
Course Updates
Assignment 2 

Programming is due on Friday
Example surface of revolution file is now available on the web

Assignment 3
Out on Friday 
Due date: November 23rd

Assignment 4
Due date: December 3rd

Demo Day: December 3rd



Ray Tracing
Part 2: Introduction

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal



Finding Intersections (for spheres)
Let’s consider simple case, unit length sphere at a 
given point p, ||p||2=1, by first substituting:

then expanding:

Producing solution:
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- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

Finding Intersections (for spheres)



dar
rr

λλ +=)(
)( *

1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0  no intersection
D = 0  1 hit (ray grazes the sphere)
D > 0  2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

Finding Intersections (for spheres)



dar
rr

λλ +=)(

)( *
1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0  no intersection
D = 0  1 hit (ray grazes the sphere)
D > 0  2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

)( *
2λr

Finding Intersections (for spheres)



dar
rr

λλ +=)()( *
1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0  no intersection
D = 0  1 hit (ray grazes the sphere)
D > 0  2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

)( *
2λr

Finding Intersections (for spheres)



dar
rr

λλ +=)(
)( *

1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0  no intersection
D = 0  1 hit (ray grazes the sphere)
D > 0  2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

)( *
2λr

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

Finding Intersections (for spheres)



What if we want to intersect with a general 
sphere?

Property: Given an intersection method for an object, it 
is easy to intersect rays with affinely deformed versions 
of the object

Assuming we have an invertible affine transformation 
f(x) = Ax+t that is applied to the object, it is relatively 
easy to show that intersection of the deformed object is 
the same as the intersection of the original object with 
inversely transformed ray:
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Short Proof
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We substitute equation of the ray into implicit function of the affinely
transformed surface
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Intersection with Cylinders and Cones 
Find intersection with “quadratic walls”, ignoring 
constraints on z
Test the resulting z component of           against the 
constraints on z
Intersect the ray with plains constraining end caps
Test to ensure they satisfy interior circular constraint
If there are multiple intersections take the intersection 
with smallest positive
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Scene Signature
Simple way to test geometry and intersection 
methods (great tool for debugging)

Idea: Create image in which pixel (i,j) has intensity k
if object k is the first object hit by the ray through (i,j) 

Each object gets one unique color 



Efficiency
Intersection tests are expensive, especially for 
complex geometries.
Data structures are typically used to avoid testing 
intersections with objects that are not hit.



Efficiency
Idea: Bound 3D objects (meshes) with single simple 
bounding volume (e.g. sphere or a cube).

Only test intersections with the object if there exists positive
intersection with bounding volume

(This can also be done hierarchically)



Efficiency
Idea: Bound 3D objects (meshes) with single simple 
bounding volume (e.g. sphere or a cube).

Only test intersections with the object if there exists positive
intersection with bounding volume

(This can also be done hierarchically)



Computational Issues to Consider
Form rays (a.k.a. ray casting)
Find intersection of rays with objects
Find closest object intersection (there could be 
multiple object intersections for any given ray)
Find normal at the closest intersection point (a.k.a
hit point)
Evaluate reflectance model at the hit point



Finding surface normal at the hit point
For mesh surface one might smoothly interpolate 
normal at the hit point from the nearby face normals
(same as for the vertex before)

Given parametric shape, we can compute 
normal     for the hit point      explicitly 

Implicit form

Explicit form
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Normals for affinely-deformed surfaces

Let               be an implicit surface, and let               
be an affine transformation.
The new affinely-deformed surface can then be written 
as follows:

The normal of F at a point     is given by
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Short Proof
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Assume that the tangent plane at hit point,           , on the generic surface is
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Computational Issues to Consider
Form rays (a.k.a. ray casting)
Find intersection of rays with objects
Find closest object intersection (there could be 
multiple object intersections for any given ray)
Find normal at the closest intersection point (a.k.a
hit point)
Evaluate reflectance model at the hit point



Conventional (Whitted) Ray Tracing 
Local model (e.g. Phong) to account for diffuse and 
specular highlights due to the direct lighting
Use ambient term to approximate global diffuse 
lighting 
Cast rays to estimate ideal “mirror” reflections of other 
objects

Feasible since for perfect specular reflection there is a 
unique direction of preference
In general, however, we need a Bidirectional Reflectance 
Distribution Function (BRDF)

So radiance at a hit point becomes

specgjjssaajjddj IrcrIrIrnsIrE +⋅++⋅= α),0max(),0max( rrrr

Local Phong Model Global Specular Model
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Texture
Texture can be used to modulate diffuse and ambient 
reflection coefficients, as with Gouraud or Phong
shading
All we need, is a way of mapping a point on the surface 
(hit point) to a point in the texture space 

e.g. given a hit point of parametric surface, we can convert the
3D point coordinates to surface parameters, and use them to 
get texture coordinates (as with standard texture mapping)

Unlike with Gouraud or Phong shading models we don’t 
need to interpolate texture coordinates over polygons
Anti-aliasing and super-sampling we will cover later 
(next week)


