

Graphical Object Models for Detection and Tracking

Leonid Sigal (Is@cs.brown.edu) Department of Computer Science Brown University

Joined work with:

- Ying Zhu, Siemens Corporate Research, Princeton, NJ
- Dorin Comaniciu, Siemens Corporation Research, Princeton, NJ
- Michael J. Black, Department of Computer Science, Brown University

Object Detection and Tracking

NIPS'04 Graphical Models and Kernels Workshop

Many target objects
 Appearance/lighting changes
 Partial occlusions

Different orientations (articulations) of the object

Different scale of objects

Z Many target objects Appearance/lighting changes Partial occlusions Different orientations (articulations) of the object Different scale of objects

Many target objects Appearance/lighting changes Partial occlusions Different orientations (articulations) of the object Different scale of objects

Many target objects Appearance/lighting changes Partial occlusions Different orientations (articulations) of the object Different scale of objects

Many target objects Appearance/lighting changes Partial occlusions Different orientations (articulations) of the object Different scale of objects

NIPS'04 Graphical Models and Kernels Workshop

Object Detection: Machine Learning Approach

NIPS'04 Graphical Models and Kernels Workshop

Object Detection: Using Pixel Values as Features

Many training examples to learnRequires many support vectors

NIPS'04 Graphical Models and Kernels Workshop

Object Detection: Feature Selection + Classification

"Pedestrian" Class Examples

"Background" Class Examples

NIPS'04 Graphical Models and Kernels Workshop

Object Detection: AdaBoost Approach

Wavelet-like over-complete set of features, with simple weak classifiers [-1,1]

~40,000 features to choose from

NIPS'04 Graphical Models and Kernels Workshop

Object Detection: AdaBoost Approach

N is much smaller then the number of pixels (~100)

NIPS'04 Graphical Models and Kernels Workshop

Object Detection: AdaBoost Approach

- Tends to produce many false positives (need motion information Viola & Jones '04)
- Does not explicitly model object parts, or their spatial relationship

Why parts are useful?

Vehicle Objects: Parts

Vehicle Objects

Parts are easier to model

- Parts are robust to appearance changes (due to articulations and lighting)
- Parts can be reused

Part-Based Object Detection

Example-Based Object Detection in Images by Components ('01) A. Mohan, C. Papageorgiou, T. Poggio

Object Class Recognition by Unsupervised Scale-Invariant Learning ('03) R. Fergus, P. Perona, A. Zisserman

A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories ('03) L. Fei-Fei, R. Fergus, P. Perona

Human detection based on a probabilistic assembly of robust part detectors ('04) K. Mikolajczyk, C. Schmid, A. Zisserman

Unlike all previous methods

- We use graphical model to represent an object, which results in elegant inference algorithm
- We incorporate temporal constraints
- Supervised learning (unlike Fergus, Perona, Zisserman)

NIPS'04 Graphical Models and Kernels Workshop

- Object is represented as a 2-layer graphical model
- Each part of the object (and the object itself) is a node
- Spatial (and temporal) constraints are encoded using conditional distributions

NIPS'04 Graphical Models and Kernels Workshop

Graphical Object Models: Modeling Parts

Each part/object has an associated AdaBoost detector

$$X^i = [x, y, s]^T$$

3D parameter vector (Xⁱ) defining the position and the scale of the part/object in an image to be estimated

Graphical Object Models: Spatio-Temporal Extension

Spatial model can be extended in time

NIPS'04 Graphical Models and Kernels Workshop

The joint distribution of the 2-layer spatio-temporal model can be written:

$$P(X_{0}^{O}, X_{0}^{C_{o}}, X_{0}^{C_{1}}, \cdots, X_{0}^{C_{N}}, \cdots, X_{T}^{O}, X_{T}^{C_{o}}, X_{T}^{C_{1}}, \cdots, X_{T}^{C_{N}}, Y_{i} \cdots Y_{T}) = \frac{1}{Z} \prod_{ij} \psi_{ij}(X_{i}^{O}, X_{j}^{O}) \prod_{ik} \psi_{ik}(X_{i}^{O}, X_{i}^{C_{k}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}}) \prod_{ikl} \phi_{ik}(X_{i}^{O}, Y_{i}) \prod_{ikl} \phi_{ik}(X_{i}^{C_{k}}, Y_{i})$$

NIPS'04 Graphical Models and Kernels Workshop

The joint distribution of the 2-layer spatio-temporal model can be written:

State of object at time T

$$P(X_{0}^{O}, X_{0}^{C_{o}}, X_{0}^{C_{1}}, \dots, X_{0}^{C_{N}}, \dots, X_{T}^{O}, X_{T}^{C_{o}}, X_{T}^{C_{1}}, \dots, X_{T}^{C_{N}}, Y_{i} \dots Y_{T}) = \frac{1}{Z} \prod_{ij} \psi_{ij}(X_{i}^{O}, X_{j}^{O}) \prod_{ik} \psi_{ik}(X_{i}^{O}, X_{i}^{C_{k}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}})$$
$$\prod_{i} \phi_{i}(X_{i}^{O}, Y_{i}) \prod_{ik} \phi_{ik}(X_{i}^{C_{k}}, Y_{i})$$

The joint distribution of the 2-layer spatio-temporal model can be written:

State of component 1 at time T

$$P(X_{0}^{O}, X_{0}^{C_{o}}, X_{0}^{C_{1}}, \dots, X_{0}^{C_{N}}, \dots, X_{T}^{O}, X_{T}^{C_{o}}, X_{T}^{C_{1}}, \dots, X_{T}^{C_{N}}, Y_{i} \dots Y_{T}) = \frac{1}{Z} \prod_{ij} \psi_{ij}(X_{i}^{O}, X_{j}^{O}) \prod_{ik} \psi_{ik}(X_{i}^{O}, X_{i}^{C_{k}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}})$$
$$\prod_{i} \phi_{i}(X_{i}^{O}, Y_{i}) \prod_{ik} \phi_{ik}(X_{i}^{C_{k}}, Y_{i})$$

The joint distribution of the 2-layer spatio-temporal model can be written:

Image at time T

$$P(X_{0}^{O}, X_{0}^{C_{o}}, X_{0}^{C_{1}}, \cdots, X_{0}^{C_{N}}, \cdots, X_{T}^{O}, X_{T}^{C_{o}}, X_{T}^{C_{1}}, \cdots, X_{T}^{C_{N}}, Y_{i} \cdot \cdot Y_{T}) = \frac{1}{Z} \prod_{ij} \psi_{ij}(X_{i}^{O}, X_{j}^{O}) \prod_{ik} \psi_{ik}(X_{i}^{O}, X_{i}^{C_{k}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}})$$

$$\prod_{i} \phi_{i}(X_{i}^{O}, Y_{i}) \prod_{ik} \phi_{ik}(X_{i}^{C_{k}}, Y_{i})$$

The joint distribution of the 2-layer spatio-temporal model can be written:

Temporal constraints between objects

$$P(X_{0}^{O}, X_{0}^{C_{o}}, X_{0}^{C_{1}}, \dots, X_{0}^{C_{N}}, \dots, X_{T}^{O}, X_{T}^{C_{o}}, X_{T}^{C_{1}}, \dots, X_{T}^{C_{N}}, Y_{i} \cdots Y_{T}) = \frac{1}{Z} \prod_{ij} \psi_{ij}(X_{i}^{O}, X_{j}^{O}) \prod_{ik} \psi_{ik}(X_{i}^{O}, X_{i}^{C_{k}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}})$$

$$\prod_{i} \phi_{i}(X_{i}^{O}, Y_{i}) \prod_{ik} \phi_{ik}(X_{i}^{C_{k}}, Y_{i})$$

The joint distribution of the 2-layer spatio-temporal model can be written:

Spatial constraints between objects and it's components

$$P(X_0^{O}, X_0^{C_o}, X_0^{C_1}, \dots, X_0^{C_N}, \dots, X_T^{O}, X_T^{O}, X_T^{C_o}, X_T^{C_1}, \dots, X_T^{C_N}, Y_i \cdots Y_T) =$$

$$\frac{1}{Z} \prod_{ij} \psi_{ij}(X_i^O, X_j^O) \prod_{ik} \psi_{ik}(X_i^O, X_i^{C_k}) \prod_{ikl} \psi_{kl}(X_i^{C_k}, X_i^{C_l})$$
$$\prod_{i} \phi_i(X_i^O, Y_i) \prod_{ik} \phi_{ik}(X_i^{C_k}, Y_i)$$

The joint distribution of the 2-layer spatio-temporal model can be written:

Spatial constraints between components of the objects

$$P(X_{0}^{O}, X_{0}^{C_{o}}, X_{0}^{C_{1}}, \cdots, X_{0}^{C_{N}}, \cdots, X_{T}^{O}, X_{T}^{C_{o}}, X_{T}^{C_{1}}, \cdots, X_{T}^{C_{N}}, Y_{i} \cdots Y_{T}) = \frac{1}{Z} \prod_{ij} \psi_{ij}(X_{i}^{O}, X_{j}^{O}) \prod_{ik} \psi_{ik}(X_{i}^{O}, X_{i}^{C_{k}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}})$$

$$\prod_{i} \phi_{i}(X_{i}^{O}, Y_{i}) \prod_{ik} \phi_{ik}(X_{i}^{C_{k}}, Y_{i})$$

The joint distribution of the 2-layer spatio-temporal model can be written:

$$P(X_{0}^{O}, X_{0}^{C_{o}}, X_{0}^{C_{1}}, \cdots, X_{0}^{C_{N}}, \cdots, X_{T}^{O}, X_{T}^{C_{o}}, X_{T}^{C_{1}}, \cdots, X_{T}^{C_{N}}, Y_{i} \cdots Y_{T}) = \frac{1}{Z} \prod_{ij} \psi_{ij}(X_{i}^{O}, X_{j}^{O}) \prod_{ik} \psi_{ik}(X_{i}^{O}, X_{i}^{C_{k}}) \prod_{ikl} \psi_{kl}(X_{i}^{C_{k}}, X_{i}^{C_{l}})$$

$$\prod_{i} \phi_{i}(X_{i}^{O}, Y_{i}) \prod_{ik} \phi_{ik}(X_{i}^{C_{k}}, Y_{i})$$
Evidence for the object

NIPS'04 Graphical Models and Kernels Workshop

The joint distribution of the 2-layer spatio-temporal model can be written:

$$P(X_0^O, X_0^{C_o}, X_0^{C_1}, \cdots, X_0^{C_N}, \cdots, X_T^O, X_T^{C_o}, X_T^{C_1}, \cdots, X_T^{C_N}, Y_i \cdots Y_T) = \frac{1}{Z} \prod_{ij} \psi_{ij}(X_i^O, X_j^O) \prod_{ik} \psi_{ik}(X_i^O, X_i^{C_k}) \prod_{ikl} \psi_{kl}(X_i^{C_k}, X_i^{C_l})$$
$$\prod_i \phi_i(X_i^O, Y_i) \prod_{ikl} \phi_{ik}(X_i^{C_k}, Y_i)$$
Evidence for the each component of the object

NIPS'04 Graphical Models and Kernels Workshop

Inference Algorithm

- Inference in such graphical models can be estimated using Belief Propagation
- But, not when
 - State-space is continuous, and
 - Messages are not Gaussian
- This forces the use of approximate inference algorithms (PAMPAS / Non-Parametric BP)
 - M. Isard (CVPR '03)
 - E. Sudderth, A. Ihler, W.Freeman, A. Willsky (CVPR '03)

Learning Temporal and Spatial Constraints

Constraints (conditional distributions) are modeled using a Mixture of Gaussians with a single Gaussian outlier process

$$\psi_{ij}(\mathbf{X}_{j} | \mathbf{X}_{i}) = \lambda^{0} N(\mu_{ij}, \Lambda_{ij}) + (1 - \lambda^{0}) \sum_{m=1}^{M_{ij}} q_{ijm} N(F_{ijm}(\mathbf{X}_{i}), G_{ijm}(\mathbf{X}_{i}))$$

□ Learned from the set of labeled patterns

NIPS'04 Graphical Models and Kernels Workshop

AdaBoost Image Likelihood

Given a set of labeled patterns AdaBoost learns the weighted combination of base classifiers

$$H(Y | X^{i}) = \sum_{k=1}^{K} \alpha_{k} h_{k}(Y | X^{i})$$

The final strong classifier gives the confidence that a patch of the image Y defined by the state X_i is of the desired class

AdaBoost Image Likelihood

□ We can convert the confidence score $H(Y | X^i)$ into a likelihood by:

$$\phi_i(Y \mid X^i) \propto \exp\left(\frac{H(Y \mid X^i)}{T}\right)$$

- T is the "temperature" parameter that controls the smoothness of the likelihood function
- Note, that the image likelihoods are assumed to be independent (not strictly so due to the possible overlap)

Non-Parametric Belief Propagation (PAMPAS)

Represent messages and beliefs by a discrete set of weighted samples/kernels (i.e. Mixture of Gaussians)

Non-Parametric Belief Propagation (PAMPAS)

Non-Parametric BP can be approximately solved using Monte Carlo integration

□ For details, please see:

Attractive people: Assembling loose-limbed models using nonparametric belief propagation (NIPS '03) L. Sigal, M. I. Isard, B. H. Sigelman, M. J. Black

Tracking Loose-limbed People (CVPR '04) L. Sigal, S. Bhatia, S. Roth, M. J. Black, M. Isard

NIPS'04 Graphical Models and Kernels Workshop

Preliminary Experiments: Vehicle Detection and Tracking

Top-Left

Original Image

Top-Right

Bottom-Left

Object

Bottom-Right

NIPS'04 Graphical Models and Kernels Workshop

Preliminary Experiments: Vehicle Detection and Tracking

Part detectors are unreliable

NIPS'04 Graphical Models and Kernels Workshop

Preliminary Experiments: Vehicle Detection and Tracking

NIPS'04 Graphical Models and Kernels Workshop

Preliminary Experiments: Pedestrian Detection

Pedestrian Parts/Components

Object (GOM+BP)

Parts (GOM+BP)

Conclusions

- New framework that provides unified approach to object/detection and tracking
 - Tracking can benefit from object detection to resolve transient failures
 - Object detection can benefit from temporal consistency
- Part-based object detection and tracking formulated using Graphical Models and solved using approximate BP
- We can successfully detect and track two classes of objects (pedestrians and cars)

Future Work

Image likelihoods are not really independent (correlations may be explicitly modeled)

Distributed Occlusion Reasoning for Tracking with Nonparametric Belief Propagation E. Sudderth, M. Mandel, W. Freeman, A. Willsky

Multi-target detection

Currently we can detect multiple targets by exclusion (one target at a time)

Unsupervised / semi-supervised learning of Graphical Object Models

Thank you !!!

NIPS'04 Graphical Models and Kernels Workshop