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A B S T R A C T

In this paper, we focus on the unsupervised domain adaptation problem where an approximate infer-
ence model is to be learned from a labeled data domain and expected to generalize well to an unlabeled
data domain. The success of unsupervised domain adaptation largely relies on the cross-domain fea-
ture alignment. Previous work has attempted to directly align latent features by the classifier-induced
discrepancies. Nevertheless, a common feature space cannot always be learned via this direct feature
alignment especially when a large domain gap exists. To solve this problem, we introduce a Gaussian-
guided latent alignment approach to align the latent feature distributions of the two domains under the
guidance of the prior distribution. In such an indirect way, the distributions over the samples from
the two domains will be constructed on a common feature space, i.e., the space of the prior, which
promotes better feature alignment. To e�ectively align the target latent distribution with this prior
distribution, we also propose a novel unpaired L1-distance by taking advantage of the formulation
of the encoder-decoder. The extensive evaluations on nine benchmark datasets validate the superior
knowledge transferability through outperforming state-of-the-art methods and the versatility of the
proposed method by improving the existing work significantly.

1. Introduction
The performance of computer vision models has been

improved significantly by deep neural networks that take ad-
vantage of large quantities of labeled data. However, the
models trained on one dataset typically perform poorly on
another, di�erent, but related, dataset [42, 30]. This short-
coming calls for adaptation strategies that help transfer knowl-
edge from a label-rich source domain to a label-scarce target
domain. Among such adaptation strategies, unsupervised
domain adaptation (UDA) aims at mitigating domain shift
in a way that does not use the target dataset labels, while at-
tempting to maximize the performance of the classifier on
them. Existing UDA algorithms attempt to mitigate domain
shifts by only considering the classifier-induced discrepancy
between the two domains, which can reduce the domain di-
vergence [1]. Both adversarial [4, 10, 14, 37, 43] and non-
adversarial domain adaptation (DA) [24, 48] methods work
under the guidance of convergence learning bounds [1]. The
main idea behind these bounds is that concurrently minimiz-
ing the source domain classification error and the classifier-
induced discrepancy between the source domain and the tar-
get domain, inadvertently aligning the two latent feature spaces
in which classification is done. In particular, adversarial
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Figure 1: (Best viewed in color.) Existing UDA methods try
to align the feature distributions of the two domains by the
classifier-induced discrepancies. However, it might be difficult
for them to construct the two feature distributions in a single
distribution space or align arbitrarily complex feature distribu-
tions in that space. Our method attempts to indirectly align
the features of the two domains under the guidance of the
Gaussian prior distribution. Our method can encourage the
features of the two domains to be constructed in a common
feature space, i.e., the space of the Gaussian prior, where the
target samples can maximally take advantage of the discrimi-
native source features for their own classification tasks.

DA attempts to align the feature spaces by minimizing the
classifier-induced discrepancy with adversarial objectives.

However, as shown in Figure 1, adaptation in this manner
alone cannot e�ectively learn a common feature space for the
classification in the two domains. This claim is empirically
validated in Section 5.1. To address this problem, we pro-
pose a discriminative feature alignment (DFA) to align the
two latent feature distributions of the source dataset and the
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target dataset under the guidance of the Gaussian prior (sim-
ilar to VAE [18]). Because the classification takes place in
the latent space, the latent space itself is discriminative, in
turn, making alignment focus on the discriminative feature
distributions. Our approach is built on the encoder-decoder
(autoencoder) formulation with an implicitly shared discrim-
inative latent space (see Figure 3). Specifically, we define
a feature extractor G which takes and encodes input sam-
ples into a latent space; similarly we define a decoder D

which takes a latent feature vector, or a random vector sam-
pled from a Gaussian prior, and decodes it back to the image.
Both the encoder (G) and the decoder (D) are shared by the
samples from the source domain and the target domain; and
one can consider D as a form of regularization. We utilize
a KL-divergence penalty to encourage the latent distribution
over the source samples to be close to the Gaussian prior.
While we can similarly encourage the target distribution in
the feature space to be close to the Gaussian prior, thereby
achieving the desired alignment, this turns out less e�ec-
tive in practice. Instead, the alignment between the source
and target distributions in the latent space is achieved by a
novel unpaired L1-distance between the reconstructed sam-
ples from the decoder, i.e., minimizing the distance between
D(G(x

s

)) and D(G(x

t

)) among all pairs of samples from the
source domain (s) and the target domain (t). The proposed
regularization for the distribution alignment is named distri-
bution alignment loss. We further find that instead of align-
ing the latent distributions directly, we get better results by
aligning the target latent distribution to the Gaussian prior,
i.e., minimizing the distance between D(G(x

t

)) and the de-
coded samples from the prior in the feature space. The sam-
pling also serves as data augmentation and could be useful
in scenarios where the source dataset itself maybe limited.

Moreover, the proposed DFA can be incorporated into
other UDA frameworks, either adversarial or non-adversarial,
to improve results via a better feature alignment. To vali-
date the versatility of DFA, we demonstrate it using an ad-
versarial framework for the digit classification and a non-
adversarial framework for the object classification. The two
frameworks are developed based on the existing techniques,
mainly: maximum classifier discrepancy (MCD) [37] and
stepwise adaptive feature norm (SAFN) [48], since they are
state-of-the-art for the digit classification and the object clas-
sification, respectively. In all settings, our DFA significantly
improves the performance of the original frameworks and
outperforms other existing frameworks by a large margin.

Contributions:

• We propose a novel model for unsupervised domain
adaptation, which utilizes an indirect latent alignment
process to construct a common feature space under the
guidance of a Gaussian prior.

• We introduce a new method to align two distributions,
which, instead of minimizing discriminator error us-
ing a GAN, minimizes the direct L1-distance between
the decoded samples.

• We evaluate the proposed frameworks and the versa-
tility of the proposed DFA on both digit and object
classification tasks by adapting it into existing UDA
approaches, and achieve state-of-the-art performance
on the benchmark datasets.

2. Related Work
Existing UDA methods can be divided into two major

types: adversarial and non-adversarial domain adaptation.

2.1. Adversarial Domain Adaptation
Motivated by generative adversarial nets (GANs) [11],

adversarial DA methods, which stem from the technique pro-
posed in [10], are widely explored by the DA community.
The goal is for the latent feature distributions of the two do-
mains to be aligned, such that domain classifier is unable to
recognize domain from which the features originate. In early
works, such alignment was realized by simple batch normal-
ization statistics, which aligned the data distributions from
the two domains to a canonical form [6, 21]. Introducing
an adversarial loss makes it more di�cult for the domain
classifier to classify the domains correctly [38], producing
better alignment. Further advances in adversarial DA can be
found in recent works. Long et al. propose to measure the
domain divergence by considering the distribution correla-
tions for each class of objects [5, 25, 32]. Domain separation
network [4] is also proposed to better preserve the compo-
nent that is private to each domain before aligning the latent
feature distributions.

However, the mechanism concerns constructing adver-
sarial learning between the feature extractor and the domain
classifier, which does not consider the relationship between
the decision boundary and the target samples. Maximum
classifier discrepancy (MCD), instead, involves an adversar-
ial mechanism between its image classifiers and the feature
extractor [37]. This method can align the latent feature dis-
tributions of the two domains by considering the decision
divergence on predicting the target samples between the two
image classifiers.

2.2. Non-adversarial Domain Adaptation
Existing non-adversarial DA methods attempt to quan-

tify domain shifts by designing specific statistical distances
between the two domains. Correlation alignment [40, 41]
utilizes the di�erence of the mean and the covariance be-
tween the two datasets as the domain divergence, and at-
tempts to match them during the training. The methods based
on maximum mean discrepancy (MMD) [2] such as [24, 26]
measure the variance between the latent feature distributions
of the two domains. Some studies [8, 36, 50] also propose
to learn the discriminative representations by pseudo-labels
and aligning the output class distributions. However, they
still consider classifier-induced discrepancies for the latent
alignment, which cannot guarantee the safe transfer of the
discriminative features across domains. Moreover, stepwise
adaptive feature norm (SAFN) [48] identifies that domain
shifts rely on the less-informative features with small norms
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for the target-specific task, and the knowledge across do-
mains can be safely transferred by placing the target features
far away from these small-norm regions.

3. Method
In this section, the details of the proposed method are

presented. First, we discuss the preliminary of the UDA
problem in Section 3.1. Second, we explain about the way to
achieve knowledge transfer by taking advantage of the for-
mulation of the encoder-decoder in Section 3.2. Third, we
discuss the overall idea of the proposed model in Section 3.3.
Fourth, we give details about the loss functions that are used
in the proposed method in Section 3.4. Finally, we demon-
strate the versatility of the proposed method by incorporating
it into the existing UDA methods.

3.1. Preliminary
Under the setting of UDA, we sample n labeled images

from the source space {X

S

, Y

S

} to form the source domain
D

S

= {(x

(i)

s

, y

(i)

s

)}

n

i=1

, as well as m unlabeled images from
the target space {X

T

, Y

T

} to form the target domain D
T

=

{(x

(j)

t

)}

m

j=1

. The objective of UDA is to obtain a feature ex-
tractor G that generates a target distribution in the feature
space that can maximize the performance of classifying x

t

without accessing its label.

3.2. Knowledge Transfer via Encoder-Decoder
The proposed work is under the assumption that every

neural-network-based UDA framework should consist of a
feature extractor G and an image classifier F . The goal of
the proposed method is not only to align the latent distri-
butions of the two domains but also to make G learn the
representation from the target samples under the guidance
of the discriminative source representation. As illustrated
in Figure 2, the decoder D is specifically used for the pro-
posed distribution alignment loss to align the target latent
distribution with the prior distribution. Thus, G is also an
encoder that learns the hidden representations for both F

and D in our setting. As G continuously shares its learn-
ing parameters with D during the training, our model can
also be viewed as a weight-tied autoencoder. The proposed
distribution alignment loss, which is di�erent from the re-
construction loss used in the existing work on autoencoder,
is an L1-distance between the reconstructed target samples
and the decoded samples from the prior in the feature space.

3.2.1. Knowledge Transfer via Distribution Alignment
The objective of unsupervised domain adaptation is to

retain su�cient knowledge about the source domain in the
target latent space. In a single-domain problem, the informa-
tion about the input domain can be retained in its latent space
by reconstructing the input samples [45]. Motivated by this,
we argue that minimizing the di�erence between the recon-
structed target samples and the source input samples can en-
courage the target latent space to cover su�cient information
about the source domain. To be specific, minimizing the

𝐺 𝐷

Latent 
Distribution

𝑥𝑛

𝑥𝑡

Distribution 
Alignment Loss

𝑧𝑡

𝑧𝑛

An Arbitrary 
Distribution

𝐷

x
Input

Reconstruction 
in Input Space

Figure 2: Aligning two distributions by taking advantage of the
formulation of the encoder-decoder. It contains an encoding
function G and a decoding function D. The mapping function
D(G(˝)) can be regarded as a weight-tied autoencoder that can
put the less representative features into the nonlinear regime
of G’s nonlinearity.

proposed distribution alignment loss on the premise of con-
structing the source feature space on the space of the prior is
equivalent to maximizing the lower bound of the mutual in-
formation between the latent space of the target domain and
the input space of the source domain .

In the setting of UDA, we are interested in learning the
correspondence between the samples from the target latent
space Z

T

and the samples from the source input space X
S

:

X

T

G

✓

,,,,,,,,,,,,ô Z

T

D

✓

,,,,,,,,,,,,ô Ç

X

T

X

S

G

✓

,,,,,,,,,,,,ô Z

S

D

✓

,,,,,,,,,,,,ô Ç

X

S

,

(1)

where the encoder G shares it learning parameters ✓ with the
decoder D.

The mutual information between the source input space
and the target latent space can be expressed as

I(X
S

;Z

T

) = H(X
S

) * H(X
S

Z
T

), (2)

where I(�) is the mutual information; H(�) is the entropy.
H(X

S

) is an unknown constant since the source input space
X

S

is from a fixed distribution that will not be a�ected by
✓. Hence, the information maximization process can be re-
duced according to Equation 2:

max

✓

I(X
S

;Z

T

) = max

✓

*H(X
S

Z
T

)

= max

✓

E
p(X

S

,Z

T

)

[log p(X

S

Z
T

; ✓)].

(3)

Normally, the reconstructed target sample Çx

t

= D

✓

(z

t

)

is not exactly the same as a corresponding source sample x
s

.
However, in probabilistic terms, the parameters of a distri-
bution p(x

s

z
t

) may produce Çx

s

with high probability as they
share the same object feature. Therefore, the lower bound of
the mutual information can be maximized by minimizing

L

1

(x

s

, Çx

t

) ◊ * log p(x

s

z
t

), (4)

where L

1

is the L1 distance.
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However, this objective cannot be achieved because of
the lack of the correspondence between the reconstructed
samples from the target domain and the input samples from
the source domain.

To tackle this problem, we define a prior distribution
q(z

n

) and construct the discriminative source features on the
space of the priorZ

N

. If there existsD
KL

(q(z

n

)p(z
s

)) = 0,
Z

S

˘ Z

N

, Equation 1 becomes

X

T

G

✓

,,,,,,,,,,,,ô Z

T

D

✓

,,,,,,,,,,,,ô Ç

X

T

X

S

G

✓

,,,,,,,,,,,,ô Z

S

˘ Z

N

D

✓

,,,,,,,,,,,,ô Ç

X

N

˘

Ç

X

S

,

(5)

Now, we define a distribution q(

Ç

X

S

Z
T

) for the follow-
ing inequality:

E
p(X

S

,Z

T

)

[log p(X

S

Z
T

)] g E
q(

Ç

X

S

,Z

T

)

[log q(

Ç

X

S

Z
T

)], (6)

where D
KL

(qp) g 0.
The left-hand side of Equation 6 is the lower bound of

the mutual information between the source input space and
the target latent space. We thus have a new lower bound for
the mutual information:

max

✓

I(X
S

;Z

T

) g max

✓

E
q(

Ç

X

S

,Z

T

)

[log q(

Ç

X

S

Z
T

; ✓)]. (7)

Considering the parametric distribution q( ÇX
S

Z
T

; ✓), the lower
bound shown in Equation 7 can be maximized by

max

✓

E
q(

Ç

X

S

,Z

T

)

[log q(

Ç

X

S

Z
T

; ✓)]. (8)

Therefore, the mutual information I(X
S

;Z

T

) can be max-
imized when «✓ s.t. q( ÇX

S

Z
T

; ✓) = p(X

S

Z
T

; ✓).
Combining Equation 5 and Equation 8, we have the lower

bound of the mutual information between X

S

and Z

T

as
maximizing

E
q(Z

N

,X

T

)

[log q(

Ç

X

S

˘

Ç

X

N

= D

✓

(Z

N

)Z
T

= G

✓

(X

T

))].

(9)

Then, we consider the distribution alignment error:

L

1

( Çx

n

, Çx

t

) ˘ L

1

( Çx

s

, Çx

t

) ◊ * log q( Çx

s

z
t

), (10)

We thus have the following minimization that is equiv-
alent to the maximization of the lower bound of the mutual
information:

min

✓

E
q(

Ç

X

S

,

Ç

X

T

)

[L

1

(

Ç

X

S

,

Ç

X

T

)]

Ÿmin

✓

E
q(Z

N

,X

T

)

[L

1

(D

✓

(Z

N

),D

✓

(G

✓

(X

T

)))],

(11)

which can be rewritten according to Equation 4 and Equa-
tion 10:

max

✓

I(X
S

;Z

T

)

gmax

✓

E
q(

Ç

X

S

,Z

T

)

[log q(

Ç

X

S

Z
T

; ✓)]

˘max

✓

E
q(

Ç

X

N

,Z

T

)

[log q(

Ç

X

N

Z
T

; ✓)]

=max

✓

E
q(Z

N

,X

T

)

[log q(D

✓

(Z

N

)G
✓

(X

T

))]

=min

✓

E
q(Z

N

,X

T

)

[L

1

(D

✓

(Z

N

),D

✓

(G

✓

(X

T

)))]

(12)

At this point, we can conclude that the lower bound of the
mutual information between the source input space X

S

and
the target latent space Z

T

can be maximized by minimizing
the proposed distribution alignment error L

1

( Çx

n

, Çx

t

) on the
premise that the source latent distribution is close enough to
the prior.

3.2.2. Decoder
The proposed regularization has two functionalities in

our model: 1) distribution alignment; 2) discriminative fea-
ture extraction. The distribution alignment mechanism alone
cannot guarantee the produced latent distribution p(z

t

) is ad-
equately discriminative for F to generalize well to the target
domain. To further enforce G to focus on the cross-domain
classification discriminative characteristics of the target sam-
ples, we let the weight matrices of G and D be symmetric.
The choice of weight tying for the proposed encoder-decoder
is motivated by the denoising autoencoder (DAE) [45]. DAE
shows that the tying weight makes it more di�cult for an en-
coder to stay in the linear regime of its nonlinearity.

We denote a mapping layer of G followed by a nonlin-
earity �

i

by

g

✓

(x) = �

i

(W
i

x + b
i

) (13)

with learning parameters ✓ = (W
i

,b
i

), where W
i

is the
weight matrix for the convolutional layer and b

i

is its bias
matrix. Similarly, we define a mapping layer of D followed
by the same nonlinearity �

i

as

d

✓

T

(y) = �

i

(WT

i

y + bT

i

)

(14)

with learning parameters ✓T = (WT

i

,bT

i

), where WT

i

is the
weight matrix for the 2-D transposed convolutional layer and
bT

i

is its bias matrix. Therefore, without considering the
pooling, unpooling and batch normalization, our 2L-layer
autoencoder with tying weight can be denoted by

Çx = �

1

(WT

1

(… �

L

(WT

L

(�

L

(W
L

(… �

1

(W
1

x + b
1

)

+… ) + b
L

) + bT

L

) +… ) + bT

1

),

(15)

Then, with the support of a task-specific classifier, the
less representative features can be placed in the nonlinear
regime of the encoder G and, therefore, rejected. As our ob-
jective is to encourage p(z

t

) to be as discriminative as pos-
sible, it is straightforward to take advantage of this property
of weight tying. The layers with di�erent functionalities of
the proposed decoder D are listed below:

2-D Transposed Convolution A convolutional layer can
be represented as a sparse matrix W, and has WT for its back-
ward propagation. Thus for D, we have a transposed convo-
lutional layer WT that utilizes WT and W for its forward and
backward propagations, respectively.

Max Unpooling The max unpooling used for D takes
the output, i.e., the maximum value, of the corresponding
max pooling of G and the indices of this output as its input.
Then, the output of the max unpooling is appropriately sized
by setting all non-maximal values to zero. While this type
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of operation is not a good inverse of the max pooling, it is
perfectly suitable for our objective. This is because we only
want to retain the features extracted by G for the proposed
distribution alignment loss.

Average Unpooling The average unpooling utilized for
D takes the output of the corresponding average pooling of
G as its input and sets other values to this average. Simi-
lar to the max unpooling, this operation only maintains the
information of the features extracted by G.

Nonlinearity We observed from our experiments that
the nonlinearity term retained a significant amount of fea-
tures that were extracted by G. Therefore, we assume that
the impact of the nonlinearity is limited to the reconstruc-
tion of the hidden representation extracted from the target
domain to achieve the distribution alignment. In this study,
we use the same activation function for D as that of G, i.e.,
ReLU activation, without considering the reversibility of the
proposed encoder-decoder.

The average unpooling utilized for the decoder is the up-
sampling using the nearest-neighbor interpolation. The max
unpooling used for the decoder is torch.nn.MaxUnpool2d1

implemented by Pytorch. The transposed convolution uti-
lized for the decoder is torch.nn.functional.conv_transpose2d2

implemented by Pytorch. The tying weight is achieved by
sharing the weight matrix of the corresponding convolution
with the transposed convolution. Our decoder for the ob-
ject classification tasks can be viewed as an inverted version
of the feature extractor of ResNet-50 with 2-D transposed
convolution and upsampling. The detailed architecture and
configuration of the proposed ResNet-50-based decoder are
presented in the Appendix.

3.3. Framework of Discriminative Feature
Alignment

In this section, we will discuss how to construct the latent
distributions of the two domains on the space of the prior
using the proposed regularization.

Our model, as illustrated in Figure 3, consists of a feature
extractor G and a decoder D that share the learning param-
eters ✓

g

. To predict the categories of the input samples, the
framework developed based on our model should also have
an image classifierF . We represent a mapping function from
the input data, either x

s

or x
t

, to its latent feature vector z
s

or z
t

as G(x; ✓

g

). Meanwhile, we denote a mapping function
from a latent feature vector or the Gaussian prior vector to
an image by D(z; ✓

g

).
As the source dataset labels are accessible, we can make

a reasonable assumption that the feature space of the source
domain is discriminative. Therefore, the goal of our model
is to learn a latent feature distribution p(z

t

) from the target
domain that can maximally take advantage of the discrimina-
tive features of the source domain for its own classification.
To achieve this, we need to design a feature alignment ap-
proach that can ultimately construct the two feature spaces in
a common distribution space. The problem is how to define

1https://pytorch.org/docs/stable/nn.html
2https://pytorch.org/docs/stable/nn.functional

such distribution space and e�ectively project the features of
the two domains into this space.

For this objective, we propose to indirectly align the source
features and the target features under the guidance of the
Gaussian prior. As the first step of our model, we define
the Gaussian prior distribution q(z

n

) Ì N (0, 1) where we
will construct the two feature spaces on. To encourage the
discriminative feature space of the source domain to be con-
structed on the space of the prior, we regularize G and F by
softmax cross-entropy loss on the labeled source samples,
and enforce the distribution over the source samples p(z

s

) to
be close to the Gaussian prior q(z

n

) via the KL-divergence
penalty on G. Meanwhile, the latent feature distribution of
the target domain p(z

t

) should be similarly close to the Gaus-
sian prior. In preliminary experiments, we tried to use the
same KL-divergence penalty to achieve such alignment, but
it turned out to be not as e�ective as we expected. Therefore,
to e�ectively align p(z

t

) with the prior distribution q(z

n

),
we propose a novel L1-distance between the reconstructed
samples from the decoder, i.e., minimizing the distance be-
tween D(G(x

t

)) and D(z

n

), to regularize G. Once the train-
ing of our model converges, the three distributions, i.e., the
source and the target distributions in the feature space and
the Gaussian prior distribution, can be properly aligned. In
other words, our method can e�ectively construct the feature
spaces of the two domains in the same distribution space,
i.e., the space of the Gaussian prior. We also include di�er-
ent ways to achieve such latent-space alignment in Section 5
and compare them with our proposed method.

3.4. Loss Functions
3.4.1. Softmax Cross-entropy Loss

We use softmax cross-entropy loss to handle the classifi-
cation task on the labeled source domain. This objective can
ensure that the discriminative feature space of the source do-
main can be properly constructed on the space of the prior.
We train both G and F to minimize the objective function:

L
cls

(X

S

, Y

S

) = *

1

M

M…
i=1

I(i = y

s

(i)

) log p

s

(x

s

(i)

),

(16)

where I(i = y

s

(i)

) is a binary indicator which is 1 when i

equals y
s

(i); p
s

is the mapping function for the classification
scores, i.e., p

s

= softmax˝F˝G.

3.4.2. Kullback-Leibler Divergence
To encourage the latent feature distribution of the source

domain to be close to the Gaussian prior, we apply the KL-
divergence penalty between p(z

s

) and q(z

n

) to regularize G.
We express this objective as:

L
kld

(X

S

) =

1

M

M…
i=1

q(z

n

(i)

) log

q(z

n

(i)

)

G(x

s

(i)

)

,

(17)

where G seeks to generate the discriminative features of the
source domain in the space of the prior under the support ofL
cls

.
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Figure 3: (Best viewed in color.) The overall architecture of the proposed framework. The feature extractor G maps the input
data to their latent feature vectors. The decoder D, which can be viewed as an inverted version of G, maps a latent feature
vector or Gaussian prior vector to an image that has the same dimensions as the input samples. Our model can encourage the
discriminative features of the two domains to be projected into the space of the prior.

3.4.3. Distribution Alignment Loss
Regularizing G and F by L

cls

and L
kld

, respectively,
makes the discriminative feature space of the source domain
be constructed on the space of the prior. Therefore, by en-
couraging p(z

t

) to be defined in the same distribution space,
tasks on the target domain can maximally take advantage of
the knowledge learned from the source labels. To achieve
this, we propose a simple yet e�ective method to align the
target latent distribution with the prior distribution, namely,
distribution alignment loss (DAL). DAL is applied to reg-
ularize both G and D. We utilize the absolute di�erence
between the two data distributions produced by D and for-
mulate the proposed DAL as:

L
dal

(X

T

) =

1

M

M…
i=1

D(G(x

t

(i)

); ✓

g

) *D(z

n

(i)

; ✓

g

)
1

,

(18)

where ˝
1

is the L1-norm. In Section 4.1, we present a de-
tailed analysis of the proposed DAL, and empirically verify
that it serves as a distribution alignment mechanism.

3.4.4. Entropy Loss
In the proposed framework DFA-ENT, the latent feature

vector z
t

is fed into F to produce predictions for the target
input samples. To control the contribution of the target pre-

dictions in the generalization of an image classifier, we em-
ploy a low-density separation technique entropy minimiza-
tion (ENT) [12] to measure the class overlap of the target
samples:

L
ent

(X

T

) =

1

M

M…
i=1

*F (G(x

t

(i)

)) logF (G(x

t

(i)

)). (19)

3.4.5. Full Objective
The full objective function of the proposed framework

DFA-ENT is a linear combination of softmax cross-entropy
loss, KL-divergence penalty, distribution alignment loss and
the entropy loss:

L = L
cls

+ L
ent

+ ↵L
kld

+ �L
dal

, (20)

where ↵ and � are the weights for the KL-divergence penalty
and DAL,respectively, to control the relative importance of
the proposed regularization.

3.5. Versatility
3.5.1. Adversarial Domain Adaptation

Maximum classifier discrepancy [37] achieves state-of-
the-art on digit and tra�c-sign classification. It has one fea-
ture extractor G and two image classifiers F

1

and F

2

. It re-
gards the disagreement between F

1

and F

2

as its classifier-
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induced discrepancy. It uses a three-step adversarial train-
ing strategy to avoid the input target samples that are outside
the support of the source domain: first, minimizing softmax
cross-entropy loss L

cls

; second, minimizing the di�erence
between L

cls

and the L1-loss between the outputs of the two
image classifiers on the target samples L

adv

(X

T

); and third,
minimizing L

adv

(X

T

).
The proposed DFA-MCD is developed based on MCD.

Our objective L
kld

is integrated into the first and the second
training steps of MCD; and the proposed L

dal

is combined
with the objective function of its last training step. To bet-
ter clarify DFA-MCD, we include the details of the training
procedures in Algorithm 1 and highlight our method in red.

Algorithm 1: DFA-MCD
1 Input image normalization; initialize the Gaussian prior q(z

n

) Ì N (0, 1);
2 while epoch f max epoch do
3 for batch } 1 to N do
4 Step 1: Sample minibatch of M samples from the Gaussian

prior q(z
n

);
5 Update G, F

1

and F

2

to min

G,F

1

,F

2

[L
cls

(X

S

, Y

S

)+↵L
kld

(X

S

)];
6
7 Step 2: Fix G; and update F

1

and F

2

to
min

F

1

,F

2

[L
cls

(X

S

, Y

S

) * L
adv

(X

T

)+↵L
kld

(X

S

)] ;
8
9 Step 3: Fix F

1

and F

2

. Calculate L
dal

(X

T

) using the current
✓

g

. Then update G and D to min

G,D

[L
adv

(X

T

)+�L
dal

(X

T

)].
10 end
11 end

3.5.2. Non-adversarial Domain Adaptation
Stepwise adaptive feature norm [48] is state-of-the-art

approach on non-adversarial DA and object classification. It
follows the standard DA setting with a feature extractor G
and a l-layer image classifier F . It denotes the first l*1 lay-
ers of its image classifier as F

f

, and utilizes the intermediate
features from F

f

to calculate its classifier-induced discrep-
ancy:

L

d

(x

i

) = L

2

(h(x

i

; ✓

p

) + �r,h(x

i

; ✓

c

)), (21)

whereL
2

is the L2-distance; h(x) is the L2-norm ofF
f

(G(x));
✓

p

and ✓

c

represent the learning parameters in the previous
and the current iterations, respectively; and �r is a constant
to control the feature-norm enlargement. Thus, SAFN can
mitigate domain shifts by minimizing the following loss:

L
safn

(X

S

, Y

S

,X

T

)

=L
cls

(X

S

, Y

S

) + L
ent

(X

T

) + E
x

i

À(X

S

‰X

T

)

[L

d

(x

i

)],

(22)

where  is a trade-o� among the objectives.
Our DFA-SAFN is developed based on SAFN. We im-

plement a ResNet-50-based decoder to generate D(z

t

) and
D(z

n

) for the proposed DAL. We integrate all of our ob-
jective functions into the final loss of SAFN. The details of
DFA-SAFN are shown in Algorithm 2.

4. Experiments
We implemented all experiments on the PyTorch3 plat-

form. We reported the results of the benchmark algorithms
3https://pytorch.org/

Algorithm 2: DFA-SAFN
1 Input image normalization; initialize tensors for storing h(x

i

; ✓

p

), D(z

t

)

and D(z

n

); initialize the Gaussian prior q(z
n

) Ì N (0, 1);
2 while epoch f max epoch do
3 for batch } 1 to N do
4 Sample minibatch of M samples from the Gaussian prior q(z

n

);
5 Calculate L

d

(X

S

‰X

T

) using h(x

i

; ✓

p

) and h(x

i

; ✓

c

);
6 Calculate L

dal

using D(z

t

) and D(z

n

) from the previous
iteration;

7 Update G, D and F to minimize [L
safn

+↵L
kld

+ �L
dal

];
8 Calculate h(x

i

; ✓

c

) and store it as h(x
i

; ✓

p

) for the next iteration;
9 Get D(z

t

) and D(z

n

) using the current ✓
g

for the next iteration;
10 end
11 end

Table 1
Network Architectures of the encoder and the decoder for the
synthetic experiments to validate the distribution alignment
mechanism of the proposed regularization. FC-x represents
fully-connected layer with x hidden neurons. ReLU denotes
the ReLU activation. BatchNorm represents the batch nor-
malization.

Model Architecture
Encoder G FC-56, ReLU, FC-128, ReLU,

FC-256, ReLU, BatchNorm
Decoder D FC-128, ReLU, BatchNorm,

FC-56, ReLU, FC-2, ReLU

under their optimal hyper-parameter settings. To better val-
idate the versatility of our model, we followed the same set-
tings and the hyper-parameters that were utilized in MCD
[37] and SAFN [48] for evaluating DFA-MCD and DFA-
SAFN, and did not fine-tune the two frameworks. To be
specific, we used Adam [17] optimizer, and set the learn-
ing rate and the batch size to 2.0 ù 10

*4 and 128, respec-
tively, in all experiments for the evaluation on the digit and
tra�c-sign recognition datasets; we utilized SGD optimizer,
and set the learning rate and the batch size to 1.0ù 10

*3 and
32, respectively, in all experiments for the evaluation on the
object recoginition benchmark datasets.

4.1. Experiments on Synthetic Datasets
In this section, we empirically verified the distribution

alignment mechanism of the proposed distribution alignment
loss (DAL) on three synthetic datasets, namely, 2D Gaus-
sian distributions with di�erent mean or covariance, moons
dataset and blobs dataset. For each experiment, we gener-
ated 500 samples for each domain. We employed the same
networks G and D for all synthetic experiments. The en-
coder G is a 3-layer MLP that maps a 2D distribution to a
higher dimensional space. The deocder D, which is also a
3-layer MLP, maps the higher dimensional latent distribu-
tion back to the input distribution space. The architectures
for the two MLPs are shown in Table 1.

The samples from the target input distribution are fed
into the encoder G and the decoder D to generate their pre-
dictionsD(G(x

t

)). The outputs ofD, which are the predicted
target samples, and the samples from the source input distri-
bution are utilized for the proposed DAL. We tested the same

Jing Wang et al.: Preprint submitted to Elsevier Page 7 of 14



Discriminative Feature Alignment

covariance case and the same mean case for the 2D Gaus-
sian distributions. For the same covariance case, the green
points (source) were sampled from a 2D Gaussian with mean
�
5 5

�
and covariance

0
4 2

2 2

1
; and the blue points (tar-

get) indicate the samples from a 2D Gaussian with the same
covariance but di�erent mean

�
1 1

�
. For the same mean

case, the two 2D Gaussian distributions have the same mean
�
1 1

�
but di�erent covariance, i.e.,

0
0.3 0.2

0.2 0.2

1
for the

source input distribution and
0
4 2

2 2

1
for the target input

distribution. We used scikit-learn [31] to generate moons
and blobs datasets. For moons dataset, we made two in-
terleaving half circles for the two domains and add a Gaus-
sian noise with standard deviation 0.1 to the data. For blobs
dataset, we generated two isotropic Gaussian blobs with cen-
ters at

�
11 11

�
and

�
9 9

�
for the source input distribution

and the target input distribution, respectively. As shown in
Figure 4, the predicted target samples (blue points) success-
fully align with the source samples (green points) after op-
timizing by DAL alone in all synthetic experiments. There-
fore, we can claim that the proposed DAL serves as the dis-
tribution alignment mechanism in our model.

Same Covariance

Before Optimizing Optimized by DAL

Same Mean

Before Optimizing Optimized by DAL

(a) 2D Gaussian.
Moons

Before Optimizing Optimized by DAL

(b) Moons.

Blobs

Before Optimizing Optimized by DAL

(c) Blobs.

Figure 4: (Best viewed in color.) Green and blue points in-
dicate the samples from the source distribution and the target
distribution, respectively. The predicted target distribution well
aligns with the source distribution after the proposed distribu-
tion alignment loss converges, which validates the distribution
alignment mechanism of distribution alignment loss.

4.2. Digit Classification
4.2.1. Setup

In this section, we evaluated the adaptation of our two
frameworks DFA-ENT and DFA-MCD on five digit and tra�c-
sign recognition datasets. For each adaptation scenario, we
employed the same network architectures utilized in [3, 10,
37], and implemented the decoder D accordingly. To evalu-
ate DFA-ENT, we used the SGD optimizer with a mini-batch
size of 256 in all digit and tra�c-sign recognition experi-
ments. We set the learning rate to 0.1 in the adaptation from
SVHN to MNIST and 0.02 in other adaptation scenarios for
evaluating DFA-ENT. Our hyper-parameters ↵ and � were

Table 2
Accuracy(%) of the proposed frameworks on the benchmark
datasets for digit and traffic-sign recognition.

Method SV )MN SY )GT MN )US MN< )US< US )MN
Source Only 67.1 85.1 76.7 79.4 63.4
DANN[10] 71.1 88.7 77.1 85.1 73.0
DSN[4] 82.7 93.1 91.3 - -

ADDA[43] 76.0 - 89.4 - 90.1
MSTN[47] 91.7 - - 92.9 -
GTA[38] 92.4 - 92.8 95.3 90.8
DEV[49] 93.2 - - 92.5 96.9

GPDA4[16] 98.2 96.2 96.4 98.1 96.4
MCD[37] 96.2 94.4 94.2 96.5 94.1
(n = 4) ± 0.4 ± 0.3 ± 0.7 ± 0.3 ± 0.3

DFA-ENT 98.2 96.8 96.5 97.9 96.2
(Ours) ± 0.3 ± 0.2 ± 0.4 ± 0.2 ± 0.1

DFA-MCD 98.9 97.5 97.3 98.6 96.6
(Ours) ± 0.2 ± 0.2 ± 0.1 ± 0.1 ± 0.2

set to 0.01 and 10, respectively, in all adaptation scenarios
for both frameworks.

SVHN (SV)ôMNIST (MN): Street-View House Num-
ber (SVHN) [29] and MNIST [20] datasets were used as the
source domain and the target domain, respectively. The two
datasets consist of images of digit from 0 to 9. However,
SVHN [29] has significant variations in the colored back-
ground, contrast, rotation, scale, etc.

MNIST (MN) õ USPS (US): We evaluated two adapta-
tion scenarios on USPS [15] and MNIST [20] datasets. We
used the same setup provided by [37] for the two adaptation
scenarios.

SYN SIGNS (SY) ô GTSRB (GT): We also evaluated
the proposed frameworks on a more complex scenario, from
synthetic tra�c signs dataset (SYN SIGNS) [28] to the real-
world German Tra�c Signs Recognition Benchmark (GT-
SRB) [39]. This domain adaptation scenario has 43 di�erent
tra�c signs (classes). We split the datasets based on [37].

4.2.2. Results
Table 2 lists the results for the target domain classifica-

tion. {dataset}< denotes that all of the training samples are
used for training the frameworks. We used the same net-
works for the source only evaluation. The average and the
standard deviation of the accuracy on each DA scenario are
reported by repeating each experiment 5 times. The results
indicate that our model significantly improves the adaptation
performance of MCD on all digit and tra�c-sign datasets.
The standard deviations of DFA-MCD are much lower than
those of MCD, which indicates that our model can result in
more robust performance. The visualizations of the learned
feature representations are shown in Figure 5. The compari-
son is conducted between DFA-MCD and MCD. The better
feature clustering indicates that our model significantly im-
proves the adaptation performance of MCD through better

4This framework is developed based on MCD.

Jing Wang et al.: Preprint submitted to Elsevier Page 8 of 14



Discriminative Feature Alignment

Before Adaptation Adapted (MCD) Before Adaptation Adapted (Ours)

MNIST to USPS

SVHN toMNIST

Before Adaptation Before AdaptationAdapted (MCD) Adapted (Ours)

ç
ç ç

ç

ç

ç

ç
ç

ç
ç

ç

ç ç
ç
ç

ç
ç

çç

çççç
ç

ç
ç

ç ç

ç

ç

ç
ç
ç çç

ç

ç

ç

Figure 5: (Best viewed in color.) t-SNE [27] visualizations of
the learned feature representations for two different adaptation
scenarios. Blue and red points indicate the latent features from
the source domain and the target domain, respectively.

feature alignment.

4.3. Object Classification
4.3.1. Setup

We extensively evaluated the adaptation performance of
DFA-ENT and DFA-SAFN on five benchmark datasets for
object recognition, namely, VisDA2017, O�ce-31, ImageCLEF-
DA and O�ce-Home. For each adaptation scenario, we em-
ployed ResNet-50 [13] that was fine-tuned from the Ima-
geNet [9] pre-trained model. We implemented our decoder
D as an inverted version of the feature extractor of ResNet-
50. To evaluate DFA-ENT, we used the SGD optimizer with
a learning rate of 1ù10

*3, and set the batch size to 32 on all
benchmark datasets. Our hyper-parameters ↵ and � were set
to 0.1 and 10, respectively, for both frameworks.

VisDA2017 [33] is a large-scale benchmark dataset used
for the 2017 visual domain adaptation challenge. The goal
of the dataset is trying to bridge the domain gap between the
synthetic objects and the real obbjects. It has over 280K im-
ages across 12 object categories. The source domain consists
of 152,397 synthetic images that are generated by rendering
the 3D models of a certain object categories. The target do-
main contains 55,388 images of the real objects, which are
collected from Microsoft COCO dataset [22]. This could be
the most challenging benchmark dataset for UDA.

O�ce-Home [44] has images of everyday objects from
four di�erent domains: Artistic (Ar), Clipart (Cl), Product
(Pr) and Real-World (Rw). The dataset has around 15,500
images. Each domain contains 65 object classes. Notably,
Ar consists of the images from the di�erent forms of artis-
tic depictions of objects, while a regular camera takes the
images of Rw. Some image samples from this dataset are
shown in Figure 6.

ImageCLEF-DA5 is a dataset used for the 2014 Image-
CLEF domain adaptation challenge. This dataset selects 12
common object classes from three public datasets: Caltech-
256 (C), ImageNet ILSVRC2012 (I) and Pascal VOC 2012

5https://www.imageclef.org/2014/adaptation

(a) Artistic. (b) Clipart.

(c) Product. (d) Real-World.

Figure 6: Example images for alarm clock from the four dif-
ferent domains of Office-Home.

(P). The dataset organizers selected 50 images per class and
600 images in total for each domain.

O�ce-31 [35] is a standard benchmark dataset for eval-
uating visual DA algorithms. It has three di�erent domains:
Amazon (A), Webcam (W), and DSLR (D). Amazon consists
of images from amazon.com. Webcam and DSLR contain
images for the o�ce environment captured by a web camera
and a digital SLR camera, respectively. It consists of 4,652
images of 31 object categories.

4.3.2. Results
The results of DFA-ENT and DFA-SAFN on VisDA2017,

ImageCLEF-DA, O�ce-31 and O�ce-Home are listed in Ta-
ble 3, 4, 5 and 6, respectively. {Method}< indicates that ten-
crop images are used in the evaluation phase with its best-
performing models. We repeated each experiment 3 times
and reported the average and the standard deviation of the ac-
curacy for evaluating the datasets O�ce-Home, ImageCLEF-
DA and O�ce-31. We reported the accuracy of the evalua-
tion on VisDA2017 after 20 epochs with no repeated exper-
iments. The results illustrate that the proposed frameworks
significantly outperform the benchmark algorithms on ob-
ject classification. The robustness of SAFN is also improved
by DFA with lower variance among each repeated experi-
ments.

Results on VisDA2017 show that the proposed DFA can
significantly help the existing methods to better bridge the
synthetic-to-real domain gap, which improves the performance
of the baseline methods by at least 3.9% (6.2% for SAFN and
3.9% for MCD). Notably, the proposed DFA-MCD achieves
state-of-the-art performance on this large-scale dataset. Be-
sides, our simplified framework DFA-ENT achieves the com-
petitive performance in all four beachmark datasets for the
object recognition task, which suggests the e�ectiveness of
the latent alignment in transfer learning. Moreover, the out-
standing improvement on the adaptation scenarios (O�ce-
31, O�ce-Home) with significant nuisance image variations
suggests that our model can improve other frameworks’ knowl-
edge transferability remarkably in the adaptation scenario
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Table 3
Accuracy(%) of the proposed frameworks on VisDA2017 (ResNet-50).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class
ResNet-50 [13] 60.2 10.3 54.7 54.5 42.9 2.1 78.9 4.5 45.5 29.5 89.0 12.4 40.4

SAFN [48] 90.5 55.9 80.3 64.6 88.8 31.8 92.7 70.4 93.2 49.6 87.7 23.2 69.1
MCD [37] 90.3 62.6 84.8 71.7 85.9 72.9 93.7 71.9 86.8 79.1 81.6 14.3 74.6

DFA-ENT (Ours) 88.3 55.1 81.0 72.9 91.4 94.4 91.1 75.1 80.6 45.7 88.2 15.8 73.3
DFA-SAFN (Ours) 93.1 58.4 85.8 69.9 89.8 96.1 90.3 77.5 87.4 48.9 85.1 21.1 75.3
DFA-MCD (Ours) 91.2 77.4 80.5 63.3 87.1 85.4 86.4 79.5 90.3 79.7 89.2 31.6 78.5

Table 4
Accuracy(%) of the proposed frameworks on ImageCLEF-DA
(ResNet-50).

Method IôP PôI IôC CôI CôP PôC Avg
ResNet-50 [13] 74.8 83.9 91.5 78.0 65.5 91.2 80.7

DANN [10] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
CDAN<[25] 76.7 90.6 97.0 90.5 74.5 93.5 87.1
CADA[19] 78.0 90.5 96.7 92.0 77.2 95.5 88.3

CDAN+TN [46] 78.3 90.8 96.7 92.3 78.0 94.8 88.5
HAFN [48] 76.9 89.0 94.4 89.6 74.9 92.9 86.3
SAFN [48] 79.3 93.3 96.3 91.7 77.6 95.3 88.9

± 0.1 ± 0.4 ± 0.4 ± 0.0 ± 0.1 ± 0.1
DFA-ENT 79.5 93.0 96.4 92.5 77.2 95.8 89.1

(Ours) ± 0.0 ± 0.3 ± 0.2 ± 0.2 ± 0.1 ± 0.3
DFA-SAFN 80.0 94.2 97.5 93.8 78.7 96.7 90.2

(Ours) ± 0.1 ± 0.3 ± 0.2 ± 0.0 ± 0.1 ± 0.0

Table 5
Accuracy(%) of the proposed frameworks on Office-31
(ResNet-50).

Method AôW DôW WôD AôD DôA WôA Avg
ResNet-50 [13] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DANN [10] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
GTA [38] 89.5 97.9 99.8 87.7 72.8 71.4 86.5

CDAN<[25] 93.1 98.2 100.0 89.8 70.1 68.0 86.6
DSBN[7] 93.3 99.1 100.0 90.8 72.7 73.9 88.3
TAT[23] 92.5 99.3 100.0 93.2 73.1 72.1 88.4

HAFN [48] 83.4 98.3 99.7 84.4 69.4 68.5 83.9
SAFN [48] 90.1 98.6 99.8 90.7 73.0 70.2 87.1

± 0.8 ± 0.2 ± 0.0 ± 0.5 ± 0.2 ± 0.3
DFA-ENT 90.5 99.0 100.0 94.3 72.1 67.8 87.3

(Ours) ± 0.7 ± 0.1 ± 0.0 ± 0.4 ± 0.2 ± 0.4
DFA-SAFN 93.5 99.4 100.0 94.8 73.8 71.0 88.8

(Ours) ± 0.5 ± 0.1 ± 0.0 ± 0.3 ± 0.1 ± 0.2

with significant variations.
One interesting observation can be revealed from these

results that the transfer gains of the existing approaches, which
mitigate the domain gap by classifier-induced discrepancies,
can be further improved by improving the alignment in the

feature spaces. One limitation of our research is that we
only consider the way to better construct the feature spaces
for the DA problem and directly incorporate the proposed
method into the classifier-induced discrepancy based meth-
ods. Therefore, we believe that the transfer gains can be
more significantly improved by explicitly considering the re-
lationship between the features induced from the feature ex-
tractor and the feature induced from the classifier. But how
to trade o� the alignment of the latent distributions against
the alignment of the output class distributions is still a big
challenge for the DA community.

5. Ablation Study
5.1. The Shape of The Latent Distribution

In this ablation study, we validated the claim that the
proposed regularization could construct the latent distribu-
tions of the two domains on a common distribution space.
In our setting, the common distribution space is the space of
the Gaussian prior. The best-performing models that were
trained previously were used in the study. We selected a vec-
tor from the source latent distribution and one corresponding
vector from the target latent distribution, and plotted their
histograms for demonstration. Note that the selected vec-
tors from the source latent distribution and the target latent
distribution fall under the same category so that they should
share the discriminative features. Figure 7 demonstrates that
the existing UDA methods (take SAFN [48] as an example)
cannot e�ectively construct the feature spaces of the two do-
mains on a common distribution space. This could make the
classification tasks on the target samples hard to make the
most use of the discriminative source features. By contrast,
as shown in Figure 8 and Figure 9, the proposed regular-
ization can encourage the source discriminative features to
be projected into the space of the Gaussian prior, and con-
struct the target feature space on this prior distribution space.
This indicates that the proposed DFA can encourage the la-
tent distributions of the two domains to be closed to a com-
mon distribution in the feature space, i.e., the Gaussian prior,
which promotes better feature alignment. Note that, the la-
tent vectors are observed from the layer before the last ReLU
activation of the encoder for better demonstration.

Jing Wang et al.: Preprint submitted to Elsevier Page 10 of 14



Discriminative Feature Alignment

Table 6
Accuracy(%) of the proposed frameworks on Office-Home (ResNet-50).

Method Ar )Cl Ar )Pr Ar )Rw Cl )Ar Cl )Pr Cl )Rw Pr )Ar Pr )Cl Pr )Rw Rw )Ar Rw )Cl Rw )Pr Avg
ResNet-50 [13] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN[10] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN<[25] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

DWT-MEC[34] 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6
TAT[23] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8

CDAN+TN [46] 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
HAFN [48] 50.2 70.1 76.6 61.1 68.0 70.7 59.5 48.4 77.3 69.4 53.0 80.2 65.4
SAFN [48] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

± 0.1 ± 0.6 ± 0.3 ± 0.3 ± 0.6 ± 0.6 ± 0.4 ± 0.2 ± 0.0 ± 0.4 ± 0.1 ± 0.0
DFA-ENT 50.6 74.8 79.3 65.2 73.8 74.5 63.5 51.4 81.4 73.9 58.2 83.3 69.2

(Ours) ± 0.1 ± 0.3 ± 0.2 ± 0.2 ± 0.3 ± 0.4 ± 0.4 ± 0.3 ± 0.0 ± 0.4 ± 0.0 ± 0.0
DFA-SAFN 52.8 73.9 77.4 66.5 72.9 73.6 64.9 53.1 78.7 74.5 58.1 82.4 69.1

(Ours) ± 0.1 ± 0.4 ± 0.2 ± 0.1 ± 0.3 ± 0.3 ± 0.2 ± 0.1 ± 0.0 ± 0.3 ± 0.0 ± 0.0

(a) Source Latent (O�ce-31). (b) Target Latent (O�ce-31).

(c) Source Latent (Home). (d) Target Latent (Home).

Figure 7: Histograms of the source latent distribution and the
target latent distribution after the training of SAFN converges.
Top: the adaptation scenario from Amazon to DSLR (Office-
31). Bottom: the adaptation scenario from Clipart to Product
(Office-Home).

5.2. E�ectiveness of the Proposed Regularization
In this ablation study, we validated that our method could

e�ectively align the feature spaces of the two domains. We
conducted a case study on the adaptation scenario from SVHN
to MNIST as its significant domain variation. We randomly
selected 100 images per class from both domains and 2000
images in total. We utilized the best-performing models that
were trained in the previous experiments. By measuring the
distance between the feature spaces, the e�ectiveness of the
feature alignment can be examined. We computed the av-
erage L2-distances between the feature space of SVHN and
the feature space of MNIST after the adaptation with and
without our model, as shown in Table 7. As expected, the

(a) Gaussian Prior. (b) Source Latent. (c) Target Latent.

Figure 8: Histograms of the source latent distribution and the
target latent distribution after the training of the proposed
DFA-SAFN on the adaptation scenario from Amazon to DSLR
(Office-31) converges.

(a) Gaussian Prior. (b) Source Latent. (c) Target Latent.

Figure 9: Histograms of the source latent distribution and
the target latent distribution after the training of the proposed
DFA-SAFN on the adaptation scenario from Clipart to Product
(Office-Home) converges.

feature-space distance of DFA-MCD is much shorter than
that of MCD.

5.3. How to E�ectively Align Feature Spaces
We investigated the most e�ective method for the latent

alignment in this ablation study. We conducted a case study
on the adaptation scenario from MNIST to UPSP. To better
illustrate this study, we first define some loss functions. We
formulate the paired reconstruction loss of an autoencoder
as:

L
recon

(X) =

1

M

M…
i=1

[D(G(x

(i)

); ✓

g

) * x

(i)

)
1

].

(23)
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Table 7
Average L2-distance between the SVHN feature space and the
MNIST feature space. The numbers (0-9) denote the digit
labels, and All indicates evaluating by all samples.

Method 0 1 2 3 4 5
MCD 0.1658 0.1433 0.1585 0.1539 0.1544 0.1598

DFA-MCD 0.0644 0.0797 0.0867 0.0879 0.0871 0.0783
Method 6 7 8 9 All
MCD 0.1529 0.1596 0.1472 0.1517 0.0564

DFA-MCD 0.0800 0.0829 0.0692 0.0756 0.0266

Table 8
Accuracy(%) of different latent-alignment methods on the
adaptation scenario from MNIST to USPS. Note that all meth-
ods utilize L

ent

and L
cls

for classification.

L
kld

+ L
dal

(Ours) L
daldir

L
kld

Accuracy 97.3 93.1 87.9
L

kld

+ L
dal

, ✓

d

ë ✓

g

L
klddir

L
klddir

+ L
recon

Accuracy 95.8 89.2 83.6

We define a KL-divergence penalty to encourage p(z
t

) to be
close to p(z

s

) as L
klddir

. To validate the e�ect of weight
tying, we further define the learning parameters ✓

d

for the
decoder D in the case where the tying weight is not ap-
plied. We explored six di�erent ways to align the two la-
tent feature distributions p(z

s

) and p(z

t

): 1) the proposed
DFA-ENT framework; 2) DFA-ENT but the encoder G and
the decoder D do not share their weights (✓

d

ë ✓

g

); 3) in-
stead of using our DAL to align the target latent distribution
with the Gaussian prior, utilizing a KL-divergence to make
p(z

t

) close to the prior; 4) the direct latent alignment via
an unpaired L1-distance between the reconstructed samples
from the two domains, i.e., minimizing the distance between
D(G(x

s

)) and D(G(x

t

)) (L
daldir

); 5) the direct latent align-
ment using L

klddir

; and 6) further regularizing Case 5) by
two reconstruction losses L

recon

(X

S

) + L
recon

(X

T

) (L
recon

)
with our weight-tied encoder-decoder formulation. The re-
sults, which are shown in Table 8, indicate that the proposed
DFA is the most e�ective approach to align the latent distri-
butions of the two domains. The ablation study validates that
all of the Gaussian-guided alignment, unpaired L1-distance
and weight tying are of necessity for the proposed model.

5.4. Parameter Sensitivity
To quantify the impact of our discriminative feature align-

ment (DFA) on the UDA frameworks, we investigated the
sensitivity of our hyper-parameters, i.e., ↵ and �, in DFA-
MCD and DFA-SAFN. We selected adaptation scenarios from
MNIST to USPS and from Amazon to DSLR for demonstra-
tion. The results are shown in Figure 10(a)(b). For each case
study, ↵ and � were varied from 0.001 to 100. As shown in
both figures, DFA can stably improve the performance of
adversarial and non-adversarial UDA frameworks with dif-
ferent values of ↵ and �.

(a) ↵ (b) �

Figure 10: Sensitivity analysis of the hyper-parameters ↵ and
� for DFA-MCD and DFA-SAFN (orange lines indicate DFA-
SAFN; blue lines indicate DFA-MCD). ↵ was set to 0.1 when
evaluating �. � was set to 10 when evaluating ↵.

5.5. Computational Complexity Analysis
We investigated the computational e�ciency of our model

as it could be combined with other UDA frameworks. We
conducted a case study on the adaptation scenario from SVHN
to MNIST. Although the time spent on training one epoch
for DFA-MCD is 1.21 times MCD (NVIDIA GeForce RTX
2070), DFA-MCD requires fewer epochs to converge, as shown
in Figure 11. Therefore, we can say that our model can ef-
ficiently improve the performance of various UDA frame-
works.

Figure 11: Relationship between the training epoch and the
accuracy (orange line indicates the proposed DFA-MCD; blue
line indicates MCD).

6. Conclusion
In this paper, we introduced a novel model for UDA to

better align the source and the target features, which could
improve the adaptation performance of the UDA framework.
We proposed an indirect latent alignment process to encour-
age the features of the two domains to be constructed on a
common feature space, i.e., the space of the Gaussian prior.
To better align two distributions, we also proposed a novel
unpaired L1-distance in the decoder space, and empirically
confirmed that it served as a distribution alignment mech-
anism. Our frameworks outperformed state-of-the-arts in
most experiments. The results of the extensive experiments
have validated the importance and the versatility of our re-
search.
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