
Course Updates
Rudimentary course webpage is available from:

(look under teaching)

Lecture notes, slides from last time and
Assignment 2 are now posted

Starter code for programming portion of
Assignment 2 will be available in a day or two

http://www.cs.toronto.edu/~ls/

Camera Models
Part 2

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal

Last time …

Film

3D transformations
Camera models

Pinhole camera

Last time …
3D transformations
Camera models

Pinhole camera
Thin lens model

view plane
lens

z
0

surface point

optical axis

z
1

Last time …
3D transformations
Camera models

Pinhole camera
Thin lens model
Relationship between pinhole camera and thin lens model

view plane
lens

z
0

surface point

optical axis

z
1

Last time …

Virtual Film

ff

Film

3D transformations
Camera models

Pinhole camera
Thin lens model
Relationship between pinhole camera and thin lens model

Conceptual pinhole camera

Perspective Projection
Using similar triangles:

[]zyx pppp =r

yp

f

Image
Planey

zp

*y
z

Pinhole

Perspective Projection
Using similar triangles:

[]zyx pppp =r

yp

f

Image
Planey

zp

*y
z

Pinhole

Perspective Projection
Using similar triangles:

[]zyx pppp =r

yp

f

Image
Planey

zp

*y
z

Pinhole

Perspective Projection
Using similar triangles:

y
z

zy

p
p
fy

p
f

p
y

=

=

*

*

[]zyx pppp =r

yp

f

Image
Planey

zp

*y
z

Pinhole

Perspective Projection
Using similar triangles:

y
z

zy

p
p
fy

p
f

p
y

=

=

*

*

x
z

zx

p
p
fx

p
f

p
x

=

=

*

*

[]zyx pppp =r

yp

f

Image
Planex

zp

*xz

Pinhole

Perspective Projection
What does prospective projection gives us?

Depth perception - objects that are far away appear smaller

Perspective Projection Properties

Not a linear transform
Important properties

Lines are preserved
Distances along the lines
are not
Parallel lines are not
preserved (vanishing
point)

Perspective Projection Properties

Vanishing
Point

Not a linear transform
Important properties

Lines are preserved
Distances along the lines
are not
Parallel lines are not
preserved (vanishing
point)

Perspective Projection Properties

Not a linear transform
Important properties

Lines are preserved
Distances along the lines
are not
Parallel lines are not
preserved (vanishing
point)

Orthographic Projection

f

zp

What if objects are sufficiently
far away?

Rays almost perpendicular
Variation in is insignificant
For both points

y*

zp∆

zp

ypy α≈* 60 feet

Image
Plane

y

z

Pinhole

What do we really need to model to render
the scene?

Scene with 3D objects
Position and orientation of camera in the
world coordinates
Transformation of objects from world to
camera coordinates
Project the objects onto film
Visibility (with respect to the view volume)

No need to render everything, only things we can
see

Position and Orientation of Camera
In general

Camera can be anywhere in the world
Camera can move as a function of time

How can we specify a camera coordinate frame
We need an origin (at the pinhole) – lets call it , and 3 unit
vectors to define the camera coordinate frame

y

x

z

w
re

u
r

v
r

wvu rrr ,,
e

Bullet Time effect – Movie “The Matrix”

Position and Orientation of Camera
How can we specify a camera coordinate frame

We need an origin (at the pinhole) – lets call it , and 3 unit
vectors to define the camera coordinate frame

How can we intuitively specify
Let’s pick a point in the scene where we want to look, , then

Designate up direction , then

v must be perpendicular to

wt
wtu rr

rr
r

×
×

=

uwv
rrr

×=

ep
epw

−
−

=
r

t
r

p

wvu rrr ,,
wvu rrr ,,

p

t
r

y

x

z

w
re

u
r

v
r

vu rr,

e

Position and Orientation of Camera

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?

y

x

z

w
re

u
r

v
r

Camera to World Transformation

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

y

x

z

w
re

u
r

v
r

Camera Coordinates World Coordinates

()0,0,0

Camera to World Transformation

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

y

x

z

w
re

u
r

v
r

Camera Coordinates World Coordinates

()0,0,0
()f,0,0

e

Camera to World Transformation

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

y

x

z

w
re

u
r

v
r

Camera Coordinates World Coordinates

()0,0,0
()f,0,0
()0,1,0

e
wfe
r

+

Camera to World Transformation

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

y

x

z

w
re

u
r

v
r

Camera Coordinates World Coordinates

()0,0,0
()f,0,0
()0,1,0
()f,1,0

e

ve r
+

wfe
r

+

Camera to World Transformation

Now that we have a camera defined in world
coordinate frame, how do we take a point in the
camera coordinate frame and map to the world
coordinate frame?
Let’s try some points

y

x

z

w
re

u
r

v
r

Camera Coordinates World Coordinates

()0,0,0
()f,0,0
()0,1,0
()f,1,0

e

ve r
+

wfve
rr

++

wfe
r

+

Camera to World Transformation

It’s relatively easy to show that any point in
camera coordinate frame can be expressed
in world coordinate frame using the following
homogenized transformation:

See lecture notes for details

c
cw

w pMp =

⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
],,[ewvu

Mcw

rrr

Camera to World Transformation

It’s relatively easy to show that any point in
camera coordinate frame can be expressed in
world coordinate frame using the following
homogenized transformation:

Actually, what we need is the inverse:

c
cw

w pMp =

w
wc

c pMp =

Inverting the Camera to World
Transformation

We have:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
c

cw
w pMp =

We want:

w
wc

c pMp =

Inverting the Camera to World
Transformation

We have:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
c

cw
w pMp =

()epAp
epAp

wc

cw

−=

+=
−1

We want:

w
wc

c pMp =

Inverting the Camera to World
Transformation

c
cw

w pMp = ⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

()epAp
epAp

wc

cw

−=

+=
−1

Since A is orthonormal (easy to check), the inverse of A is simply a transpose

()
eApAp

epAp
TwTc

wTc

−=

−=

We have:

We want:

w
wc

c pMp =

Inverting the Camera to World
Transformation

c
cw

w pMp = ⎥
⎦

⎤
⎢
⎣

⎡
=

1]0,0,0[
eA

Mcw
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↓↓↓

↑↑↑
= wvuA rrr

()epAp
epAp

wc

cw

−=

+=
−1

Since A is orthonormal (easy to check), the inverse of A is simply a transpose

()
eApAp

epAp
TwTc

wTc

−=

−=

w
wc

c pMp = ⎥
⎦

⎤
⎢
⎣

⎡ −
=

1]0,0,0[
eAA

M
TT

wc
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→←
→←
→←

=
w
v
u

AT

r

r

r

We have:

We want:

Perspective Projection (Again)

Earlier we derive perspective projection using
similar triangles
Now, we will go through an exercise of doing
it algebraically (it’s a good exercise)

y

x

z

w
re

u
r

v
r

Perspective Projection
Lets consider everything in the camera
coordinate frame

)0()(−= cpr λλ

)1,0,0(=nr
),0,0(ff =

()0,0,0=e *x

f

() 0=⋅− nfxc r

cp

pinhole

Equation of the image plane (film)

Perspective Projection
Lets consider everything in the camera
coordinate frame

)0()(−= cpr λλ

)1,0,0(=nr
),0,0(ff =

()0,0,0=e *x

f

() 0=⋅− nfxc r

If we solve for that satisfies the plane equation,
we get

*λ

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== 1,,**

c
z

c
y

c
z

c
x

p
p

p
pfrx λ

cp

pinhole

Equation of the image plane (film)

Perspective Projection
cpThe mapping from a point in camera

coordinates to point in the image ()1,, ** yx
plane, is what we will call the perspective
projection

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
== 1,,**

c
z

c
y

c
z

c
x

p
p

p
pfrx λ

Just a scaling factor, we can ignore

Homogeneous Perspective
The mapping of point to

is the form of scaling transformation,
but since it depends on the depth of the point , it is
not linear (remember the tapering example from last
class)

It would be very useful if we can express this non-
linear transformation as a linear transformation
(matrix). Why?

()c
z

c
y

c
x

c pppp ,,=
()1,, *** yxx =

c
zp

Homogeneous Perspective

c
zp

()c
z

c
y

c
x

c pppp ,,=
()1,, *** yxx =

w
wcp pMMx =*

The mapping of point to
is the form of scaling transformation,

but since it depends on the depth of the point , it is
not linear (remember the tapering example from last
class)

It would be very useful if we can express this non-
linear transformation as a linear transformation
(matrix). Why?

Homogeneous Perspective

We can express it a a linear transformation in
homogeneous coordinates (this is one of the benefits
of using homogeneous coordinates!)
Here’s the transformation that does what we want:

Let’s prove this is true

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0/100
0100
0010
0001

f

M p

Homogeneous Perspective

Claim:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

10/100
0100
0010
0001

1
1
/
/

1
1

*

*

c
z

c
y

c
x

c
p

c
z

c
y

c
z

c
x

p
p
p

f

pMpp
pp

fy
x

f

Homogeneous Perspective

Claim:

Proof:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

10/100
0100
0010
0001

1
1
/
/

1
1

*

*

c
z

c
y

c
x

c
p

c
z

c
y

c
z

c
x

p
p
p

f

pMpp
pp

fy
x

f

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

fp
p
p
p

p
p
p

f c
z

c
z

c
y

c
x

c
z

c
y

c
x

/10/100
0100
0010
0001

Point in homogeneous coordinates can be scaled arbitrarily

Homogeneous Perspective

Claim:

Proof:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

10/100
0100
0010
0001

1
1
/
/

1
1

*

*

c
z

c
y

c
x

c
p

c
z

c
y

c
z

c
x

p
p
p

f

pMpp
pp

fy
x

f

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

/
/

/

/10/100
0100
0010
0001

f
pfp
pfp

fp

fp
p
p
p

p
p
p

f

c
z

c
y

c
z

c
x

c
z

c
z

c
z

c
y

c
x

c
z

c
y

c
x

Point in homogeneous coordinates can be scaled arbitrarily

Putting together a camera model

Projecting a world point to image (film) plane
w

wcp pMMx =*

w
TT

p
eAA

f

x ⎥
⎦

⎤
⎢
⎣

⎡ −

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
1]0,0,0[

0/100
0100
0010
0001

*

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→←
→←
→←

=
w
v
u

AT

r

r

r

y

x

z

w
re

u
r

v
r

where

Pseudodepth
We would like to change the projection transform
so that z-component of the projection gives us
useful information (not just a constant f)
We want it to encode something about depth of
a point. Why?

()0,0,0=e *x

cp

pinhole

Z-buffering

	Course Updates
	Camera ModelsPart 2
	Last time …
	Last time …
	Last time …
	Last time …
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Perspective Projection Properties
	Perspective Projection Properties
	Perspective Projection Properties
	Orthographic Projection
	What do we really need to model to render the scene?
	Position and Orientation of Camera
	Position and Orientation of Camera
	Position and Orientation of Camera
	Camera to World Transformation
	Camera to World Transformation
	Camera to World Transformation
	Camera to World Transformation
	Camera to World Transformation
	Camera to World Transformation
	Camera to World Transformation
	Inverting the Camera to World Transformation
	Inverting the Camera to World Transformation
	Inverting the Camera to World Transformation
	Inverting the Camera to World Transformation
	Perspective Projection (Again)
	Perspective Projection
	Perspective Projection
	Perspective Projection
	Homogeneous Perspective
	Homogeneous Perspective
	Homogeneous Perspective
	Homogeneous Perspective
	Homogeneous Perspective
	Homogeneous Perspective
	Putting together a camera model
	Pseudodepth

