
Course Updates

Midterm is today @ 5pm

Lighting and Reflections

Computer Graphics, CSCD18

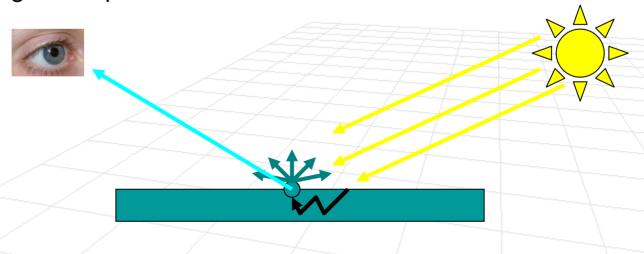
Fall 2007

Instructor: Leonid Sigal

Introduction

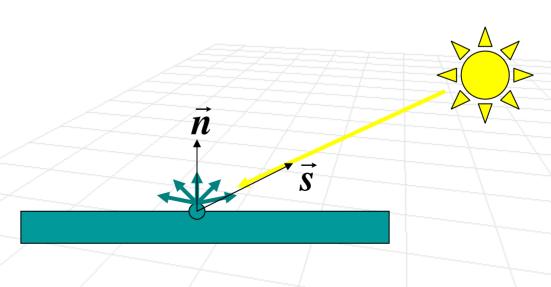
- So far we have only considered in our rendering pipeline
 - Geometry of the scene
 - Camera modeling
- We did not consider
 - Lighting
 - Shading of polygons (must account for properties of the surface)
 - Shadows

Introduction

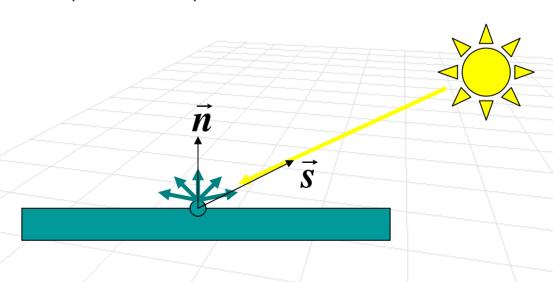

- In general, to reason about shading, lighting and shadows
 - We must consider every light ray that hits every surface in the scene
 - Rays that come directly from the light source
 - Rays that are reflected from different object surfaces
 - This is impractical for most scenes
 - We need to make simplifications

| Lighting Basics

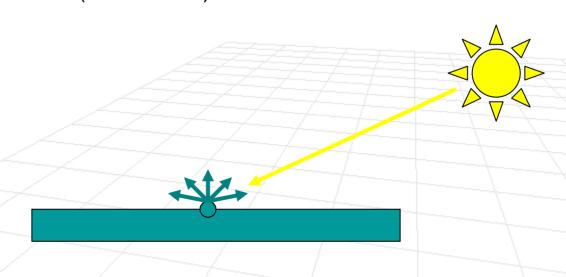
- Light sources
 - Point sources (e.g. sun)
 - Light is reflected in all directions from the small light source far away
 - Extended light sources (e.g. day lights)
 - Light is reflected in all directions but from many points
 - Directional lighting
 - Secondary lighting
 - Light reflected from other objects


Reflection Basics

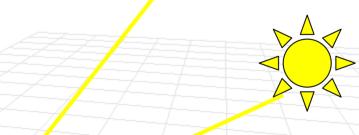
- Reflectance (different objects reflect light in different ways)
 - □ Diffuse surfaces (e.g. egg)
 - Appear the same from all directions
 - Secular surfaces (e.g. mirrors)
 - Reflected light is a function of the viewing direction
 - Transmission (e.g. skin, glass, water)
 - Light can penetrate the surface


Diffuse Reflection

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- Simplest model: $L_d(\bar{p}) = r_d I \max(0, \vec{s} \cdot \vec{n})$
 - I intensity of the light source
 - r_d fraction of the light being reflected
 - \vec{s} direction of the light source
 - \vec{n} surface normal


Diffuse Reflection

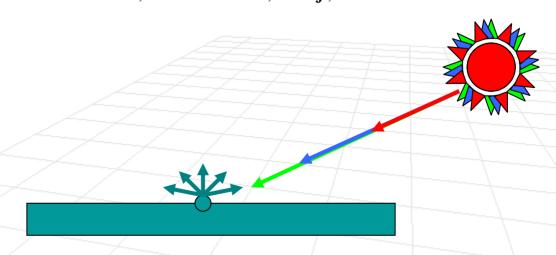
- Idea: reflected light is the same in all directions
- Assumptions: point light source
- Simplest model: $L_d(\overline{p}) = r_d I \max(0, \vec{s} \cdot \vec{n})$ Why?
 - I intensity of the light source
 - r_d fraction of the light being reflected
 - \vec{s} direction of the light source (normalized)
 - \vec{n} surface normal (normalized)


Diffuse Reflection

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- Simplest model: $L_d(\bar{p}) = r_d I \max(0, \vec{s} \cdot \vec{n})$
 - I intensity of the light source
 - r_d fraction of the light being reflected
 - \vec{s} direction of the light source (normalized)
 - \vec{n} surface normal (normalized)

Diffuse Reflection with Multiple Lights

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- Light is additive, so $L_d(\overline{p}) = \sum_i r_d I_j \max(0, \vec{s}_j \cdot \vec{n})$
 - I_i intensity of the light source j
 - r_d fraction of the light being reflected
 - \vec{s}_i direction of the light source j (normalized)
 - \vec{n} surface normal (normalized)



What about color?

- Idea: reflected light is the same in all directions
- Assumptions: point light source
- We can specify reflectance and light intensity in terms of color components $L_{d,R}(\overline{p}) = r_{d,R} I_{i,R} \max(0, \vec{s} \cdot \vec{n})$

$$L_{d,G}(\overline{p}) = r_{d,G} I_{i,G} \max(0, \vec{s} \cdot \vec{n})$$

$$L_{d,B}(\overline{p}) = r_{d,B} I_{i,B} \max(0, \vec{s} \cdot \vec{n})$$

Ambient Illumination

- Diffuse reflection with point light source produce strong shadows
- Surface patches that point away from the light source, $\vec{s} \cdot \vec{n} < 0$, end up being black. This looks unnatural. Why?

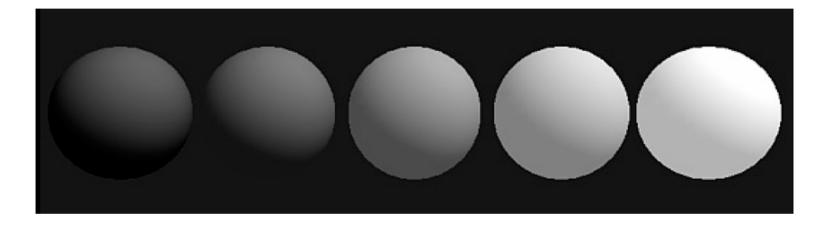
Solutions

- Have many light sources to approximate an extended light source
- Use ambient reflectance
 - Approximates the average amount of light in the scene

Ambient Illumination

Simple ambient reflectance

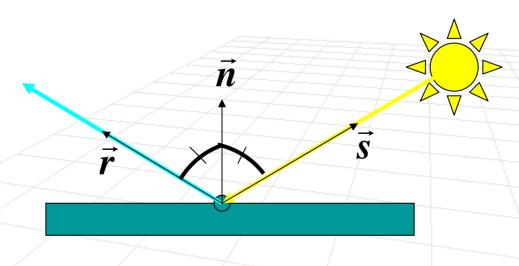
$$L_a(\overline{p}) = r_a I_a$$


 $oldsymbol{I}_a$ - amount of ambient illumination

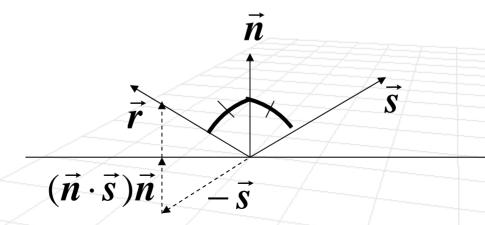
 r_a - ambient reflection coefficient (how much light is reflected) (often people set $r_a = r_d$)

Color ambient reflectance

$$egin{aligned} oldsymbol{L}_{a,R}(oldsymbol{ar{p}}) &= oldsymbol{r}_{a,R} oldsymbol{I}_{a,R} \ oldsymbol{L}_{a,G}(oldsymbol{ar{p}}) &= oldsymbol{r}_{a,G} oldsymbol{I}_{a,G} \ oldsymbol{L}_{a,B}(oldsymbol{ar{p}}) &= oldsymbol{r}_{a,B} oldsymbol{I}_{a,B} \end{aligned}$$


Diffuse Reflectance Model

Increasing ratio of ambient to diffuse reflection:


- Idealization: a mirror
- Models plastics, metals, and polished surfaces
- Property: Angle of reflection equal to the angle of incident with respect to the normal

- is unit vector corresponding to emitting direction (it is determined by the normal and the light source)

- Idealization: a mirror
- Models plastics, metals, and polished surfaces
- Property: Angle of reflection equal to the angle of incident with respect to the normal

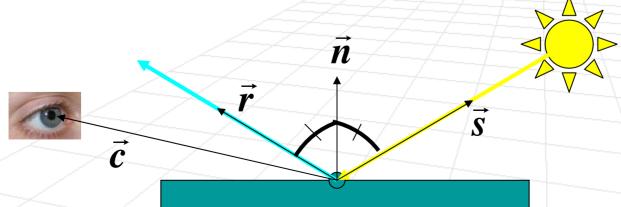
$$\vec{r} = 2(\vec{n} \cdot \vec{s})\vec{n} - \vec{s}$$

In practice most specular surfaces reflect light close to this direction

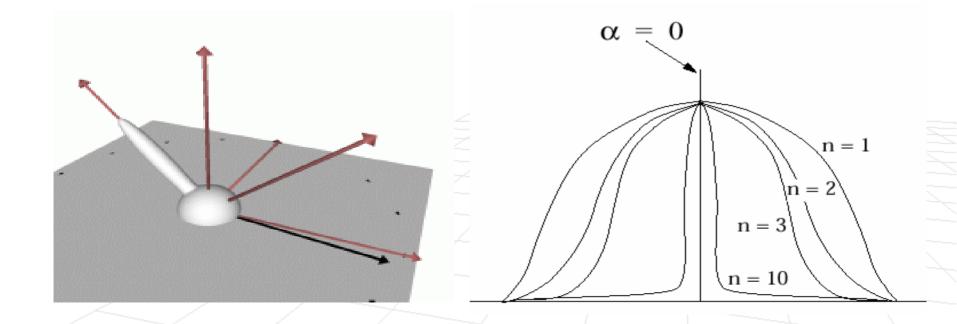
Common specular model

$$L_s(\overline{p}, \overrightarrow{c}) = r_s I_s \max(0, \overrightarrow{r} \cdot \overrightarrow{c})^{\alpha}$$

where

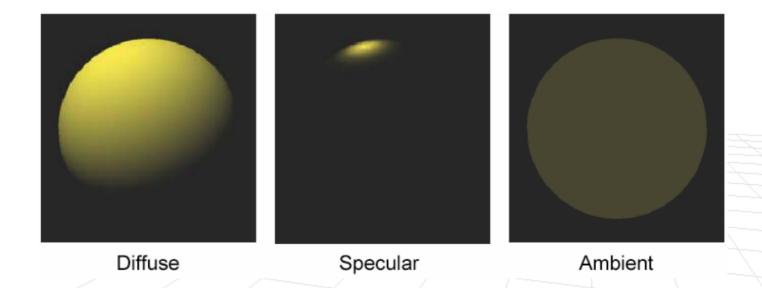

r - specular reflectance coefficient (how much light is reflected)

 I_s - "specular light source" (often = I_d)

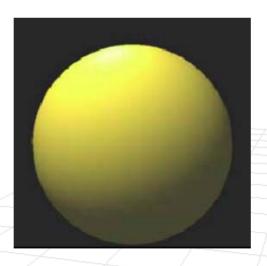

 \vec{r} - direction of emission (normalized)

 $ec{c}$ - direction from the point to camera (normalized)

lpha - controls width of the highlight



 As we decrease alpha the reflection becomes more peaked (more like a mirror)


- Lets put all the peaces together
- Remember: light is additive

$$L(\overline{p}, \overrightarrow{c}) = r_d I_d \max(0, \overrightarrow{s} \cdot \overrightarrow{n}) + r_a I_a + r_s I_s \max(0, \overrightarrow{r} \cdot \overrightarrow{c})^{\alpha}$$

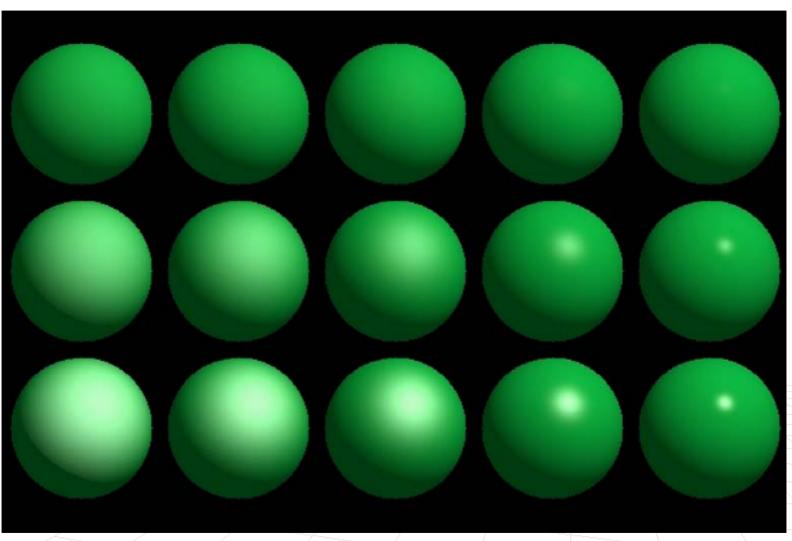
- Lets put all the peaces together
- Remember: light is additive

$$L(\overline{p}, \overrightarrow{c}) = r_d I_d \max(0, \overrightarrow{s} \cdot \overrightarrow{n}) + r_a I_a + r_s I_s \max(0, \overrightarrow{r} \cdot \overrightarrow{c})^{\alpha}$$

- Lets put all the peaces together
- Remember: light is additive

$$L(\overline{p}, \overrightarrow{c}) = r_d I_d \max(0, \overrightarrow{s} \cdot \overrightarrow{n}) + r_a I_a + r_s I_s \max(0, \overrightarrow{r} \cdot \overrightarrow{c})^{\alpha}$$

for color


$$L_{R}(\overline{p}, \overrightarrow{c}) = r_{d,R} I_{d,R} \max(0, \overrightarrow{s} \cdot \overrightarrow{n}) + r_{a,R} I_{a,R} + r_{s,R} I_{s,R} \max(0, \overrightarrow{r} \cdot \overrightarrow{c})^{\alpha}$$

$$L_{G}(\overline{p}, \overrightarrow{c}) = r_{d,G} I_{d,G} \max(0, \overrightarrow{s} \cdot \overrightarrow{n}) + r_{a,G} I_{a,G} + r_{s,G} I_{s,G} \max(0, \overrightarrow{r} \cdot \overrightarrow{c})^{\alpha}$$

$$L_{B}(\overline{p}, \overrightarrow{c}) = r_{d,B} I_{d,B} \max(0, \overrightarrow{s} \cdot \overrightarrow{n}) + r_{a,B} I_{a,B} + r_{s,B} I_{s,B} \max(0, \overrightarrow{r} \cdot \overrightarrow{c})^{\alpha}$$

 Notice we are still only considering point light source and are not considering secondary reflectance from surfaces

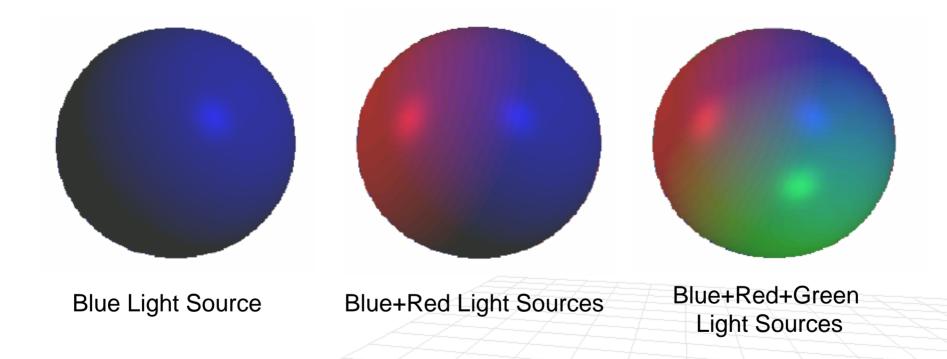
Increasing ratio of diffuse to specular reflection coefficients

Increasing exponent in specular term

Ambient only

Foley, van Dam, Feiner, Hughes, Plate II.28

Diffuse only


Foley, van Dam, Feiner, Hughes, Plate II.29

Full Phong Model

Foley, van Dam, Feiner, Hughes, Plate II.32

Multiple Light Sources

