Course Updates

- Alex will have office hour today
- Assignment 3 Programming is due Friday
- If you are still unsure about ray tracing, there is an excellent demo on the web:

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html

Distribution Ray Tracing: Continuation

Computer Graphics, CSCD18

Fall 2007

Instructor: Leonid Sigal

Benefits of Distribution Ray Tracing

- Better global diffuse lighting
 - Color bleeding
 - Bouncing highlights
- Extended light sources
- Anti-aliasing
- Motion blur
- Depth of field
- Subsurface scattering

Shadows in Ray Tracing

Images from the slides by Durand and Cutler

 Recall, we shoot a ray towards a light source and see if it is intercepted

Soft Shadows with Distribution Ray Tracing

 Lets shoot multiple rays from the same point and attenuate the color based on how many rays are intercepted

How many rays do you need?

Antialising by Deterministic Integration

Idea: Use multiple rays for every pixel

Algorithm

- Subdivide pixel (i,j) into squares
- Cast ray through square centers
- Average the obtained light
- Susceptible to structured noise, repeating textures

Antialising by Monte Carlo Integration

Idea: Use multiple rays for every pixel

Algorithm

- Randomly sample point inside the pixel (i,j)
- Cast ray through square centers
- Average the obtained light
- Susceptible to structured noise, repeating textures

Images from the slides by Durand and Cutler

Specular Reflections

 Recall, we had to shoot a ray in a perfect specular reflection direction (with respect to the camera) and get the radiance at the resulting hit point

Specular Reflections with DRT

Justin Legakis

Llensen

- So far with our Ray Tracers we only considered pinhole camera model (no lens)
 - or alternatively, lens, but tiny aperture

- So far with our Ray Tracers we only considered pinhole camera model (no lens)
 - or alternatively, lens, but tiny aperture
- What happens if we put a lens into our "camera"
 - or increase the aperture
- Remember the thin lens equation?

- So far with our Ray Tracers we only considered pinhole camera model (no lens)
 - or alternatively, lens, but tiny aperture
- What happens if we put a lens into our "camera"
 - or increase the aperture
- Remember the thin lens equation?

P. Haeberli

Camera Shutter

- We ignored the fact that it takes time to form the image
 - We ignored this for radiometry
- During that time the shutter is open and light is collected

Motion Blur

Cook, Porter & Carpenter

Motion Blur

Long Exposure Photography

Motion Blur (long exposures)

Golden Gate Bridge 30 sec. exposure @ f4

Bodie State Park 30 min. exposure @ f4

Motion Blur (short exposures)

Doc Edgerton, 1936

Sub-surface Scattering

H. W. Jensen

Sub-surface Scattering

Bidirectional Surface Scattering Distribution Function)

Rendering with BRDF

Rendering with BSSRDF

H. W. Jensen

Semi-Transparencies

Image form http://www.graphics.cornell.edu/online/tutorial/raytrace/

Texture-mapping and Bump-mapping in Ray Tracer

Image form http://www.graphics.cornell.edu/online/tutorial/raytrace/

Caustics

- Often done using bi-directional ray tracing (a.k.a. photon mapping)
 - Shoot light rays from light sources
 - Accumulate the amount of light (radiance) at each surface
 - Shoot rays through image plane pixels to "look-up" the radiance (and integrate irradiance over the area of the pixel)

