| Course Updates

= Assignment 3 Programming IS now In
= Assignment 3 Theory is due today

= Assignment 4 Programming out (due
Monday)

= Assignment 2 Programming Grading

o Texture map is lit by either diffuse or specular but
not both (-2/-0)

o Normals are shown in only diffuse mode (-2/-1)
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‘ Interpolation Basics

= We would like to define curves that meet the
following criteria:
o Interaction should be natural and intuitive
o Smoothness should be controllable
o Analytic derivatives should exist and be easy to compute
o Adjustable resolution (easy to zoom in and out)
o Representation should be compact

= Why do we need these curves
o Animation
o Curved surfaces



How can you animate something like this?



‘ Keyframe Animation

= ldea: specify variables that describe keyframes and
Interpolate them over the sequence




‘ Curves Basics

= Interpolation

o Curve goes through “control
points”

= Approximation
o Curve approximates but does

not go through “control points”

= Extrapolation

o Extending curve beyond
domain of control points



‘ Continuity

= C" continuous function implies that n-th order
derivatives exist
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For animation purposes, C2 continuous functions typically are sufficient



Linear Interpolation

= Simplest possible interpolation technique
o Peace wise linear curve

m Pros:

o Really simple to implement

o Local (interpolation only depends on the closest two control
points)

s Cons:
a Only C! continuous (typically bad for animation)



‘ Cubic Interpolation

= Consider a 2D cubic interplant (a curve in 2D)
c(t) =[x(t) y(t)]

where x(t)=a, +at+a,t* +a,t’
y(t) =b, + bt +b,t* +b,t’



‘ Cubic Interpolation

= Consider a 2D cubic interplant (a curve in 2D)

c(t) =[x(t) y(t)]

where x(t)=a, +at+a,t* +a,t’
y(t) =b, + bt +b,t* +b,t’
Alternatively,

> coefficients

c(t) =

&

bases



‘ Cubic Interpolation
= We have 8 unknowns (coefficients) how

many 2D points do we need to constrain the
curve?

> coefficients




‘ Cubic Interpolation
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‘ Cubic Interpolation
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‘ Cubic Interpolation
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‘ Cubic Interpolation
= Consider a 2D cubic interplant (a curve in 2D)

c(t) =[x(t) y(t)]

where x(t)=a, +at+a,t* +a,t’
y(t) =b, + bt +b,t* +b,t’
Alternatively we can place derivative constrains

d c(t) _
dt

> coefficients

z(1) =




‘ Cubic Interpolation
= Consider a 2D cubic interplant (a curve in 2D)

c(t) =[x(t) y(t)]

where x(t)=a, +at+a,t* +a,t’
y(t) =b, + bt +b,t* +b,t’
Alternatively we can place derivative constrains

r(t) = 2 gt(t) _

> same
coefficients

different bases




‘ Cubic Interpolation

= What happens if there are more then 4 points?

2o There may not be a solution that goes through all
the control points (or any of the control points)

o Interpolation may not result in intuitive results

= Cubic interpolation is global

o Changing one control point changes the
Interpolation for all points

= In general (at least for animation) local control
IS better



Catmull-Rom Splines

= |ldea: piecewise cubic curves of degree-3 with C!
continuity

= A user specifies points and the tangent at each point
IS set to be parallel to the vector between adjacent
points
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= Kk is the st by the user parameter, that determines the
“tension” of the curve




Catmull-Rom Splines

= To interpolate a value for the point between p,
and p;,; one needs to consider 4 bits of
information  p.

Ej+1
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Catmull-Rom Splines

= To interpolate a value for the point between p,
and p;,; one needs to consider 4 bits of

iInformation

4 points lead to cubic interplant
(see lecture notes for details)
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