
Course Updates

Midterm should be graded by Wednesday

Assignment 2
Reminder: Assignment 2 is to be done individually
Theory is due on Wednesday
Programming is due a week after Wednesday

This weeks tutorial will concentrate on the
programming portion of Assignment 2
(OpenGL)

Last time…

Phong reflectance model

aassdd IrcrIrnsIrcpL +⋅+⋅= α),0max(),0max(),(
rrrrr

Image from lecture slides of David Breen

Shading

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal

Shading
Goal: use light/reflectance model we derived last
week to shade/color facets of polygonal mesh

Last time
We know how to color a point on objects surface given a
point, a normal at that point, a light source, and a camera
position

But
Geometry is not modeled using points (too expensive), it is
modeled using polygonal meshes.

This is why we need shading

Basic setup

Assume we know

How do we shade a triangle?

α
sda

sda

w

w

rrr
III

l
e

,,
,,

- center of projection (position of eye) in world coordinates

- position of the point light source in world coordinates

- intensity of ambient, diffuse, and secular light sources

- reflection coefficients of ambient, diffuse, and secular light sources

- exponent controlling width of the specular highlight

Flat Shading
Idea: Fill each triangle with single color
Let us assume we have a triangle with vertices p1, p2, p3
in CCW order
We can then compute the normal,

And shade entire triangle using Phong model

() ()
() ()1312

1312

pppp
ppppn

−×−
−×−

=
r

n
r

p
2p

3p

1p
we

wl

pl
pls

w

w

−
−

=
rpe

pec
w

w

−
−

=
r

α),0max(),0max(),,(crIrIrnsIrlepL ssaadd
ww rrrr

⋅++⋅=

nnssr
rrrrr

)(2 ⋅+−=

Flat Shading

Foley, van Dam, Feiner, Hughes, Plate II.29

Issues with Flat Shading
For large faces secularities are impractical,
since highlight is often sharp

Because of this, typically the secular term is
dropped

Mesh binderies are visible
People are very sensitive to this

Solutions
Use small patches (but this is inefficient)
Use interpolative shading

Interpolative Shading
Idea: Average intensities at vertices of the triangle to
smoothly interpolate over pixels within a face

Algorithm, for a triangular face with vertices p1, p2, p3
Compute normals at each vertex
Compute radiance for each vertex point pj

Project vertices onto image plane
Fill polygon by interpolating radiance along the triangle (scan
conversion)

α),0max(),0max(),,(jjssaajjdd
ww

j crIrIrnsIrlepL
rrrr
⋅++⋅=

),,(ww
jj lepLE =

Interpolative Shading in Detail
Compute normals at each vertex

Many approaches are possible
Given parametric shape, compute normal when
sampling vertices of the mesh

Implicit form

Explicit form

Let be average of “face normals” of all adjacent
faces

)()(jjj pfpn ∇=
r

0000 ,,

),(),()(
βαβα β

βα
α
βα

∂
∂

×
∂

∂
=

sspn jj
r

jp
jn
r

jn
r

Interpolative Shading in Detail

Compute radiance for each vertex point pj
Same as in flat shading (using Phong model)

jE

1n
r

p

2p

1p
we

wl

α),0max(),0max(),,(jjssaajjdd
ww

jj crIrIrnsIrlepLE
rrrr
⋅++⋅==

3p
3nr2n

r

Interpolative Shading in Detail

Project onto image plane with pseudodepth
So for each vertex we have

2p

1p

3p

11
*
1

*
1 ,,, Edyx

Perspective Projection

33
*
3

*
3 ,,, Edyx

22
*
2

*
2 ,,, Edyx

jjjjj Ezdyx ,,, *** =

Interpolative Shading in Detail
Scan conversion with linear interpolation of both
pseudodepth (dj) and radiance values (Ej)

use z-buffer to handle visibility

2p

1p

3p

11
*
1

*
1 ,,, Edyx

Perspective Projection

33
*
3

*
3 ,,, Edyx

22
*
2

*
2 ,,, Edyx

Algorithm (part 1)
For each edge between and

ordered such that

For (y=yb; y<ya; y++)
Place (x, d, E) in active edge list (AEL) at scanline y

11
*
1

*
1 ,,, Edyx

33
*
3

*
3 ,,, Edyx

22
*
2

*
2 ,,, Edyx

),,,(**
bbbb Edyx

),,,(**
aaaa Edyx **

ba yy >

)/()(,

)/()(,

)/()(,

**

**

babab

babab

babab

yyEEEEE

yyddddd

yyxxxxx

−−=∆=

−−=∆=

−−=∆=

EEE
ddd
xxx

∆+=
∆+=
∆+=

Algorithm (part 1)
For each scanline between
and

Extract (xa, da, Ea) and (xa, da, Ea) from AEL where
xa> xb

For (x=xb; x<xa; x++)
if (d < z-buffer(x, y))

putpixel(x, y, E)
z-buffer(x, y) = d

end

11
*
1

*
1 ,,, Edyx

33
*
3

*
3 ,,, Edyx

22
*
2

*
2 ,,, Edyx

),,min(321 yyy
),.max(321 yyy

)/()(,

)/()(,

babab

babab

xxEEEEE

xxddddd

−−=∆=

−−=∆=

EEE
ddd
∆+=
∆+=

Interpolative Shading in Detail

What we just described is so called Gouraud
Shading

Advantages
Does not produce artifacts at face boundaries (i.e.
better then flat shading)

Disadvantages
Still hard to handle secular highlights. Why?

Gouraud Shading

Foley, van Dam, Feiner, Hughes, Plate II.30

Phong Shading
Note that phong shading and phong lighting are not
one and the same.

Idea: Slightly modify the Gouraud shading algorithm to
correctly shade every pixel (with secularities)

Algorithm, for a triangular face with vertices p1, p2, p3
Compute normals at each vertex
For each point on a triangle that corresponds to a pixel location
interpolate the normal
Compute radiance Ej for each pixel in the projected triangle that
corresponds to point within the world triangle
Project vertices onto image plane

Why is this batter then just doing Phong lighting?

Phong Shading

Foley, van Dam, Feiner, Hughes, Plate II.32

Phong Shading

Advantages
Produces very accurate shading with specular
highlights (better then flat shading and Gouraud
shading)

Disadvantages
It’s computationally expensive (but not on current
graphics hardware)

Texture Mapping

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal

Texture Mapping
So far we only considered objects that have
consistent color

If we want to have more realistic variations in
reflectance that conveys textures we need to
model them

There are two natural sources of textures
Surface markings – variations in the total light reflected
Surface relief – variations in 3D shape which introduce
local variability in shading

Why do we need textures?

An alternative would be to have much more complex
models

This is expensive computationally
The tools for building such high fidelity models are not readily
available

Textures
Cheaper to render (especially on current graphics hardware)
Reusable

Once we have the texture (e.g. wood) we can use it for many
different objects

Texture Mapping Examples

Sky

From http://www.cs.ualberta.ca/~yang/Projects/texture_analysis_and_synthesis.htm

Parchment

Marble

Questions we must address

Where do textures come from?
How do we map texture onto a surface?
How does texture change reflectance
properties and shading of the surface
Scan conversion (how do we actually render
texture mapped surface)

Where do we get a texture?
Textures can be defined procedurally

Input: point on the surface
Output: surface albedo at that point

Example of procedural texture

Where do we get a texture?
Textures can be defined procedurally

Input: point on the surface
Output: surface albedo at that point

Example of procedural texture (in 3D)

Where do we get a texture?
We can also use digital images as textures

Imagine gluing a 2D picture over a 3D surface

How do we do this?
map a point on the arbitrary geometry to a point on an abstract
unit square (we call this texture space)
map a point on abstract unit square to a point on the image of
arbitrary dimension

(1,1)(0,1)

v

(0,0) (1,0)
u

Texture Mapping Details
Simplest approaches to texture mapping

For each face of the mesh, specify a point (ui, vi) for each
vertex point pi

Continuous mapping from parametric form of the surface
onto texture, for example for sphere

Texture Mapping Details
Simplest approaches to texture mapping

For each face of the mesh, specify a point (ui, vi) for each
vertex point pi

Continuous mapping from parametric form of the surface
onto texture, for example for sphere

π
β

π
α

== vu ,
2

πβ
πα

β
βα
βα

βα
≤<
≤≤

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
+

=
0

20
,

cos
sinsin
sincos

),(

0

0

0

rz
ry
rx

s

(1,1)

512 x 512

Texture Mapping
Texture mapping is also a great way to create artificial
objects

