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‘ Light

= Light Is manifested as photons
o Number of photons at a point is zero

o Hence, we going to talk about flux density (i.e.
number of photons per unit area)

= Irradiance — amount of = Radiance — amount of

the light falling on the light leaving the point per
surface patch (measured area (measured in
iIn Watts/meters?) Watts/(sr * meters?))
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‘ Solid Angle

= Solid Angle - measured as the area a of a patch of a

sphere, divided by the squared radius r of the sphere

w_a
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= Intuition: imagine you are at point g and you look out
In all possible directions, solid angle measures the
amount of your view that a patch of the surface S is

taken up




‘ [rradiance

= What is irradiance at surface patch S at point p due to
point light source at € in direction d, with radiance | ?

= First compute the solid angle of S with respect to e
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= Light reaching S

S=ldo=I _dAs_z(ﬁ.J)
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= Irradiance (divide by area)
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‘ Radiance

= Light emitted in direction d, through small surface
patch S at point p, is called radiance L(p,d)

= We need to integrate this quantity over all possible
directions to obtain the radiosity (or radiant exitance)
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‘ Radiance

= Light emitted in direction d, through small surface
patch S at point p, is called radiance L(p,d)

= We need to integrate this quantity over all possible
directions to obtain the radiosity (or radiant exitance)

o But we need to account for foreshortened surface are per
solid angle

= Taking this into account we get
E(p)=[. _ L(p.d.)(A-d,)de



‘ Radiance

= In spherical coordinates, we can express this as a
double integral (assuming infinitesimally small patch)

d, = (cos¢sin 8,sin ¢sin 6,cos )
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E(p)=[.  L(p.d.)(A-d,)de

Jd,

E(p) = | L(p,d.)(fi-d,)sin@dadg
¢ 0




‘ Irradiance from Radiance

= We can get irradiance by integrating radiance over
the entire sphere

= Intuition: Light that is hitting the surface is equal to

the light emitted by everything else in the direction
of the point

3 (ﬁ):”L(E,—Ji)(ﬁ-Ji)sin 6d6dg
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‘ Radiance vs. Irradiance

= Radiance
o Describes light emitted from a surface (per area)
o Function of direction
0 Unitss W -sr-m™

= Irradiance
o Describes light incident on a surface
o Not a directional quantity
o Units: W -m™

= From the radiance emitted from one surface we can
compute the incidence irradiance at a nearby surface



Bidirectional Reflectance Distribution
Function (BRDF)

= BRDF: Ratio of emittant to incident light (i.e. radiance
to irradiance)

- - L(pd,

p(d, ;) = Pl
H(p)

= Models reflectance of simple materials
= Often BRDF must be empirically determined (measured

In a laboratory)

Irradiance H () Radiance L(P, CTe)
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Point Light Sources

= Let’s compute surface radiance for a point light source
with radiant intensity |
o | =flux for a solid angle dw
= We already know (from earlier slides) that for a point
light source irradiance is given by: () - I(n°di2)
e
= We can then get surface radiance by rearranging terms
In the definition of BRDF
L(p.d,) = p(d..d)H(P)
- = 1(n-d,)
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[p-el

|
S
~

o
D

o




‘ Multiple Point Light Sources

= Simple to handle, since light is additive
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‘ Extended Light Sources

= We can use radiance to compute required irradiance
at a point by integrating over the incident directions

= Remember

H(ﬁ):”L(ﬁ,—&i)(ﬁﬂi)sin 0dodg

—

L(p.d.)=[[p(d,.d,) L(P,~d))(7i-d,)sin@dOdg
N,



‘ Idealizing Iighting and Retlectance

= We will consider a few special cases of the
general BRDF models that facilitate lighting

= How do we do Phong lighting in terms of
BRDFs?



‘ Diffuse Reflection

= The only factor that determines appearance (radiance)
of a Lambertian surface is irradiance (incident light)

= In other words, BRDF is constant and independent of
incident and emittent direction. i.e. p(de,d) o)

= The radiance

Ly (P.d.)=p, [L(P.-d)(7i-d,)do,

Ji EQi

Ly(P.d,)=p, [L(P,~d;)coséd

ai EQi

= Since total irradiance must equal radiant exitance

(conservation of energy), we can show that P, 1
=
7T



‘ Diffuse Reflection

= Despise simple BRDF, it's still hard to compute
radiance because of the integral

L (p.d.)=p, [L(P.~d))(7i-d))de
CTieQi

= Assuming point light source helps
o Lets assume single point light source with intensity |

o Thenirradiance is as before H(p) = | (ﬁodiz)
. p-e
- | (fi-d.
Ld(p1de):p0 E _2)
|p—gf

= Assuming that light is far away removes the
denominator L. (P.d.)=p,I(ii-d)
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'Remember the Phong model?

= Remem

per Phong lighting

equation?

L(P.C) =

r,1, max(0,d. - i)

+r, 1, +r,1, max(,r-c)”

= Assuming that light is far away removes the
denominator L. (P.d.)=p,I(ii-d)



' Ambient Illumination

= Remember: we need ambient illumination, because
diffuse lighting looks artificial (parts of the object are
black)

= Ambient illumination is equivalent to uniform
illumination and constant BRDF (as in the diffuse
case)

L.(p.d.)=p, |L(P~d)(A-d))do,

diEQi

= It’s easy to see that the integral in the above equation
IS simply a constant

La(ﬁ16e):pala



'Remember the Phong model?

= Remember Phong lighting equation?

L(p,€)=r, 1, max(0,d. -A)4r 1. kr.l, max(O,r-c)°

a a

2 = Pa

= It's easy to see that the integral in the above equation
IS simply a constant

La(ﬁ1ae):pala



‘ Specular Retlection

= For specular (mirror) surfaces each incident direction is
reflected toward unigue emittant direction

= The emittant direction can be derived as before In the
Phong model

—

d, =2(i-d.)i—d.

= Since all of the light is reflected into a single direction,
the corresponding BRDF can be formulated as follows:

p(d,.d;) o s(d, - |2¢i-d,)i—d, |
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‘ Specular Retlection

= |f we assume that light emitted Is the same amount of
light incident (conservation of energy), we can derive
the proportionality constant
1

p(..d)=—=(d, - [2-d)nd, )

= Specular radiance can then be computed as for other
components | (5,d,)= [ p(d,.d,)L(p.~d,)(A-d,)dw,

d, e,
which simplifies in this case to:

L,(p.d,) = Lp-[2(7-d,)A-d. ) ,
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‘ Oft-axis Secularity

= If we have more complex surfaces (not just mirrors) we
will have off-axis secularities

= In that case the BRDF will not be a simple delta
function and we need to go back to the full integral
formulation for the radiance

= Phong model makes the point light source assumption
that is far away, this leads to the approximation we

already encountered

L(p,€)=r, 1, max(0,d. -fi)+r, 1 4r. 1 max(0,r-c)*




How will all of this help in Ray Tracing?

= We will consider a more accurate (and much more
expensive) approximation to the radiance at the “hit
point” based on the integral of the BRDF and incident
Irradiance

= What do we integrate over?
o We integrate over area of a pixel




