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Abstract

Inspired by the observation that humans are able to pro-

cess videos efficiently by only paying attention where and

when it is needed, we propose an interpretable and easy

plug-in spatial-temporal attention mechanism for video ac-

tion recognition. For spatial attention, we learn a saliency

mask to allow the model to focus on the most salient parts

of the feature maps. For temporal attention, we employ

a convolutional LSTM based attention mechanism to iden-

tify the most relevant frames from an input video. Further,

we propose a set of regularizers to ensure that our atten-

tion mechanism attends to coherent regions in space and

time. Our model not only improves video action recog-

nition accuracy, but also localizes discriminative regions

both spatially and temporally, despite being trained in a

weakly-supervised manner with only classification labels

(no bounding box labels or time frame temporal labels).

We evaluate our approach on several public video action

recognition datasets with ablation studies. Furthermore, we

quantitatively and qualitatively evaluate our model’s abil-

ity to localize discriminative regions spatially and critical

frames temporally. Experimental results demonstrate the

efficacy of our approach, showing superior or comparable

accuracy with the state-of-the-art methods while increasing

model interpretability.

1. Introduction

An important property of human perception is that one

does not need to process a scene in its entirety at once.

Instead, humans focus attention selectively on parts of the

visual space to acquire information where and when it is

needed, and combine information from different fixations

over time to build up an internal representation of the

scene [23], which can be used for interpretation or predic-

tion.

In computer vision and natural language processing, over

the last couple of years, attention models have proved im-

portant, particularly for tasks where interpretation or expla-

nation requires only a small portion of the image, video

or sentence. Examples include visual question answering

[19, 43, 45], activity recognition [6, 18, 26], and neural ma-

chine translation [1, 38]. These models have also provided

certain interpretability, by visualizing regions selected or at-

tended over for a particular task or decision. In particular,

for video action recognition, a proper attention model can

help answer the question of not only where but also when it

needs to look at the image evidence to draw a decision. It

intuitively explains which part the model attends to and pro-

vides easy-to-interpret rationales when making a particular

decision. Such interpretability is helpful and even necessary

for some real applications, e.g., medical AI systems [52] or

self-driving cars [14].

Visual attention for action recognition in videos is chal-

lenging as videos contain both spatial and temporal in-

formation. Previous work in attention-based video action

recognition either focused on spatial attention [6, 18, 26] or

temporal attention [35]. Intuitively, both spatial attention

and temporal attention should be integrated together to help

make and explain the final action prediction. In this paper,

we propose a novel spatio-temporal attention mechanism

that is designed to address these challenges. Our attention

mechanism is efficient, due to its space- and time- separa-

bility, and yet flexible enough to enable encoding of effec-

tive regularizers (or priors). As such, our attention mecha-

nism consists of spatial and temporal components shown in

Fig. 1. The spatial attention component, which attenuates

frame-wise CNN image features, consists of the saliency

mask, regularized to be discriminative and spatially smooth.

The temporal component consists of a uni-modal soft atten-

tion mechanism that aggregates information over the nearby

attenuated frame features before passing it into a convolu-

tional LSTM for class prediction.
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Figure 1. Spatio-temporal attention for video action recognition. The convolutional features are attended over both spatially, in each

frame, and subsequently temporally. Both attentions are soft, meaning that the effective final representation at time t of an RNN, used to

make the prediction, is a spatio-temporally weighted aggregation of convolutional features across the video along with the past hidden state

from t− 1. For details please refer to Sec. 3.

Contributions: In summary, the main contributions of this

work are: (1) We introduce an interpretable and easy plug-

in spatial-temporal attention for video action recognition,

which consists of the saliency mask for spatial attention

learned by ConvNets and temporal attention learned by con-

volutional LSTM. (2) We introduce three different regular-

izers, two for spatial and one for temporal attention com-

ponents, to improve performance and interpretability of our

model; (3) We demonstrate the efficacy of our model for

video action recognition on three public datasets and ex-

plore the importance of our modeling choices through ab-

lation experiments; (4) Finally, we qualitatively and quan-

titatively show that our spatio-temporal attention is able to

localize discriminative regions and important frames, de-

spite being trained in a purely weakly-supervised manner

with only classification labels.

2. Related work

2.1. Visual explanations of neural networks

Various methods have been proposed to provide expla-

nations of neural networks by visualization [20, 22, 29, 34,

49, 50, 51], including visualizing the gradients, perturbing

the inputs, and bridging relations with other well-studied

systems. The class activation mapping (CAM) applies the

global average pooling layer for identifying discriminative

regions [55]. The gradient-weighted class activation map-

ping (Grad-CAM) utilizes the gradient flow and relaxes the

architectural assumptions made by CAM [25]. The guided

attention inference network (GAIN) makes the network’s

attention trainable in an end-to-end fashion [17]. Visual at-

tention is one way to explain which part of the image is

responsible for the network’s decision [12, 14]. A visual

attention model is used to train a ConvNet regressor from

images to steering angle for self-driving cars, and image

regions that potentially influence the network’s output are

highlighted by the model [14]. A semantically and visually

interpretable medical image diagnosis network is proposed

to explore discriminative image feature descriptions from

reports [52]. However, few work focus on visual interpre-

tation both spatially and temporally.

2.2. Visual attention for video action recognition

Video action recognition is one of the fundamental

problems in computer vision and has been widely stud-

ied [2, 5, 7, 36, 30, 37]. A recent survey can be found

in [15], so here we only focus on attention-based models

[4, 6, 18, 26, 32, 35]. For video action recognition, visual-

izing which part of the frame and which frame of the video

sequence that the model was attending to provides valu-

able insight into the model’s behavior. An attention-driven

LSTM [26] is proposed for action recognition and it can

highlight important spatial locations. Attentional pooling

[6] introduces an attention mechanism based on a deriva-

tion of bottom-up and top-down attention as low-rank ap-

proximations of bilinear pooling methods. However, these

work only focus on the crucial spatial locations of each im-

age, without considering temporal relations among differ-

ent frames in a video sequence. To alleviate this shortcom-

ing, visual attention is incorporated in the motion stream

[4, 18, 41]. However, the motion stream only employs the

optical flow frames generated from consecutive frames, and

cannot consider the long-term temporal relations among

different frames in a video sequence. Moreover, motion

stream needs additional optical flow frames as input, which

imposes burden due to additional optical flow extraction,



storage and computation and is especially severe for large

datasets. [35] proposes an attention based LSTM model to

highlight frames in videos, but spatial information is not

used for temporal attention. An end-to-end spatial and tem-

poral attention model is proposed in [32] for human action

recognition, but additional skeleton data is needed.

2.3. Spatial and temporal action localization

Spatial and temporal action localization have been long

studied and here we constrain the discussion to some re-

cent learning based methods [28, 31, 39, 42, 44, 47, 48].

For spatial localization, [42] proposes to detect propos-

als at the frame-level and scores them with a combination

of static and motion CNN features, and then tracks high-

scoring proposals throughout the video using a tracking-

by-detection approach. However, these models are trained

in a supervised manner in which bounding box annotations

are required. For temporal localization, [47] employs RE-

INFORCE to learn the agent’s decision policy for action

detection. UntrimmedNet [39] couples the classification

and the selection module to learn the action models and

reason about the action temporal duration in a weakly su-

pervised manner. However, the above mentioned methods

consider spatial and temporal localization separately. A

spatio-temporal action localization is proposed to localize

both spatially and temporally in [31], but both spatial and

temporal labels are required. It is very expensive and time-

consuming to acquire these per-frame labels in large-scale

video datasets.

Our proposed method can localize discriminative re-

gions both spatially and temporally besides improving ac-

tion recognition accuracy, despite being trained in a weakly-

supervised fashion with only classification labels.

3. Spatial-temporal attention mechanism

Our overall model is an Recurrent Neural Network

(RNN) that aggregates frame-based convolutional features

across the video to make action predictions as shown in

Fig. 1. The convolutional features are attended over both

spatially, in each frame, and subsequently temporally for

the entire video sequence. Both attentions are soft, mean-

ing that the effective final representation at time t is a spatio-

temporally weighted aggregation of convolutional features

across the video along with the past hidden state from t−1.

The core novelty is the overall form of our spatio-temporal

attention mechanism and the additional terms of the loss

function that induce sensible spatial and temporal attention

priors.

3.1. Convolutional frame features

We use the last convolutional layer output extracted by

ResNet50 or ResNet101 [8], pretrained on the ImageNet [3]

dataset and fine-tuned for the target dataset, as our frame

Spatial Attention

CNN ⦿

X̃iXi Mi

Figure 2. Spatial attention component. We use several layers of

convolutional network to learn the importance mask Mi for the

input image feature Xi, the output is the element-wise multiplica-

tion X̃i = Xi ⊙Mi. Details please refer to Sec. 3.2.

feature representation. We acknowledge that more accurate

feature extractors (for instance, network with more param-

eters such as ResNet-152 or higher performance networks

such as DenseNet [10] or SENet [9]) and optical flow fea-

tures will likely lead to better overall performance. Our pri-

mary purpose in this paper is to prove the efficacy of our

spatial-temporal attention mechanism. Hence we keep the

features relatively simple.

3.2. Spatial attention with importance mask

We apply an importance mask Mi to the image feature

Xi of the i-th frame to obtain attended image features by

element-wise multiplication:

X̃i = Xi ⊙Mi, (1)

for 1 ≤ i ≤ n, where n is the number of frames, and each

entry of M lies in [0, 1]. This operation attenuates certain

regions of the feature map based on their estimated impor-

tance. Here we simply use three convolutional layers to

learn the importance mask. Fig. 2 illustrates our spatial

attention component and Table 1 shows the network archi-

tecture details. However, if left unconstrained, an arbitrarily

structured mask could be learned, leading to possible over-

fitting. We posit that, in practice, it is often useful to attend

to a few important larger regions (e.g., objects, elements of

the scene). To induce this behavior, we encourage smooth-

ness of the mask by introducing total variation loss on the

spatial attention, as will be described in Sec. 3.4.

3.3. Temporal attention based on ConvLSTM

We introduce the temporal attention mechanism inspired

by attention for neural machine translation [1]. However,

Index Operation

(1) Xi

(2) CONV-(N1024, K3, S1, P1), BN, ReLU

(3) CONV-(N512, K3, S1, P1), BN, ReLU

(4) CONV-(N1, K3, S1, P1), Sigmoid

Table 1. Architecture of our spatial attention module (N: num-

ber of channels, K: kernel size, S: stride, P: padding).



conventional LSTM in neural machine translation uses full

connections in the input-to-state and state-to-state transi-

tions and cannot encode the spatial information in images.

Therefore, to mitigate this drawback, we use Convolutional

LSTM (ConvLSTM) [27] instead. For ConvLSTM, each in-

put, cell output, hidden state, and gate are 3D tensors whose

last two dimensions are spatial dimensions. These 3D ten-

sors can preserve spatial information, which is more suit-

able for image inputs.

Our temporal attention mechanism generates energy for

each attended frame X̃i at each time step t,

eti = Φ(Ht−1, X̃i), (2)

where Ht−1 represents the ConvLSTM hidden state at time

t− 1 that implicitly contains all previous information up to

time step t − 1, X̃i represents the i-th frame masked fea-

tures, and Φ(Ht−1, X̃i) = ΦH(Ht−1) + ΦX(X̃i), where

ΦH and ΦX are feed-forward neural networks which are

jointly trained with all other components of the proposed

system.

This temporal attention model directly computes a soft

attention weight for each frame at each time t as shown in

Fig. 3. It allows the gradient of the cost function to be back-

propagated through. This gradient can be used to train the

entire spatial-temporal attention model jointly.

The importance weight wti for each frame is:

wti =
exp(eti)

∑n

i=1
(exp(eti))

, (3)

for 1 ≤ i ≤ n, 1 ≤ t ≤ n. This importance weighting

mechanism decides which frame of the video to pay atten-

tion to. The final feature map Yt that is input to the Con-

vLSTM is a weighted sum of the features from all of the

frames:

Yt =
1

n

n
∑

i=1

wtiX̃i, (4)

where X̃i denotes the i-th masked frame of each video.

We use the following initialization strategy [46] for the

ConvLSTM cell state and hidden state for faster conver-

gence:

C0 = gc(
1

n

n
∑

i=1

X̃i), H0 = gh(
1

n

n
∑

i=1

X̃i), (5)

where gc and gh are two layer convolutional networks with

batch normalization [11].

We calculate the average hidden states of ConvLSTM

over time length n, H = 1

n

∑n

i=1
Hi and send it to a fully

connected classification layer for the final video action clas-

sification.

Temporal Attention
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Figure 3. Temporal attention component. The temporal attention

learns a temporal attention weight wti at each time step t. The final

feature map Yt at time t to the ConvLSTM is a weighted sum of

the feature from all the previous masked frames. For details please

refer to Sec. 3.3.

3.4. Loss function

Considering the spatial and temporal nature of our video

action recognition, we would like to learn (1) a sensible at-

tention mask for spatial attention, (2) reasonable importance

weighting scores for different frames, and (3) improve the

action recognition accuracy at the same time. Therefore, we

define our loss function L as:

L = LCE+λTVLTV+λcontrastLcontrast+λunimodalLunimodal,

(6)

where LCE is the cross entropy loss for classification, LTV

represents the total variation regularization [24]; Lcontrast

represents the mask and background contrast regularizer;

and Lunimodal represents unimodality regularizer. λTV,

λcontrast and λunimodal are the weights for the correspond-

ing regularizers.

The total variation regularization LTV of the learnable

attention mask encourages spatial smoothness of the mask

and is defined as:

LTV=
n
∑

i=1

⎛

⎝

∑

j,k

|M j+1,k
i −M

j,k
i |+

∑

j,k

|M j,k+1

i −M
j,k
i |

⎞

⎠

(7)

where Mi is the mask for the i-th frame, and M
j,k
i is the

entry at the (j, k)-th spatial location of the mask. The con-

trast regularization Lcontrast of learnable attention mask is

used to suppress the irrelevant information and highlight

important parts:

Lcontrast =
n
∑

i=1

(

−
1

2
Mi ⊙Bi +

1

2
Mi ⊙ (1−Bi)

)

(8)

where Bi = I{Mi > 0.5} represents the binarized mask, I

is an indicator function applied element-wise.



The unimodality regularizer Lunimodal encourages the

temporal attention weights to be unimodal, biasing against

spurious temporal weights. This stems from our observation

that in most cases only one activity would be present in the

considered frame window, with possible irrelevant informa-

tion on either or both sides. Here we use the log concave

distribution to encourage the unimodal pattern of temporal

attention weights:

Lunimodal =
n
∑

t=1

n−1
∑

i=2

max{0, wt,i−1wt,i+1 − w2
t,i} (9)

3.5. Log-concave regularization

A probability distribution is unimodal if it has a single

peak or mode. The temporal attention weights are a uni-

variate discrete distribution over the frames, indicating the

importance of the frames for the task of classification. In

the context of activity recognition, it is reasonable to as-

sume that the frames that contain salient information should

be consecutive, instead of scattered around. Therefore, we

introduce a mathematical concept called the log-concave se-

quence and design a regularizer that encourages unimodal-

ity. We first give a formal definition of the unimodal se-

quence.

Definition 1. A sequence {ai}
n
i=1 is unimodal if for some

integer m,
{

ai−1 ≤ ai if i ≤ m,

ai ≥ ai+1 if i ≥ m.

A univariate discrete distribution is unimodal, if its prob-

ability mass function forms a unimodal sequence. The log-

concave sequence is defined as follows.

Definition 2. A non-negative sequence {ai}
n
i=1 is log-

concave if a2i ≥ ai−1ai+1.

This property gets its name from the fact that if {ai}
n
i=1

is log-concave, then the sequence {log ak}
n
i=1 is concave.

The connection between unimodality and log-concavity is

given by the following proposition.

Proposition 1. A log-concave sequence is unimodal.

The proof of this proposition is given in the supplemen-

tary material. Given the definition of log-concavity, it is

straightforward to design a regularization term that encour-

ages log-concavity:

R =
n−1
∑

i=2

max{0, ai−1ai+1 − a2i }. (10)

By Proposition 1, this regularizer also encourages uni-

modality.

4. Experiments

In this section, we first conduct experiments to evaluate

our proposed method on video action recognition tasks on

three publicly available datasets. We then evaluate our spa-

tial attention mechanism on the spatial localization task and

our temporal attention mechanism on the temporal localiza-

tion task respectively.

4.1. Video action recognition

We first conduct extensive studies on the widely used

HMDB51 [16] and UCF101 [33] datasets. The purpose of

these experiments is mainly to examine the effects of dif-

ferent sub-components. We then show that our method can

be applied to the challenging large-scale Moments in Time

dataset [21].

Datasets. HMDB51 dataset [16] contains 51 distinct action

categories, each containing at least 101 clips for a total of

6,766 video clips extracted from a wide range of sources.

These videos include general facial actions, general body

movements, body movements with object interaction, and

body movements for human interaction.

UCF101 dataset [33] is an action recognition dataset of

realistic action videos, collected from YouTube, with 101

action categories.

Moments in Time Dataset [21] is a collection of one mil-

lion short videos with one action label per video and 339

different action classes. As there could be more than one

action taking place in a video, action recognition models

may predict an action correctly yet be penalized because

the ground truth does not include that action. Therefore, it

is believed that top 5 accuracy measure will be more mean-

ingful for this dataset.

Baselines. For HMDB51 and UCF101, we use three

attention-based methods (Visual attention [26], VideoL-

STM [18], and Attentional Pooling [6]) and our own

method without attention (ResNet101-ImageNet) as base-

lines. For the Moments in Time dataset, as there

are no attention-based methods results available, we use

ResNet50-ImageNet [21], TSN-Spatial [40] and TRN-

Multiscale [54] as our baselines.

Experimental setup. We use the same parameters for

HMDB51 and UCF101: a single convolutional LSTM layer

with 512 hidden-state dimensions, sequence length n = 25,

λTV = 10−5, λcontrast = 10−4, and λunimodal = 1. For

the Moments in Time dataset, we use time sequence length

n = 15. The dataset pre-processing and data augmentation

are the same as the ResNet ImageNet experiment [8]. For

more details on the experimental setup, please refer to the

supplementary material.

Qualitative results. We visualize the spatial attention and

temporal attention results in Fig. 4. The spatial attention can
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Figure 4. Examples of spatial temporal attention. (Best viewed in color.) A frame sequence from a video of Drink action in HMDB51.

The original images are shown in the top row, spatial attention is shown as heatmap (red means important) in the middle row, and temporal

attention score is shown as the gray image (the brighter the frame is, the more crucial the frame is) in the bottom row. It shows that spatial

attention can focus on important areas while temporal attention can attend to crucial frames. The temporal attention also shows a unimodal

distribution for the entire action from starting to drink to completing the action.

correctly focus on the important spatial areas of the image,

and the temporal attention shows a unimodal distribution for

the entire action from starting frame to final frame. More

results are shown in the supplementary material.

Quantitative results. We show the top-1 video action clas-

sification accuracy for HMDB51 and UCF101 datasets in

Table 2. Our proposed model outperforms previous atten-

tion based models [6, 18, 26] and ResNet101-ImageNet

with the same input. The ablation experiments demon-

strate that all the sub-components of the proposed method

contribute to improving the final performance. The re-

sults on the Moments in Time dataset are reported in Ta-

ble 3. Our method achieves the best accuracy comparing to

other methods using just RGB modality input. Furthermore,

our spatial-temporal attention mechanism is an easy plug-in

model which could be based on different architectures. As

shown in Table 4, our spatial-temporal attention mechanism

can boost performance for different base networks. It also

indicates that base networks are also crucial for the final

performance as higher-capacity base networks can provide

better image features as input to our model.

4.2. Weakly supervised action localization

Due to the existence of spatial and temporal attention

mechanisms, our model can not only classify the action of

the video, but also give a better interpretability of the re-

sults, i.e. telling which region and frames contribute more

to the prediction. In other words, our proposed model can

also localize the most discriminant region and frames at the

same time. To verify this, we conduct the spatial localiza-

tion and temporal localization experiments.

4.2.1 Spatial action localization

The spatial localization is designed to detect the most im-

portant region in the image. With the explicit attention mask

prediction in our spatial attention module, the region with

higher value in the mask is considered naturally more im-

portant.

Dataset. UCF101-24 is a subset of 24 classes out of 101

classes of UCF101 [33] that comes with spatio-temporal lo-

calization annotation, in the form of bounding box annota-

tions for humans, with THUMOS2013 and THUMOS2014

challenges [13].

Baselines and error metric. We use supervised meth-

ods Fast action proposal [48] and Learning to track [42]

Model HMDB51 UCF101

Visual attention [26] 41.31 84.96

VideoLSTM [18] 43.30 79.60

Attentional Pooling [6] 50.80 –

ResNet101-ImageNet 50.04 83.30

Ours 53.07 87.11

Ablation Experiments

Ours w/o spatial attention 51.98 85.78

Ours w/o temporal attention 52.25 85.86

Ours w/o LTV 52.01 85.89

Ours w/o Lcontrast 52.10 85.98

Ours w/o Lunimodal 52.05 86.10

Table 2. Top-1 accuracy (%) on HMDB51 and UCF101 dataset.

Model Top-1 (%) Top-5 (%)

ResNet50-ImageNet [21] 26.98 51.74

TSN-Spatial [40] 24.11 49.10

TRN-Multiscale [54] 27.20 53.05

Ours 27.86 53.52

Table 3. Results on Moments in Time dataset with RGB modal-

ity. ResNet50-ImageNet and TRN-Multiscale spatial results re-

ported here are based on authors’ publicly released trained model.



Base network ResNet50 ResNet101 ResNet152

w/o attention 47.5 50.0 50.4

w attention 49.8 53.1 54.4

Table 4. Top-1 accuracy (%) on HMDB51 of our spatio-

temporal attention mechanism with different base networks.

It shows our spatial-temporal attention mechanism can boost per-

formance for different base networks. It also indicates base net-

works plays a vital role in the final performance as high-capacity

base model can provide more accurate image features.

(a) (b) (c)

(d) (e) (f)

Figure 5. Examples of spatial attention for action localization.

(Best viewed in color.) Blue bounding boxes represent ground

truth while the red ones are predictions from our learned spatial

attention. (a) long jump, (b) rope climbing, (c) skate boarding, (d)

soccer juggling, (e) walking with dog, (f) biking.

as our baselines as currently there are no quantitative re-

sults available for weakly supervised setting. Fast action

proposal [48] is formulated as a maximum set coverage

problem and solved by a greedy-based method, and can

capture spatial-temporal video tube of high potential to lo-

calize human action. Learning to track [42] first detects

frame-level proposals and scores them with a combination

of static and motion CNN features. It then tracks high-

scoring proposals throughout the video using a tracking-by-

detection approach. Note that these supervised spatial lo-

calization methods require bounding box annotations, while

our method only needs classification labels.

We use Intersection Over Union (IoU) of the predicted

and ground truth bounding boxes as our error metric.

Experimental setup. For training, we only use the classifi-

cation labels without spatial bounding box annotations. For

evaluation, we threshold the produced saliency mask at 0.5

and the tightest bounding box that contains the thresholded

saliency map is set as the predicted localization box for each

frame. The predicted localization boxes are compared with

the ground truth bounding boxes at different IoU levels.

Qualitative results. We show some qualitative results in

Fig. 5. Our spatial attention can attend to important action

areas. The ground truth bounding boxes include all the hu-

man actions, while our attention could attend to crucial parts

of an action such as in Fig. 5(d) and (e). Furthermore, our

attention mechanism is able to attend to areas with multi-

ple human actions. For instance, in Fig. 5(f) the ground

truth only includes one person bicycling, but our attention

can include both people bicycling. More qualitative results

including failure cases are included in the supplementary

material.

Quantitative results. Table 5 shows the quantitative re-

sults for UCF101-24 spatial localization results. Our atten-

tion mechanism works better compared with the baseline

methods when the IoU threshold is lower mainly because

our model only focuses on important spatial areas rather

than the entire human action annotated by bounding boxes.

Compared with the baseline methods trained with ground

truth bounding boxes, we only use the action classification

labels, no ground truth bounding boxes are used.

4.2.2 Temporal action localization

The temporal localization is designed to find the start and

end frame of the action in the video. Intuitively, the weight

of each frame predicted by the temporal attention module in

our model indicates the importance of each frame.

Dataset. The action detection task of THUMOS14 [13]

consists of 20 classes of sports activities, and contains 2765

trimmed videos for training, and 200 and 213 untrimmed

videos for validation and test, respectively. Following the

standard practice [47, 53], we use the validation set as train-

ing and evaluate on the testing set. To avoid the training

ambiguity, we remove the videos with multiple labels. We

extract RGB frames from the raw videos at 10 fps.

Baselines and error metric. We compare our method with

a reinforcement learning based method REINFORCE [47]

and a weakly supervised method UntrimmedNets [39] for

temporal action localization. [47] formulates the model as

a recurrent neural network-based agent that interacts with a

video over time, and use REINFORCE to learn the agent’s

decision policy. UntrimmedNets [39] couple both the clas-

sification module and the selection module to learn the ac-

tion models and reason about the temporal duration of ac-

tion instances.

Intersection Over Union (IoU) of the predicted and

ground truth temporal labels are used as our error metric.

Experimental setup. We use the same hyperparameters

for THUMOS14 as HMDB51, UCF101 and UCF101-24.

For training, we only use the classification labels with-

out temporal annotation labels. For evaluation, we thresh-

old the normalized temporal attention importance weight at

0.5. These predicted temporal localization frames are then



Figure 6. Examples of temporal attention from THUMOS14. The upper two rows show original images of the Volleyball action, and the

corresponding images overlaid with temporal attention weights. The lower two rows show the Throw Discus action. Our temporal attention

module can automatically highlight important frames and avoid irrelevant frames corresponding to non-action poses or background.

compared with the ground truth annotation at different IoU

thresholds.

Qualitative results. We first visualize some examples of

learned attention weights on the test data of THUMOS14 in

Fig. 6. We see that our temporal attention module is able

to automatically highlight important frames and to avoid ir-

relevant frames corresponding to background or non-action

human poses. More qualitative results are included in the

supplementary material.

Quantitative results. With our spatial temporal attention

mechanism, the video action classification accuracy for the

THUMOS’14 20 classes improved from 74.45% to 78.33%:

a 3.88% increase. Besides improving the classification ac-

curacy, we show our temporal attention mechanism is able

to highlight discriminative frames quantitatively in Table 6.

Compared with reinforcement learning based method [47]

and weakly supervised method [39], our method achieves

the best accuracy in terms of different levels of IoU thresh-

olds.

5. Conclusion

In this paper we have introduced an interpretable spatial-

temporal attention mechanism for video action recognition.

Also, we propose a set of regularizers that ensure our at-

tention mechanism attends to coherent regions in space and

time, further improving the performance. Besides boost-

ing video action recognition accuracy, our easy-plug-in

spatio-temporal mechanism can increase the model inter-

pretability. Furthermore, we qualitatively and quantitatively

demonstrate that our spatio-temporal attention is able to

localize discriminative regions and important frames, de-

spite being trained in a purely weakly-supervised manner

with only classification labels. Experimental results demon-

strate the efficacy of our approach, showing superior or

comparable accuracy with the state-of-the-art methods. For

future work, it will be promising to integrate our spatio-

temporal attention mechanism into 3D ConvNets [2, 7, 37]

for improving action recognition performance and increas-

ing model interpretability.

Methods α = 0.05 α = 0.1 α = 0.2 α = 0.3
Fast action proposal∗ [48] 42.8% – – –

Learning to track∗ [42] 54.3% 51.7% 47.7% 37.8%

Ours 67.0% 58.2% 40.2% 30.7%

Table 5. Spatial action localization results on UCF101-24 dataset measured by mAP at different IoU thresholds α. *The baseline

methods are strongly supervised spatial localization methods.

Method α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5
REINFORCE [47] 48.9% 44.0% 36.0% 26.4% 17.1%

UntrimmedNet [39] 44.4% 37.7% 28.2% 21.1% 13.7%

Ours 70.0% 61.4% 48.6% 32.6% 17.9%

Table 6. Temporal action localization results on THUMOS’14 dataset measured by mAP at different IoU thresholds α.
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