Course Updates

- Assignment 3 Programming is now in
- Assignment **3 Theory** is due today
- Assignment 4 Programming out (due Monday)
- Assignment 2 Programming Grading
 Texture map is lit by either diffuse or specular but not both (-2/-0)
 Normals are shown in only diffuse mode (-2/-1)

Interpolation, Parametric Curves and Surfaces

Computer Graphics, CSCD18 Fall 2007 Instructor: Leonid Sigal

Interpolation Basics

- We would like to define curves that meet the following criteria:
 - Interaction should be natural and intuitive
 - Smoothness should be controllable
 - Analytic derivatives should exist and be easy to compute
 - Adjustable resolution (easy to zoom in and out)
 - Representation should be compact
- Why do we need these curves
 - Animation
 - Curved surfaces

How can you animate something like this?

Keyframe Animation

Idea: specify variables that describe keyframes and interpolate them over the sequence

Curves Basics

Interpolation

Curve goes through "control points"

Approximation

Curve approximates but does not go through "control points"

Extrapolation

 Extending curve beyond domain of control points

Continuity

Cⁿ continuous function implies that n-th order derivatives exist

Linear Interpolation

- Simplest possible interpolation technique
 - Peace wise linear curve

Pros:

- Really simple to implement
- Local (interpolation only depends on the closest two control points)
- Cons:

Only C¹ continuous (typically bad for animation)

Consider a 2D cubic interplant (a curve in 2D)

c(t) = [x(t) y(t)]

where
$$x(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

 $y(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3$

Consider a 2D cubic interplant (a curve in 2D)

c(t) = [x(t) y(t)]

where
$$x(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

 $y(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3$

We have 8 unknowns (coefficients) how many 2D points do we need to constrain the curve?

Consider a 2D cubic interplant (a curve in 2D)

c(t) = [x(t) y(t)]

where $x(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$ $y(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3$

Alternatively we can place derivative constrains

Consider a 2D cubic interplant (a curve in 2D)

c(t) = [x(t) y(t)]

where $x(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$ $y(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3$

Alternatively we can place derivative constrains

What happens if there are more then 4 points?

- There may not be a solution that goes through all the control points (or any of the control points)
- Interpolation may not result in intuitive results
- Cubic interpolation is global
 - Changing one control point changes the interpolation for all points

In general (at least for animation) local control is better

Catmull-Rom Splines

- Idea: piecewise cubic curves of degree-3 with C¹ continuity
- A user specifies points and the tangent at each point is set to be parallel to the vector between adjacent points

k is the st by the user parameter, that determines the "tension" of the curve

Catmull-Rom Splines

To interpolate a value for the point between p_j and p_{j+1} one needs to consider 4 bits of information \overline{p}_j

Catmull-Rom Splines

 \overline{p}_{j-1}

To interpolate a value for the point between p_j and p_{j+1} one needs to consider 4 bits of information $\overline{p_j}$ 4 points lead to cubic interplant

 p_{j}

 $k(\overline{p}_{j+1})$

(see lecture notes for details)

 $\boldsymbol{k}(\overline{\boldsymbol{p}}_{j+1} - \overline{\boldsymbol{p}}_{j-1})$

 \overline{p}_{j+1}