Course Updates

- New Instructor: Leonid Sigal (call me Leon)
- Contact Info:

E-mails:	lsigal@utsc.utoronto.ca	
	ls@cs.toronto.edu	
Web Page:	http://www.cs.toronto.edu/~ls/	

Office hours:

Mondays:	12-1 pm
	(or by appointment)
Office:	S625A

- Assignment and Exams
 - Assignment 1 was collected on
 - Assignment 2 will be out by Wednesday (individual)
 - Mid-term is as scheduled on October 24, 5:15-6:30 in HW-214

3D Transformations

Computer Graphics, CSCD18 Fall 2007 Instructor: Leonid Sigal

3D Transformations

- Why do we need them?
 - Coordinate transforms
 - Shape modeling (e.g. surfaces of revolution)
 - Alex will do this in the tutorial this week (also on Assignment 2)
 - Hierarchical object models
 - Camera modeling

3D Coordinate Frame

In 3D there are two conventions for coordinate frames

Affine Transformations

Affine transformations in 3D look the same as in 2D

$$F(\vec{p}) = A\vec{p} + \vec{t}$$

- $ec{\pmb{p}}$ point mapped, $\in \pmb{R}^3$
- \vec{t} translation, $\in \mathbf{R}^3$
- A transformation matrix, $\in \mathbf{R}^{3x^3}$

Many of the transformations we will talk about today are of this type

Properties of Affine Transformations

- Collinearity of points is preserved
- Ratio of distances along the line is preserved
- Concatenation of affine transformations is also an affine transformation

Homogeneous Affine Transformations

We can rewrite the affine transformation

$$F(\vec{p}) = A\vec{p} + \vec{t}$$

as follows:

$$F(\hat{p}) = M\hat{p}$$

This has nice properties, we will explore them later

3D Translation

Simple extension of the 2D translations

3D Scaling

Simple extension of the 2D translations

3D Rotation

- In general, rotations in 3D are much more complicated then 2D rotations
 - There is typically no unique rotation that does what you want
 - You can specify rotations in variety of ways that are convenient for different tasks (e.g. Euler angles, Axis/Angle, Quaternion, Exponential Map)
- We will only consider elementary rotations

3D Rotation

 2D rotation introduced previously is simply a 3D rotation about the Z-axis

	$\cos\theta$	$-\sin\theta$	0	0
$R_z(\theta) =$	$\sin heta$	$\cos \theta$	0	0
	0	0	1	0
	0	0	0	1_

But we also have rotations about the X- and Y-axis

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad R_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Rotation - Examples

Composing Rotations

- Rotation order matters !!!
- For example,

$R_z(\theta_z)R_x(\theta_x) \neq R_x(\theta_x)R_z(\theta_z)$

So one needs to be careful

- In general we want to rotate a point or an object about arbitrary axis \vec{u} by some θ
- How do we do this using what we already know?

• Idea: Align \vec{u} with z-axis, then rotate about zaxis by desired angle θ

• Idea: Align \vec{u} with z-axis, then rotate about zaxis by desired angle θ

 Hence rotation about an arbitrary axis can always be expressed as a series of elementary rotations

 $R(\vec{u},\theta) = R_z(\phi)R_x(\psi)R_z(\theta)R_x(-\psi)R_z(-\phi)$

How do we obtain values for angles φ, ψ?
Alex will cover this in the tutorial this week

Non-Linear Transformations

Affine transformations

$$F(\vec{p}) = A\vec{p} + \vec{t}$$

are 1st order shape deformations

• Higher order deformations are also possible, let's consider general differentiable deformation $F(\vec{p})$ then we can express deformation as a Taylor series

$$F(\vec{p}) = \vec{t} + A\vec{p} + B\vec{p}^2 +$$

 Common non-linear transformations: tapering, twisting, bending

Non-Linear Transformations

Tapering

Big Picture

- What can we do so far?
 - Model a 3D object (hierarchical objects)
 - Transform a 3D object
- What else do we need?
 - Camera
- Why?
 - We need to project model of the 3D world to 2D film plane (or screen)

Camera Models Part 1

Computer Graphics, CSCD18 Fall 2007 Instructor: Leonid Sigal

Can we just put a film in front of an object?

Film

World Coordinate System

Pinhole Camera

Pinhole Camera

Room size pinhole cameras date back to 18th century

Pinhole camera

- Problems
 - Small pinhole -> sharp image, but little light, slow image acquisition
 - Large pinhole -> reduces sharpness, but faster acquisition

Photograph made with small pinhole

Photograph made with larger pinhole

Images from lecture notes of Matthias Zwicker

Lenses

 Focus the light, so that enough light can be captured in sufficiently short amount of time (i.e. allows the pinhole to be made larger)

6 sec. exposure

0.01 sec exposure

Images from lecture notes of Matthias Zwicker

Lenses

- Lens models in real cameras can be very complex
- We will only consider a simple "Thin Lens" model

All parallel rays converge at focal length *f*Rays through the center are not deflected

For rays that are not parallel, we can derive the thin lens equation

- For rays that are not parallel, we can derive the thin lens equation
- Similar triangles: $y_0/y_1 = z_0/z_1$

- For rays that are not parallel, we can derive the thin lens equation
- Similar triangles: $y_0/y_1 = z_0/z_1$
- Similar triangles: y₀/ y₁= (z₀-f)/f

- For rays that are not parallel, we can derive the thin lens equation
- Similar triangles: $y_0 / y_1 = z_0 / z_1$
- Similar triangles: $y_0 / y_1 = (z_0 f) / f$

What if we put view plane elsewhere?

Relationship of Thin Lens Camera and Pinhole Camera

- Pinhole camera is the idealization of the thin lens camera model, where the aperture shrinks to a tiny hole.
- Let's go back to the pin hole camera, it is simpler to deal with

