
Course Updates
Rudimentary course webpage is available from:

(look under teaching)

Lecture notes, slides from last time and 
Assignment 2 are now posted

Starter code for programming portion of 
Assignment 2 will be available in a day or two

http://www.cs.toronto.edu/~ls/



Camera Models
Part 2

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal
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Last time …

Virtual Film

ff
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3D transformations
Camera models

Pinhole camera
Thin lens model
Relationship between pinhole camera and thin lens model

Conceptual pinhole camera



Perspective Projection
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Perspective Projection
Using similar triangles:
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Perspective Projection
What does prospective projection gives us?

Depth perception - objects that are far away appear smaller



Perspective Projection Properties

Not a linear transform
Important properties

Lines are preserved 
Distances along the lines 
are not
Parallel lines are not 
preserved (vanishing 
point)
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Orthographic Projection

f
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What if objects are sufficiently 
far away?

Rays almost perpendicular
Variation in     is insignificant
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What do we really need to model to render 
the scene?

Scene with 3D objects
Position and orientation of camera in the 
world coordinates
Transformation of objects from world to 
camera coordinates
Project the objects onto film
Visibility (with respect to the view volume)

No need to render everything, only things we can 
see



Position and Orientation of Camera
In general

Camera can be anywhere in the world
Camera can move as a function of time 

How can we specify a camera coordinate frame
We need an origin (at the pinhole) – lets call it , and 3 unit 
vectors to define the camera coordinate frame
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Position and Orientation of Camera
How can we specify a camera coordinate frame

We need an origin (at the pinhole) – lets call it , and 3 unit 
vectors to define the camera coordinate frame

How can we intuitively specify 
Let’s pick a point in the scene where we want to look, , then 
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Position and Orientation of Camera

Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
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Camera to World Transformation

Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
Let’s try some points
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Camera to World Transformation

Now that we have a camera defined in world 
coordinate frame, how do we take a point in the 
camera coordinate frame and map to the world 
coordinate frame?
Let’s try some points
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Camera to World Transformation

It’s relatively easy to show that any point in 
camera coordinate frame can be expressed 
in world coordinate frame using the following 
homogenized transformation:

See lecture notes for details
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Camera to World Transformation

It’s relatively easy to show that any point in 
camera coordinate frame can be expressed in 
world coordinate frame using the following 
homogenized transformation:

Actually, what we need is the inverse:
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Inverting the Camera to World 
Transformation
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Inverting the Camera to World 
Transformation
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Inverting the Camera to World 
Transformation

c
cw

w pMp = ⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

( )epAp
epAp

wc

cw

−=

+=
−1

Since A is orthonormal (easy to check), the inverse of A is simply a transpose 

( )
eApAp

epAp
TwTc

wTc

−=

−=

w
wc

c pMp = ⎥
⎦

⎤
⎢
⎣

⎡ −
=

1]0,0,0[
eAA

M
TT

wc
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→←
→←
→←

=
w
v
u

AT

r

r

r

We have:

We want:



Perspective Projection (Again)

Earlier we derive perspective projection using 
similar triangles
Now, we will go through an exercise of doing 
it algebraically (it’s a good exercise)
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Perspective Projection
Lets consider everything in the camera 
coordinate frame
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coordinate frame
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Perspective Projection
cpThe mapping from a point     in camera 

coordinates to point             in the image ( )1,, ** yx
plane, is what we will call the perspective 
projection

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== 1,,**

c
z

c
y

c
z

c
x

p
p

p
pfrx λ

Just a scaling factor, we can ignore



Homogeneous Perspective
The mapping of point                          to 

is the form of scaling transformation,
but since it depends on the depth of the point     , it is 
not linear (remember the tapering example from last 
class)

It would be very useful if we can express this non-
linear transformation as a linear transformation 
(matrix). Why?
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Homogeneous Perspective
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Homogeneous Perspective

We can express it a a linear transformation in 
homogeneous coordinates (this is one of the benefits 
of using homogeneous coordinates!)
Here’s the transformation that does what we want:

Let’s prove this is true
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Homogeneous Perspective

Claim:
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Homogeneous Perspective

Claim:

Proof:
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Homogeneous Perspective

Claim:

Proof:
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Putting together a camera model

Projecting a world point to image (film) plane
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Pseudodepth
We would like to change the projection transform 
so that z-component of the projection gives us 
useful information (not just a constant f )
We want it to encode something about depth of 
a point. Why?
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Z-buffering
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