
Course Updates
New Instructor: Leonid Sigal (call me Leon)

Contact Info:

Office hours:

Assignment and Exams
Assignment 1 was collected on 
Assignment 2 will be out by Wednesday (individual)
Mid-term is as scheduled on October 24, 5:15-6:30 in HW-214

E-mails: lsigal@utsc.utoronto.ca
ls@cs.toronto.edu

Web Page: http://www.cs.toronto.edu/~ls/

Mondays: 12-1 pm 
(or by appointment)

Office: S625A



3D Transformations

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal



3D Transformations

Why do we need them?
Coordinate transforms
Shape modeling (e.g. surfaces of revolution)

Alex will do this in the tutorial this week (also on 
Assignment 2)

Hierarchical object models
Camera modeling



3D Coordinate Frame

In 3D there are two conventions for 
coordinate frames
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Right-handed Coordinate System
(OpenGL uses this convention)



Affine Transformations

Affine transformations in 3D look the same as in 2D 

Many of the transformations we will talk about today 
are of this type
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Properties of Affine Transformations
Collinearity of points is preserved
Ratio of distances along the line is preserved
Concatenation of affine transformations is also 
an affine transformation
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Homogeneous Affine Transformations

We can rewrite the affine transformation

as follows:

This has nice properties, we will explore them later
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3D Translation

Simple  extension of the 2D translations 
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3D Scaling

Simple  extension of the 2D translations 
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3D Rotation

In general, rotations in 3D are much more 
complicated then 2D rotations

There is typically no unique rotation that does 
what you want 
You can specify rotations in variety of ways that 
are convenient for different tasks (e.g. Euler 
angles, Axis/Angle, Quaternion, Exponential Map)

We will only consider elementary rotations



3D Rotation

2D rotation introduced previously is simply a 3D 
rotation about the Z-axis

But we also have rotations about the X- and Y-axis
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3D Rotation - Examples
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Composing Rotations

Rotation order matters !!!
For example,

So one needs to be careful
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Rotation about Arbitrary Axis

In general we want to rotate a point or an object about 
arbitrary axis    by some 
How do we do this using what we already know?

Hint: Can be done by composing elementary 
rotations
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Rotation about Arbitrary Axis

Idea: Align    with z-axis, then rotate about z-
axis by desired angle 
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1) Rotate    into x-z plane 2) Rotate    in x-z plane
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3) Rotate by      about z-axisθ



Rotation about Arbitrary Axis

Idea: Align    with z-axis, then rotate about z-
axis by desired angle 
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1) Rotate    into x-z plane 2) Rotate    in x-z plane
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3) Rotate by      about z-axisθ

4) Undo (1) and (2), i.e. ( ) ( ) ( ) )()()()()()( 111 φψφψψφ −−== −−−
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Rotation about Arbitrary Axis

Hence rotation about an arbitrary axis can 
always be expressed as a series of elementary 
rotations

How do we obtain values for angles       ?
Alex will cover this in the tutorial this week
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Non-Linear Transformations

Affine transformations 

are 1st order shape deformations
Higher order deformations are also possible, let’s 
consider general differentiable deformation 
then we can express deformation as a Taylor series

Common non-linear transformations: tapering, 
twisting, bending
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Non-Linear Transformations

Original

Tapering

Twisting

Bending



Tapering
x x

y y
z z

Linear TaperScaling
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Big Picture

What can we do so far?
Model a 3D object (hierarchical objects)
Transform a 3D object 

What else do we need?
Camera

Why?
We need to project model of the 3D world to 2D 
film plane (or screen)



Camera Models
Part 1

Computer Graphics, CSCD18
Fall 2007
Instructor: Leonid Sigal



Can we just put a film in front of an 
object?

Film World Coordinate System



Pinhole Camera 

Film

Barrier

World Coordinate System



Pinhole Camera 

Room size pinhole cameras date back to 18th century



Pinhole camera
Problems

Small pinhole -> sharp image, but little light, slow 
image acquisition 
Large pinhole -> reduces sharpness, but faster 
acquisition

Images from lecture notes of Matthias Zwicker



Lenses

Focus the light, so that enough light can be captured 
in sufficiently short amount of time (i.e. allows the 
pinhole to be made larger)

Images from lecture notes of Matthias Zwicker



Lenses

Lens models in real cameras can be very 
complex
We will only consider a simple “Thin Lens” 
model

view plane
lens

surface point

optical axis



Thin Lens Model

All parallel rays converge at focal length 
Rays through the center are not deflected
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Thin Lens Model
For rays that are not parallel, we can derive 
the thin lens equation 

view plane
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Thin Lens Model
For rays that are not parallel, we can derive 
the thin lens equation 
Similar triangles: y0/ y1= z0/ z1
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Thin Lens Model
For rays that are not parallel, we can derive 
the thin lens equation 
Similar triangles: y0/ y1= z0/ z1

Similar triangles: y0/ y1= (z0-f)/f

view plane
lens

z
0

surface point

optical axis

z
1

y0

y1



Thin Lens Model
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For rays that are not parallel, we can derive 
the thin lens equation 
Similar triangles:
Similar triangles:
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What if we put view plane elsewhere?

view plane
lens

z
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surface point

optical axis
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We get spherical blur



Relationship of Thin Lens Camera and 
Pinhole Camera

Pinhole camera is the idealization of the thin 
lens camera model, where the aperture 
shrinks to a tiny hole. 
Let’s go back to the pin hole camera, it is 
simpler to deal with



Conceptual Pinhole Camera

Virtual Film
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Film

f


	Course Updates
	3D Transformations
	3D Transformations
	3D Coordinate Frame
	Affine Transformations
	Properties of Affine Transformations
	Homogeneous Affine Transformations
	3D Translation
	3D Scaling
	3D Rotation
	3D Rotation
	3D Rotation - Examples
	Composing Rotations
	Rotation about Arbitrary Axis
	Rotation about Arbitrary Axis
	Rotation about Arbitrary Axis
	Rotation about Arbitrary Axis
	Non-Linear Transformations
	Non-Linear Transformations
	Tapering
	Big Picture
	Camera ModelsPart 1
	Can we just put a film in front of an object?
	Pinhole Camera
	Pinhole Camera
	Pinhole camera
	Lenses
	Lenses
	Thin Lens Model
	Thin Lens Model
	Thin Lens Model
	Thin Lens Model
	Thin Lens Model
	What if we put view plane elsewhere?
	Relationship of Thin Lens Camera and Pinhole Camera
	Conceptual Pinhole Camera

