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14 Interpolation

14.1 Interpolation Basics

Goal: We would like to be able to define curves in a way that meets the following criteria:

1. Interaction should be natural and intuitive.

2. Smoothness should be controllable.

3. Analytic derivatives should exist and be easy to compute.

4. Representation should be compact.

Interpolation is when a curve passes through a set of “control points.”

Figure 1: *
Interpolation

Approximation is when a curve approximates but doesn’t necessarily contain its control points.

Figure 2: *
Approximation

Extrapolation is extending a curve beyond the domain of its control points.

Continuity - A curve is isCn when it is continuous in up to itsnth-order derivatives. For example,
a curve is inC1 if it is continuous and its first derivative is also continuous.

Consider a cubic interpolant — a 2D curve,c̄(t) =
[

x(t) y(t)
]

where

x(t) = a0 + a1t + a2t
2 + a3t

3, (1)

y(t) = b0 + b1t + b2t
2 + b3t

3, (2)
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Figure 3: *
Extrapolation

so

x(t) =
3

∑

i=0

ait
i =

[

1 t t2 t3
]









a0

a1

a2

a3









= ~tT~a. (3)

Here,~t is the basis and~a is the coefficient vector. Hence,c̄(t) = ~tT
[

~a ~b
]

. (Note: T
[

~a ~b
]

is

a4 × 2 matrix).

There are eight unknowns, fourai values and fourbi values. The constraints are the values ofc̄(t)
at known values oft.

Example:
For t ∈ (0, 1), suppose we know̄cj ≡ c̄(tj) for tj = 0, 1

3
, 2

3
, 1 asj = 1, 2, 3, 4. That

is,

c̄1 =
[

x1 y1

]

≡
[

x(0) y(0)
]

, (4)

c̄2 =
[

x2 y2

]

≡
[

x(1/3) y(1/3)
]

, (5)

c̄3 =
[

x3 y3

]

≡
[

x(2/3) y(2/3)
]

, (6)

c̄4 =
[

x4 y4

]

≡
[

x(1) y(1)
]

. (7)

So we have the following linear system,








x1 y1

x2 y2

x3 y3

x4 y4









=









1 0 0 0
1 1/3 (1/3)2 (1/3)3

1 2/3 (2/3)2 (2/3)3

1 1 1 1









[

~a ~b
]

, (8)

or more compactly,
[

~x ~y
]

= C
[

~a ~b
]

. Then,
[

~a ~b
]

= C−1
[

~x ~y
]

. From

this we can find~a and~b, to calculate the cubic curve that passes through the given
points.

Copyright c© 2005 David Fleet and Aaron Hertzmann 100



CSC418 / CSCD18 / CSC2504 Interpolation

We can also place derivative constraints on interpolant curves. Let

~τ(t) =
dc̄(t)

dt
=

d

dt

[

1 t t2 t3
]

[

~a ~b
]

(9)

=
[

0 1 t t2
]

[

~a ~b
]

, (10)

that is, a different basis with the same coefficients.

Example:
Suppose we are given three points,tj = 0, 1

2
, 1, and the derivative at a point,~τ2(

1

2
).

So we can write this as








x1 y1

x2 y2

x3 y3

x′

2 y′

2









=









1 0 0 0
1 1/2 (1/2)2 (1/2)3

1 1 1 1
0 1 2(1/2) 3(1/2)2









[

~a ~b
]

, (11)

and








c̄1

c̄2

c̄3

~τ2









= C
[

~a ~b
]

, (12)

which we can use to find~a and~b:

[

~a ~b
]

= C−1









c̄1

c̄2

c̄3

~τ2









. (13)

Unfortunately, polynomial interpolation yields unintuitive results when interpolating large num-
bers of control points; you can easily get curves that pass through the control points, but oscillate
in very unexpected ways. Hence, direct polynomial interpolation is rarely used except in combi-
nation with other techniques.

14.2 Catmull-Rom Splines

Catmull-Rom Splines interpolate degree-3 curves withC1 continuity and are made up of cubic
curves.

A user specifies only the points[p̄1, ...p̄N ] for interpolation, and the tangent at each point is set
to be parallel to the vector between adjacent points. So the tangent at̄pj is κ(p̄j+1 − p̄j−1) (for
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endpoints, the tangent is instead parallel to the vector from the endpoint to its only neighbor). The
value ofκ is set by the user, determining the “tension” of the curve.

p
j

p
j-1

p
j+1

Between two points,̄pj andp̄j+1, we draw a cubic curve usinḡpj, p̄j+1, and two auxiliary points
on the tangents,κ(p̄j+1 − p̄j−1) andκ(p̄j+2 − p̄j).

We want to find the coefficientsaj whenx(t) =
[

1 t t2 t3
][

a0 a1 a2 a3

]T
, where the

curve is defined as̄c(t) =
[

c(t) y(t)
]

(similarly for y(t) andbj). For the curve between̄pj and
p̄j+1, assume we know two end points,c̄(0) andc̄(1) and their tangents,~c′(0) and~c′(1). That is,

x(0) = xj, (14)

x(1) = xj+1, (15)

x′(0) = κ(xj+1 − xj−1), (16)

x′(1) = κ(xj+2 − xj). (17)

To solve for~a, set up the linear system,








x(0)
x(1)
x′(0)
x′(1)









=









1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

















a0

a1

a2

a3









. (18)

Then~x = M~a, so~a = M−1~x. Substituting~a in x(t) yields

x(t) =
[

1 t t2 t3
]









1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

















xj

xj+1

κ(xj+1 − xj−1)
κ(xj+2 − xj)









(19)

=
[

1 t t2 t3
]









0 1 0 0
−κ 0 κ 0
2κ κ − 3 3 − 2κ −κ
−κ 2 − κ κ − 2 κ

















xj−1

xj

xj+1

xj+2









. (20)
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For the first tangent in the curve, we cannot use the above formula. Instead, we use:

~τ1 = κ(p̄2 − p̄1) (21)

and, for the last tangent:

~τN = κ(p̄N − p̄N−1) (22)
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