| Course Updates

= Assignment 2 questions?

= Midterm is on Wednesday
o Material: up to mid-lecture today

o Review lecture notes (up to and including set 6 — “Camera
Models”)

o Sample exam on the web (but includes material we did not cover)

= Tutorial this week
o Finish reviewing assignment 1
o Review of the rendering pipeline

= Assignment 2 starter code is available
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[.ast time ...

= Camera models

o Perspective Projection
= Similar triangles derivation
= Algebraic derivation

o Camera position and orientation

= Transforming a point from camera coordinates to world
coordinates

= Transforming a point from world coordinates to camera
coordinates

o Homogeneous Perspective



‘ Putting together a camera model

= Projecting a world point to image (film) plane
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[.ast time ...

= Camera models
o Perspective Projection
= Similar triangles derivation
= Algebraic derivation
o Camera position and orientation

= Transforming a point from camera coordinates to world
coordinates

= Transforming a point from world coordinates to camera
coordinates

o Homogeneous Perspective
o Pseudodepth



‘ Pseudodepth

= We would like to change the projection transform
so that z-component of the projection gives us
useful information (not just a constant f)

= We want it to encode something about depth of
a point. Why?
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' Pseudodepth

= Standard homogeneous perspective projection
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= Pseudodepth projection matrix
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‘ Pseudodepth

= How do we pick a and b?
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‘ Pseudodepth

= How do we pick a and b?
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‘ Pseudodepth

= How do we pick a and b?
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‘ Pseudodepth

= How do we pick a and b? ho 2F
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' Pseudodepth

= Standard homogeneous perspective with
pseudodepth
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‘ Near and Far Planes

= Anything closer than near plane is considered to be
behind the camera and does not need to be rendered

= Anything further away from the camera than far plane
IS too far to be visible, so it Is not rendered

= Practical issue: far plane too far away will lead to

Imprecision in the computed pseudodeph and hence
rendering
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‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices
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‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi = My, P;

o Transform from world to camera coordinates p; =M, .p."




‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi = My, P;

w

a Transform from world to camera coordinates p; = M, P;
o Apply homogeneous perspective p; =M p;
= Divide by last component




‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi = M, P;

w

a Transform from world to camera coordinates p; = M, P;
o Apply homogeneous perspective p; =M p;
= Divide by last component
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‘ Clipping

= Idea: Remove points and parts of objects outside
view volume

= Sounds simple, but consider if we have an object
on a boundary
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‘ View Volume

= Consider what we can actually see




‘ Side note: Field of View
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‘ View Volume

= What does homogeneous perspective projection do
to our view volume?
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‘ Canonical View Volume

= Can we alter homogeneous perspective projection
to help us clip?
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‘ Back-face Removal

= Idea: Remove surface patches that point away from
the camera (like backside of the object as it viewed

from the front)

= Consider a cube
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= We only need to render at most half of the sides
depending on the view



‘ Back-face Removal

= How do we know If the patch (triangle) points away
from the camera?

= Consider normal of the triangle

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible



‘ Back-face Removal

= Does it matter which point we consider on the patch?

= If (p-€)-A>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible



‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this Is a planar patch

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible



‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this Is a planar patch

= How do we compute N
o If P, P,, P; are patch vertices in CCW order
P

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible



‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this Is a planar patch

= How do we compute n= (?Z ~ @X(?ﬁ* — ?1)
H( P, — Pu) > (P — pl)H

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible



' Z-Buffer (ak.a Depth Buffen)

= We have a frame-buffer (this is where an image that
we see on the screen is stored)

= We also have a z-buffer that keeps track of the z*
coordinate for every pixel in the frame-buffer

= To draw point in the world with color ¢ that projects to
(x*, y* z*) we can execute the following algorithm

If z* < z-buffer(x*, y*) then
frame-buffer(x™*, y*) = c
Z-buffer(x*, y*) = z*

end




' Z-Buffer (ak.a Depth Buffen)

= We need to initialize the z-buffer with some value.
What is the good value to initialize with?

o If we are using canonical view volume then 1 would work

= To draw point in the world with color ¢ that projects to
(x*, y* z*) we can execute the following algorithm

If z* < z-buffer(x*, y*) then
frame-buffer(x™*, y*) = c
Z-buffer(x*, y*) = z*

end




' Z-Buffer (ak.a Depth Buffen)

= Advantages of Z-buffering
o Simple and accurate
o Independent of the order the polygons are drawn

= Disadvantages of Z-buffering
2 Memory for a Z-buffer (small consideration)

o Wasted computation in drawing distant points first
(this potentially can be a large drawback)



Z-Buffer (ak.a Depth Buffer)

= We represent a patch using vertices

= How do we get a pseudodeph and proper rendering
everywhere else?
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Z-Buffer (ak.a Depth Buffer)

= We represent a patch using vertices

= How do we get a pseudodeph and proper rendering
everywhere else?

(X, ¥1:2;)

(X5, Y2, 2,) (Xg) Y3 25)

Linearly interpolate Zz along a scan line



‘ Painter’s Algorithm

= Idea: Order the patches and draw them in the order
of depth (with most distant patches first)

= This Is an alternative to Z-buffering
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‘ Painter’s Algorithm

= How do we deal with intersecting patches?
0 Break patches into smaller patches
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‘ BSP Trees

= Binary space partition tree (BSP tree) is an algorithm
for making back-to-front ordering of polygons efficient
and to break polygons to avoid intersections
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‘ BSP Tree

= Ifeand T, on the same side of T, (left) then draw T,
first then T,

= Ifeand T, are on different sides of T, (right) then draw
T, firstthen T,

= How do we know if points are on the same side?

f.(X)=(X-p)-Q, f,(X)=0 onthe plane
f,(X)>0 "outside"
f,(X) <0 "inside"




‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

The tree will be the same regardless of the

camera placement



‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

inside outside




‘ BSP Tree Traversal

= Tree traversal algorithm

inside outside

= Easy to modify to do back-
face removal



‘ BSP Tree

= Advantages

o Can easily discard portions of the scene behind
the camera

o Artifacts of z-buffer quantization are not seen
o Tree construction fixed for the static scenes

= Disadvantages
o How can we handle dynamic scenes?



