
Course Updates
Assignment 2

Programming is due on Friday
Example surface of revolution file is now available on the web

Assignment 3
Out on Friday
Due date: November 23rd

Assignment 4
Due date: December 3rd

Demo Day: December 3rd

Ray Tracing
Part 2: Introduction

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal

Finding Intersections (for spheres)
Let’s consider simple case, unit length sphere at a
given point p, ||p||2=1, by first substituting:

then expanding:

Producing solution:

dar
rr

λλ +=)(
)(*λr

01)()(** =−+⋅+ dada
rr

λλ

02)(*2* =++ CBA λλ
ACBDdaB

aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

, where

dar
rr

λλ +=)(

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0 no intersection
D = 0 1 hit (ray grazes the sphere)
D > 0 2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

Finding Intersections (for spheres)

dar
rr

λλ +=)(
)(*

1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0 no intersection
D = 0 1 hit (ray grazes the sphere)
D > 0 2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

Finding Intersections (for spheres)

dar
rr

λλ +=)(

)(*
1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0 no intersection
D = 0 1 hit (ray grazes the sphere)
D > 0 2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

)(*
2λr

Finding Intersections (for spheres)

dar
rr

λλ +=)()(*
1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0 no intersection
D = 0 1 hit (ray grazes the sphere)
D > 0 2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

)(*
2λr

Finding Intersections (for spheres)

dar
rr

λλ +=)(
)(*

1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0 no intersection
D = 0 1 hit (ray grazes the sphere)
D > 0 2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

)(*
2λr

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

Finding Intersections (for spheres)

What if we want to intersect with a general
sphere?

Property: Given an intersection method for an object, it
is easy to intersect rays with affinely deformed versions
of the object

Assuming we have an invertible affine transformation
f(x) = Ax+t that is applied to the object, it is relatively
easy to show that intersection of the deformed object is
the same as the intersection of the original object with
inversely transformed ray:

dar
rr
'')(' += λλ

dAd

taAa
rr

r

1

1

'

)('
−

−

=

−=
Full proof is in the lecture notes

Short Proof
())()(1 tyAfyF

r
−= −

Find intersection with affine version

)(xf
Given intersection method for

y
01)(=−⋅= xxxf

z

y

dar
rr

λλ +=)(

01)()()(11 =−−⋅−= −− tyAtyAyF
rr

z

x x

()()
()()
()()

())('

)())((

11

1

1

λ
λ

λ

λλ

rf
dAtaAf

tdaAf

trAfrF

=
+−=

−+=

−=

−−

−

−

rr

rr

r

We substitute equation of the ray into implicit function of the affinely
transformed surface

()
dAd

taAa
dar

rr

r

r

1

1

'

'
'')('

−

−

=

+=

+= λλ
where

Short Proof

dar
rr

λλ +=)(

x

y

x

y

)(xf

01)()()(11 =−−⋅−= −− tyAtyAyF
rr

())()(1 tyAfyF
r

−= −

01)(=−⋅= xxxf

Given intersection method for Find intersection with affine version

() dAtaAr
rrr 11)(−− ++= λλ

same in both

z z

()()
()()
()()

())('

)())((

11

1

1

λ
λ

λ

λλ

rf
dAtaAf

tdaAf

trAfrF

=
+−=

−+=

−=

−−

−

−

rr

rr

r

We substitute equation of the ray into implicit function of the affinely
transformed surface

()
dAd

taAa
dar

rr

r

r

1

1

'

'
'')('

−

−

=

+=

+= λλ
where

Intersection with Cylinders and Cones
Find intersection with “quadratic walls”, ignoring
constraints on z
Test the resulting z component of against the
constraints on z
Intersect the ray with plains constraining end caps
Test to ensure they satisfy interior circular constraint
If there are multiple intersections take the intersection
with smallest positive

dar
rr

λλ +=)(
)(*

1λr

)(*
2λr

z

x

1≤z
122 =+ yx

)(*λp

*λ

Details in the lecture notes

Intersection with Cylinders and Cones
Find intersection with “quadratic walls”, ignoring
constraints on z
Test the resulting z component of against the
constraints on z
Intersect the ray with plains constraining end caps
Test to ensure they satisfy interior circular constraint
If there are multiple intersections take the intersection
with smallest positive

dar
rr

λλ +=)(
)(*

1λr

)(*
2λr

z

x

10 ≤≤ z

() 01
4
1 222 =−−+ zyx

)(*λp

*λ

Details in the lecture notes

Scene Signature
Simple way to test geometry and intersection
methods (great tool for debugging)

Idea: Create image in which pixel (i,j) has intensity k
if object k is the first object hit by the ray through (i,j)

Each object gets one unique color

Efficiency
Intersection tests are expensive, especially for
complex geometries.
Data structures are typically used to avoid testing
intersections with objects that are not hit.

Efficiency
Idea: Bound 3D objects (meshes) with single simple
bounding volume (e.g. sphere or a cube).

Only test intersections with the object if there exists positive
intersection with bounding volume

(This can also be done hierarchically)

Efficiency
Idea: Bound 3D objects (meshes) with single simple
bounding volume (e.g. sphere or a cube).

Only test intersections with the object if there exists positive
intersection with bounding volume

(This can also be done hierarchically)

Computational Issues to Consider
Form rays (a.k.a. ray casting)
Find intersection of rays with objects
Find closest object intersection (there could be
multiple object intersections for any given ray)
Find normal at the closest intersection point (a.k.a
hit point)
Evaluate reflectance model at the hit point

Finding surface normal at the hit point
For mesh surface one might smoothly interpolate
normal at the hit point from the nearby face normals
(same as for the vertex before)

Given parametric shape, we can compute
normal for the hit point explicitly

Implicit form

Explicit form

)()(jjj pfpn ∇=
r

0000 ,,

),(),()(
βαβα β

βα
α
βα

∂
∂

×
∂

∂
=

sspn jj
r

jpjn
r

Normals for affinely-deformed surfaces

Let be an implicit surface, and let
be an affine transformation.
The new affinely-deformed surface can then be written
as follows:

The normal of F at a point is given by

0)(=pf tpApQ
r

+=)(

() 0)()(1 =−= − tpAfqF
r

q

()
() nA

nA
T

T

r

r

1

1

−

−

Full proof in given in the lecture notes

Short Proof

y

z

y

)(/)()(pfpfpn ∇∇=
r ())()(1 tqAfqF

r
−= −

Given a normal Find a normal for affine version

Assume that the tangent plane at hit point, , on the generic surface is
given by or , where

)(*λr() 0)(* =⋅− nrp r
λ DnpT =

r nrD r
⋅=)(*λ

)(pnr ()
())(

)(
1

1

pnA

pnA
T

T

r

r

−

−

z

x x

Under affine transformation, planarity is preserved so tangent plane on
deformed surface is given by ()

()
() ()

() ()TTT

TT

T

T

tADnAq

tADnqA

DntAqA

DntqA

rr

rr

rr

rr

11

11

11

1)(

−−

−−

−−

−

+=

+=

=−

=−

Computational Issues to Consider
Form rays (a.k.a. ray casting)
Find intersection of rays with objects
Find closest object intersection (there could be
multiple object intersections for any given ray)
Find normal at the closest intersection point (a.k.a
hit point)
Evaluate reflectance model at the hit point

Conventional (Whitted) Ray Tracing
Local model (e.g. Phong) to account for diffuse and
specular highlights due to the direct lighting
Use ambient term to approximate global diffuse
lighting
Cast rays to estimate ideal “mirror” reflections of other
objects

Feasible since for perfect specular reflection there is a
unique direction of preference
In general, however, we need a Bidirectional Reflectance
Distribution Function (BRDF)

So radiance at a hit point becomes

specgjjssaajjddj IrcrIrIrnsIrE +⋅++⋅= α),0max(),0max(rrrr

Local Phong Model Global Specular Model

Conventional (Whitted) Ray Tracing
Local model (e.g. Phong) to account for diffuse and
specular highlights due to the direct lighting
Use ambient term to approximate global diffuse
lighting
Cast rays to estimate ideal “mirror” reflections of other
objects

Feasible since for perfect specular reflection there is a
unique direction of preference
In general, however, we need a Bidirectional Reflectance
Distribution Function (BRDF)

So radiance at a hit point becomes

specgjjssaajjddj IrcrIrIrnsIrE +⋅++⋅= α),0max(),0max(rrrr

rg can depend on
distance

Local Phong Model Global Specular Model

Texture
Texture can be used to modulate diffuse and ambient
reflection coefficients, as with Gouraud or Phong
shading
All we need, is a way of mapping a point on the surface
(hit point) to a point in the texture space

e.g. given a hit point of parametric surface, we can convert the
3D point coordinates to surface parameters, and use them to
get texture coordinates (as with standard texture mapping)

Unlike with Gouraud or Phong shading models we don’t
need to interpolate texture coordinates over polygons
Anti-aliasing and super-sampling we will cover later
(next week)

