| Course Updates

= Assignment 2 questions?

= Midterm is on Wednesday
o Material: up to mid-lecture today

o Review lecture notes (up to and including set 6 — “Camera
Models”)

o Sample exam on the web (but includes material we did not cover)

= Tutorial this week
o Finish reviewing assignment 1
o Review of the rendering pipeline

= Assignment 2 starter code is available

Camera Models
Part 3

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal

[.ast time ...

= Camera models

o Perspective Projection
= Similar triangles derivation
= Algebraic derivation

o Camera position and orientation

= Transforming a point from camera coordinates to world
coordinates

= Transforming a point from world coordinates to camera
coordinates

o Homogeneous Perspective

‘ Putting together a camera model

= Projecting a world point to image (film) plane

X = MpMWCﬁW
1 0 0 O
. lo1 o0 o{ AT —ATE_)}_W
X = D
y N 0 0 1 0}[0,0,0] 1
% : 0 0 1/f O]
G e W — U0 -
where Al =|« V —
>

T
=l
\!

[.ast time ...

= Camera models
o Perspective Projection
= Similar triangles derivation
= Algebraic derivation
o Camera position and orientation

= Transforming a point from camera coordinates to world
coordinates

= Transforming a point from world coordinates to camera
coordinates

o Homogeneous Perspective
o Pseudodepth

‘ Pseudodepth

= We would like to change the projection transform
so that z-component of the projection gives us
useful information (not just a constant f)

= We want it to encode something about depth of
a point. Why?

P
e =(0,0,0) e e ——®
pinhole .\\,

A/(/ Z-buffering

' Pseudodepth

= Standard homogeneous perspective projection

10 0 O
01 0 O
M, =
00 1 0
00 1/f O

= Pseudodepth projection matrix

1 0 0 O
M = 0 1 0 z*:LC(ap;HLb)
10 0 a b &
0 0 1/f O

‘ Pseudodepth

= How do we pick a and b?

« f
—_— (ap®+b
=i o

camera ; A

<

near plane
(image)

world
coordinates
origin

view volume

far plane

‘ Pseudodepth

= How do we pick a and b?

z*=ic(ap§+b) - _ -1 whenp, =f
P, 1 whenp,=F

camera ; A

<

view volume

near plane
(image)

world
coordinates
origin

far plane

‘ Pseudodepth

= How do we pick a and b?

—1=af +b
z*=i(ap§+b) f
pzc 1=af +bE

camera ; A

<

view volume

near plane
(image)

world
coordinates
origin

far plane

‘ Pseudodepth

= How do we pick a and b? ho 2F

. f 5
z_p—g(apz+b))]
f

camera ; A

<

view volume

near plane
(image)

world
coordinates
origin

far plane

' Pseudodepth

= Standard homogeneous perspective with
pseudodepth

10 O 0
01 0 0
My=lg o 2F _1(f+F

f-F flf—F
0 0 1/f 0o

‘ Near and Far Planes

= Anything closer than near plane is considered to be
behind the camera and does not need to be rendered

= Anything further away from the camera than far plane
IS too far to be visible, so it Is not rendered

= Practical issue: far plane too far away will lead to

Imprecision in the computed pseudodeph and hence
rendering

camera A

v

view volume

world
coordinates
origin ;

ar plane

near plane
(image)

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi = My, P;

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi = My, P;

o Transform from world to camera coordinates p; =M, .p."

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi = My, P;

w

a Transform from world to camera coordinates p; = M, P;
o Apply homogeneous perspective p; =M p;
= Divide by last component

‘ Projecting Triangle
= Lets review steps in the rendering hierarchy

o Triangle is given in the object-based coordinate frame as
three vertices

o Transform to world coordinated Pi = M, P;

w

a Transform from world to camera coordinates p; = M, P;
o Apply homogeneous perspective p; =M p;
= Divide by last component

Visibility

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal

‘ Clipping

= Idea: Remove points and parts of objects outside
view volume

= Sounds simple, but consider if we have an object
on a boundary

camera A

v

view volume

B

ar plane

near plane
(image)

world
coordinates
origin

‘ View Volume

= Consider what we can actually see

‘ Side note: Field of View

.
1/2(T - B)
f

sin(x) =

‘ View Volume

= What does homogeneous perspective projection do
to our view volume?

10 0 0
01 0 0
My=ly o _2F _1(f+F

f-F flf-F
00 1/f 0o

parallepiped

‘ Canonical View Volume

= Can we alter homogeneous perspective projection
to help us clip?

2 R+ L 0
R-L R-L
2 T+B 0
Mp: T-B T-B
0 o 2F _1[T+F
f-F fl f-F
0 0 1/ f 0

(-1,-1,-1)

‘ Back-face Removal

= Idea: Remove surface patches that point away from
the camera (like backside of the object as it viewed

from the front)

= Consider a cube

3 Back Faces 4 Back Faces 5 Back Faces
Back Back Back Top
Left Left Right Leﬁ\. Right
Bottom Bottom Bottom

= We only need to render at most half of the sides
depending on the view

‘ Back-face Removal

= How do we know If the patch (triangle) points away
from the camera?

= Consider normal of the triangle

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

‘ Back-face Removal

= Does it matter which point we consider on the patch?

= If (p-€)-A>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this Is a planar patch

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this Is a planar patch

= How do we compute N
o If P, P,, P; are patch vertices in CCW order
P

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

‘ Back-face Removal

= Does it matter which point we consider on the patch?
o Not if this Is a planar patch

= How do we compute n= (?Z ~ @X(?ﬁ* — ?1)
H(P, — Pu) > (P — pl)H

= If (p—€)-n>0 then triangle is part of the back-face
and needs to be removed

= If (p—€)-n<0 then triangle may be visible

' Z-Buffer (ak.a Depth Buffen)

= We have a frame-buffer (this is where an image that
we see on the screen is stored)

= We also have a z-buffer that keeps track of the z*
coordinate for every pixel in the frame-buffer

= To draw point in the world with color ¢ that projects to
(x*, y* z*) we can execute the following algorithm

If z* < z-buffer(x*, y*) then
frame-buffer(x™*, y*) = c
Z-buffer(x*, y*) = z*

end

' Z-Buffer (ak.a Depth Buffen)

= We need to initialize the z-buffer with some value.
What is the good value to initialize with?

o If we are using canonical view volume then 1 would work

= To draw point in the world with color ¢ that projects to
(x*, y* z*) we can execute the following algorithm

If z* < z-buffer(x*, y*) then
frame-buffer(x™*, y*) = c
Z-buffer(x*, y*) = z*

end

' Z-Buffer (ak.a Depth Buffen)

= Advantages of Z-buffering
o Simple and accurate
o Independent of the order the polygons are drawn

= Disadvantages of Z-buffering
2 Memory for a Z-buffer (small consideration)

o Wasted computation in drawing distant points first
(this potentially can be a large drawback)

Z-Buffer (ak.a Depth Buffer)

= We represent a patch using vertices

= How do we get a pseudodeph and proper rendering
everywhere else?

(X, ¥1:2;)

(X5, Y2, 2,) (Xg) Y3 25)

Z-Buffer (ak.a Depth Buffer)

= We represent a patch using vertices

= How do we get a pseudodeph and proper rendering
everywhere else?

(X, ¥1:2;)

(X5, Y2, 2,) (Xg) Y3 25)

Linearly interpolate Zz along a scan line

‘ Painter’s Algorithm

= Idea: Order the patches and draw them in the order
of depth (with most distant patches first)

= This Is an alternative to Z-buffering

(%) ¥1,2;)

(X5, Y2, 2;) (Xgs Y3 25)

‘ Painter’s Algorithm

= How do we deal with intersecting patches?
0 Break patches into smaller patches

(%) ¥1,2;)

(X5, Y2, 2;) (Xgs Y3 25)

‘ BSP Trees

= Binary space partition tree (BSP tree) is an algorithm
for making back-to-front ordering of polygons efficient
and to break polygons to avoid intersections

(X, ¥1:2;)

(X5, Y2, 2;) (Xgs Y3 25)

‘ BSP Tree

= Ifeand T, on the same side of T, (left) then draw T,
first then T,

= Ifeand T, are on different sides of T, (right) then draw
T, firstthen T,

= How do we know if points are on the same side?

f.(X)=(X-p)-Q, f,(X)=0 onthe plane
f,(X)>0 "outside"
f,(X) <0 "inside"

‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

The tree will be the same regardless of the

camera placement

‘ BSP Tree Example

= Let’s try building a BSP tree for this scene

inside outside

‘ BSP Tree Traversal

= Tree traversal algorithm

inside outside

= Easy to modify to do back-
face removal

‘ BSP Tree

= Advantages

o Can easily discard portions of the scene behind
the camera

o Artifacts of z-buffer quantization are not seen
o Tree construction fixed for the static scenes

= Disadvantages
o How can we handle dynamic scenes?

