0 then xj = xi+1
yj = yi

If f(xi+1, yi+0.5) < 0 then xj =xi+1
yj = yi+1

Now, why did we multiply by 2?

)(2)(20),(00 yyWxxHyxf −−−==

)5.0(2)1(20)5.0,1(00 yyWxxHyxf iiii −+−−+==++

Now this computation can be done in terms of integers

Now, why did we multiply by 2?

)(2)(20),(00 yyWxxHyxf −−−==

)5.0(2)1(20)5.0,1(00 yyWxxHyxf iiii −+−−+==++

Note, that we only need to keep track of f(x,y) at the
mid points, which can be done efficiently incrementally

Hyxfyxf 2),(),1(+=+

)(2),()1,1(WHyxfyxf −+=++

Now, why did we multiply by 2?

)(2)(20),(00 yyWxxHyxf −−−==

)5.0(2)1(20)5.0,1(00 yyWxxHyxf iiii −+−−+==++

Note, that we only need to keep track of f(x,y) at the
mid points, which can be done efficiently incrementally

Hyxfyxf 2),(),1(+=+
Very

Efficient
)(2),()1,1(WHyxfyxf −+=++

Bresenham’s Algorithm
y = y0
H = y1 – y0
W = x1 – x0
f = 2H – W

for (x = x0, x <= x1, x++)
setpixel (x, y, c)
if (f <0)

f += 2H
else

y++
f += 2(H-W)

end
end

Note, initially f(x0,y0)=0, so first test is
@ f(x0+1, y0+0.5)

WH
yyW

xxHyxf

−=
−+−

−+=++

2
)5.0(2

)1(2)5.0,1(

00

0000

// y stays the same

// y increases

Bresenham’s Algorithm

Limitations: same as the basic line drawing, the
Bresenham’s algorithm in the last slide only works
for m < 1 and has to be altered for a more general
cases

To make it general need to (as in the basic line
drawing algorithm)

Switch order of points if necessary
Iterate over y if m > 1

Aliasing
An unfortunate artifact of the line scan conversion
discussed is that lines have “jaggy” appearance
This phenomenon is called aliasing

Anti-aliasing
Main idea: rather than just drawing in 0’s and 1’s,
use “in-between” values in neighborhood of the
mathematical line

Anti-aliased lineAliased line

Anti-aliasing Comparison

Polygon Filling – Scan Conversion

Goal: find pixels that occupy inside of the
polygon and fill them with a given color

Polygon Filling

x3x2

x5

x4x1

),,,,(54321 xxxxxP =

Polygon Filling Idea

Polygon Filling

x3x2

x5

x4x1

Simple Idea

For each horizontal scanline L

Goal: find pixels that occupy inside of the
polygon and fill them with a given color

L

Polygon Filling Idea

Polygon Filling

x3x2

x5

x4x1

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P
(store in active edge list AEL)

Goal: find pixels that occupy inside of the
polygon and fill them with a given color

L

Polygon Filling Idea

Polygon Filling

x3x2

x5

x4x1

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P
(store in active edge list AEL)

2. Sort intersections by
increasing value of x

Goal: find pixels that occupy inside of the
polygon and fill them with a given color

L 1 2

Polygon Filling Idea

Polygon Filling

x3x2

x5

x4x1

Simple Idea

For each horizontal scanline L

1. Find intersection of L with P
(store in active edge list AEL)

2. Sort intersections by
increasing value of x

Goal: find pixels that occupy inside of the
polygon and fill them with a given color

3. Fill pixels between pairs of
intersections

L 1 2

Polygon Filling Algorithm
Algorithm

for each edge [(x0, y0), (x1,y1)] in P
x=x0;
compute m
for (y=y0, y<=y1, y++)

x = x + 1/m
place (round(x), y) in AEL

end
end

Active Edge List (AEL)

.

.

.

x1 x2 x3

y=N

Does this remind you of anything?

y=0

Polygon Filling – Special Cases

Intersections:
one @ A
two @ B
one @ C

CA
B

CBA D

Intersections:
one @ A
two @ B
one @ C
one @ D

Polygon Filling – Special Cases

Intersections:
one @ A
two @ B
one @ C

C
B

A

works
 !!!

CBA D

Intersections:
one @ A
two @ B
one @ C
one @ D

problem
 !!!

Polygon Filling – Handling Special Cases

All problems can be handled by 2 simple
rules

only rasterize edges (not intersections)
Ignore horizontal edges

Clipping
Clipping: used to determine which parts of the
line/polygon lie inside viewing window

allows efficient rendering and rastering

(WR, WT)

(WL, WB)

Clipping Algorithm
Every line segment of the polygon is either

trivially inside (both endpoints lie inside the
window)
trivially outside (both endpoints lie outside of one
of the half-spaces that define the window)
candidate for clipping

(WR, WT)

(WL, WB)

Clipping Algorithm
Every line segment of the polygon is either

trivially inside (both endpoints lie inside the
window)
trivially outside (both endpoints lie outside of one
of the half-spaces that define the window)
candidate for clipping

(WR, WT)

Keep

Remove

(WL, WB)

Clipping Algorithm
Every line segment of the polygon is either

trivially inside (both endpoints lie inside the
window)
trivially outside (both endpoints lie outside of one
of the half-spaces that define the window)
candidate for clipping

Find the intersection with the window (if exists)
Disregard irrelevant part of the segment

Keep

Remove

	Raster Displays and Scan Conversion
	Rater Displays
	Rater Displays
	Rater Displays
	Scan Conversion
	Scan Conversion for Lines
	Equation of the Line
	Line Drawing: Basic Idea
	Line Drawing: Basic Idea
	Line Drawing: Basic Idea
	Line Drawing: Basic Algoruithm
	Line Drawing: Basic Algorithm
	Line Drawing: Basic Algorithm
	Line Drawing: Basic Algorithm
	Line Drawing: Basic Algorithm
	Line Drawing: Basic Algorithm
	Bresenham’s Algorithm
	Bresenham’s Algorithm
	Bresenham’s Algorithm
	Bresenham’s Algorithm
	Bresenham’s Algorithm
	Implicit function of the line
	Bresenham’s Algorithm
	Now, why did we multiply by 2?
	Now, why did we multiply by 2?
	Now, why did we multiply by 2?
	Bresenham’s Algorithm
	Bresenham’s Algorithm
	Aliasing
	Anti-aliasing
	Anti-aliasing Comparison
	Polygon Filling – Scan Conversion
	Polygon Filling Idea
	Polygon Filling Idea
	Polygon Filling Idea
	Polygon Filling Idea
	Polygon Filling Algorithm
	Polygon Filling – Special Cases
	Polygon Filling – Special Cases
	Polygon Filling – Handling Special Cases
	Clipping
	Clipping Algorithm
	Clipping Algorithm
	Clipping Algorithm

