
Ray Tracing
Part 1: Introduction

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal

Motivation
Shading models we have considered so far

Gouraud, Phong, Flat Shading are all “local models”
Only account for direct lighting (i.e. light that originates at
the point light source hits the surface and then is projected
towards the eye/camera)

Global models can also account for
Shadows
Secondary illumination (e.g. color bleeding from object to
object)
Arbitrary reflections (e.g. mirrors)
Refractions (e.g. transparencies, sub-surface scattering)

All global effects are captured via ambient term in
the Phong lighting equation (very crude)

Ray Tracing
Ray tracing was developed to help model properties
of global illumination (that cannot be modeled using
the models we considered thus far).

Benefits of ray tracing
This is a state of the art algorithm

Entertainment (Animations, Movies, Commercials)
Games (PlayStation 3)
Simulation (e.g. architectural)
Art

It’s customizable, so one can make rendering engines that
are arbitrarily simple/complex
It can be implemented in real time on some of the latest
hardware (with moderate assumptions on resolution and
scene geometry)

Ray Tracing See: http://www.povray.org/community/hof/

"The Cool Cows" © Gilles Tran (2000)"Main street (blue)" © Gilles Tran (2003)

Ray Tracing See: http://www.povray.org/community/hof/

"Capriccio" © Gena Obukhov, Ib Rasmussen,
Jim Charter, Txemi Jendrix, Peter Hertel,

Matti Karnaattu, Bob Hughes,
Christoph Hormann (2003)

"The Dark Side of the Trees" © Gilles Tran (2002)

Ray Tracing
Ray tracing competitions have been held on-line for
past 10 years

Take a look at: http://www.irtc.org/stills/index.html#s2006

Real-time Rendering
From Siggraph 2005 course by Philipp Slusallek, Peter Shirley,
Bill Mark, Gordon Stoll, Ingo Wald

Conference room (380 000 triangles, 104 lights) with full global illumination in realtime

Rendering in Computer Graphics
Resterization: Project the geometry into the image plane
under appropriate lighting

Ray tracing: Project image samples (pixels) backwards

Ray Tracing
Idea: Trace paths of light backwards from the camera
(image pixel) to surface (or multiple surfaces) to light(s).

Recursive algorithm
For each pixel

Cast a ray (hence ray tracing) from eye of camera through
pixel and find 1st surface hit by that ray
Determine surface radiance at the surface with combination of
local and global models
(To estimate global component, cast rays from surface point to
possible incident directions to determine how much light comes
from each direction)

Ray Tracing
For each pixel

Cast a ray (hence ray tracing) from eye of camera through
pixel and find 1st surface hit by that ray
Determine surface radiance at the surface with combination of
local and global models
(To estimate global component, cast rays from surface point to
possible incident directions to determine how much light comes
from each direction)

Computational Issues to Consider
Form rays (a.k.a. ray casting)
Find intersection of rays with objects
Find closest object intersection (there could be
multiple object intersections for any given ray)
Find normal at the closest intersection point (a.k.a
hit point)
Evaluate reflectance model at the hit point

Ray Casting
We want ray through pixel (i, j)
Camera model

0)(
,,

=⋅− wrp
wvu

e w

r

rrr
- Origin of camera coordinate frame

- Directions of X,Y,Z in camera coordinate frame

wfer w r
+=- Image plane, where

w
r

we

v
r

u
r),(ji

Ray Casting
We want ray through pixel (i, j)
Viewport

b

t

r

l

w
w
w
w - Left edge of the view volume

- Right edge of the view volume
- Top edge of the view volume
- Bottom edge of the view volume

w
r

we

v
r

u
r

)0,0(

)1,1(−− rc nn
bw

tw

rw

lw

),(ji

Ray Casting
We want ray through pixel (i, j)
Viewport In camera coordinates

b

t

r

l

w
w
w
w

w
r

we

v
r

u
r

)0,0(

)1,1(−− rc nn
bw

tw

rw

lw

- Left edge of the view volume
- Right edge of the view volume
- Top edge of the view volume
- Bottom edge of the view volume

),(ji
1

1

−
−

=∆

−
−

=∆

r

tb

c

lr

n
wwv

n
wwu

),,(, fvjwuiwp tl
c

ji ∆+∆+=

wc
ji

w
ji epwvup +

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= ,,

rrr

In world coordinates

Ray Casting
We want ray through pixel (i, j)

w
r

we

v
r

u
r

)0,0(

)1,1(−− rc nn
bw

tw

rw

lw

),(ji
1

1

−
−

=∆

−
−

=∆

r

tb

c

lr

n
wwv

n
wwu

),,(, fvjwuiwp tl
c

ji ∆+∆+=

wc
ji

w
ji epwvup +

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= ,,

rrr

In camera coordinates

In world coordinates

The ray

ww
jiji

ji
w

ji

epd

dpr

−=

>+=

,,

,, 0,)(
r

r
λλλ

Computational Issues to Consider
Form rays (a.k.a. ray casting)
Find intersection of rays with objects
Find closest object intersection (there could be
multiple object intersections for any given ray)
Find normal at the closest intersection point (a.k.a
hit point)
Evaluate reflectance model at the hit point

Finding Intersections (for triangle)
Assume we have a triangle with vertices p1, p2, p3 in
counter clockwise order
And we have a ray
There are two ways to solve for the ray-triangle
intersection

2p

1p

3p

() ()
() ()1312

1312

pppp
ppppn

−×−
−×−

=
r

dar
rr

λλ +=)(

dar
rr

λλ +=)(

Finding Intersections (for triangle)
Algorithm 1

Intersect the ray with the plane, , in which the
triangle lies

Test if the intersection is within the triangle bounds (using
half-plane tests)

2p

1p

3p

() ()
() ()1312

1312

pppp
ppppn

−×−
−×−

=
r

nd
nap
npda

rr
r

rr

⋅
⋅−

=

=⋅−+
)(

0)(

1*

1
*

λ

λ

0)(1 =⋅− npp r

dar
rr

λλ +=)(
*λ

Finding Intersections (for triangle)
Algorithm 2

Use an alternative parameterization for the plane

and solve for the parameters , which leads 3x3 system

If intersection is in the triangle then the all following
conditions will hold:

2p

1p

3p

() ()
() ()1312

1312

pppp
ppppn

−×−
−×−

=
r

)()()(1
*

1312 apdpppp −=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓
−−−−

↑↑↑

λ
β
α

r

)()(),(13121 pppppp −+−+= βαβα

dar
rr

λλ +=)(

βα ,

1,0,0 ≤+≥≥ βαβα

*λ

Finding Intersections (for general planar
polygons)

Find the intersection with the general planar polygon
Same as Algorithm 2

Construct a ray in the plane originating at
and count the number of intersections with polygon
sides:

of intersections is odd => point inside the polygon
of intersections is even => point outside the polygon

)(*λr

dar
rr

λλ +=)(
)(*λr

Finding Intersections (for spheres)
Let’s consider simple case, unit length sphere at a
given point p, ||p||2=1, by first substituting:

then expanding:

Producing solution:

dar
rr

λλ +=)(
)(*λr

01)()(** =−+⋅+ dada
rr

λλ

02)(*2* =++ CBA λλ
ACBDdaB

aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

, where

dar
rr

λλ +=)(
)(*

1λr

ACBDdaB
aaCddA
−=⋅=
−⋅=⋅=

2

1
r

rr

A
D

A
B

A
ACBB

±−=
−±−

=
2

442 2
*λ

Cases
D < 0 no intersection
D = 0 1 hit (ray grazes the sphere)
D > 0 2 hits with at *

2
*
1 ,λλ

0,0 *
2

*
1 << λλ

0,0 *
2

*
1 <> λλ

)(*
2λr

0*
2

*
1 >> λλ

- Both hits are behind viewplane (not visible)

- Eye inside sphere, first hit is valid

- Both hits are valid (in front og viewplane), second closer

Finding Intersections (for spheres)

