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Multi-level Semantic Feature Augmentation for
One-shot Learning

Zitian Chen†, Yanwei Fu†, Yinda Zhang, Yu-Gang Jiang?, Xiangyang Xue, and Leonid Sigal

Abstract—The ability to quickly recognize and learn new
visual concepts from limited samples enables humans to quickly
adapt to new tasks and environments. This ability is enabled
by semantic association of novel concepts with those that have
already been learned and stored in memory. Computers can start
to ascertain similar abilities by utilizing a semantic concept space.
A concept space is a high-dimensional semantic space in which
similar abstract concepts appear close and dissimilar ones far
apart. In this paper, we propose a novel approach to one-shot
learning that builds on this core idea. Our approach learns to map
a novel sample instance to a concept, relates that concept to the
existing ones in the concept space and, using these relationships,
generates new instances, by interpolating among the concepts,
to help learning. Instead of synthesizing new image instance,
we propose to directly synthesize instance features by leveraging
semantics using a novel auto-encoder network we call dual TriNet.
The encoder part of the TriNet learns to map multi-layer visual
features from CNN to a semantic vector. In semantic space, we
search for related concepts, which are then projected back into
the image feature spaces by the decoder portion of the TriNet.
Two strategies in the semantic space are explored. Notably, this
seemingly simple strategy results in complex augmented feature
distributions in the image feature space, leading to substantially
better performance.

Index Terms—one-shot learning, feature augmentation.

I. INTRODUCTION

Recent successes in machine learning, especially deep
learning, rely greatly on the training processes that operate
on hundreds, if not thousands, of labeled training instances
for each class. However, in practice, it might be extremely
expensive or even infeasible to obtain many labelled samples,
e.g. for rare objects or objects that may be hard to observe. In
contrast, humans can easily learn to recognize a novel object
category after seeing only few training examples [1]. Inspired
by this ability, few-shot learning aims to build classifiers from
few, or even a single, examples.

The major obstacle of learning good classifiers in a few-
shot learning setting is the lack of training data. Thus a natural
recipe for few-shot learning is to first augment the data in some
way. A number of approaches for data augmentation have been
explored. The dominant approach, adopted by the previous
work, is to obtain more images [2] for each category and use
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them as training data. These additional augmented training
images could be borrowed from unlabeled data [3] or other
relevant categories [4], [5], [6], [7] in an unsupervised or semi-
supervised fashion. However, the augmented data that comes
from related classes is often semantically noisy and can result
in the negative transfer which leads to reduced (instead of
improved) performance. On the other hand, synthetic images
rendered from virtual examples [8], [9], [10], [11], [12], [13]
are semantically correct but require careful domain adaptation
to transfer the knowledge and features to the real image
domain. To avoid the difficulty of generating the synthesized
images directly, it is thus desirable to augment the samples
in the feature space itself. For example, the state-of-the-art
deep Convolutional Neural Networks (CNNs) stack multiple
feature layers in a hierarchical structure; we hypothesize that
feature augmentation can, in this case, be done in feature
spaces produced by CNN layers.

Despite clear conceptual benefits, feature augmentation
techniques have been relatively little explored. The few ex-
amples include [12], [13], [14]. Notably, [12] and [13] em-
ployed the feature patches (e.g. HOG) of the object parts
and combined them to synthesize new feature representations.
Dixit et al. [14], for the first time, considered attributes-
guided augmentation to synthesize sample features. Their
work, however, utilizes and relies on a set of pre-defined
semantic attributes.

A straightforward approach to augment the image feature
representation is to add random (vector) noise to a represen-
tation of each single training image. However, such simple
augmentation procedure may not substantially inform/improve
the decision boundary. Human learning inspires us to search
for related information in the concept space. Our key idea is to
leverage additional semantic knowledge, e.g. encapsulated by
the semantic space pre-trained using the linguistic model such
as Google’s word2vec [15]. In such semantic manifold similar
concepts tend to have similar semantic feature representations.
The overall space demonstrates semantic continuity, which
makes it ideal for feature augmentation.

To leverage such semantic space, we propose a dual TriNet
architecture (g (x) = gDec ◦gEnc (x)) to learn the transforma-
tion between the image features at multiple layers and the se-
mantic space. The dual TriNet is paired with the 18-layer resid-
ual net (ResNet-18) [16]; it has encoder TriNet (gEnc(x)) and
the decoder TriNet (gDec(x)). Specifically, given one training
instance, we can use the ResNet-18 to extract the features at
different layers. The gEnc(x) efficiently maps these features
into the semantic space. In the semantic space, the projected
instance features can be corrupted by adding Gaussian noise,
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or replaced by its nearest semantic word vectors. We assume
that slight changes of feature values in the semantic space will
allow us to maintain semantic information while spanning the
potential class variability. The decoder TriNet (gDec(x)) is
then adapted to map the perturbed semantic instance features
back to multi-layer (ResNet-18) feature space. It is worth not-
ing that Gaussian augmentations/perturbations in the semantic
space ultimately result in highly non-Gaussian augmentations
in the original feature space. This is the core benefit of the
semantic space augmentation. Using three classical supervised
classifiers, we show that the augmented features can boost the
performance in few-shot classification.
Contributions. Our contributions are in several fold. First, we
propose a simple and yet elegant deep learning architecture:
ResNet-18+dual TriNet with an efficient end-to-end training
for few-shot classification. Second, we illustrate that the
proposed dual TriNet can effectively augment visual features
produced by multiple layers of ResNet-18. Third, and interest-
ingly, we show that we can utilize semantic spaces of various
types, including semantic attribute space, semantic word vector
space, or even subspace defined by the semantic relationship
of classes. Finally, extensive experiments on four datasets
validate the efficacy of the proposed approach in addressing
the few-shot image recognition task.

II. RELATED WORK

A. Few-Shot Learning

Few-shot learning is inspired by human ability to learn new
concepts from very few examples [17], [18]. Being able
to recognize and generalize to new classes with only one,
or few, examples [19] is beyond the capabilities of typical
machine learning algorithms, which often rely on hundreds or
thousands of training examples. Broadly speaking there are
two categories of approaches for addressing such challenges:

Direct supervised learning-based approaches, directly learn
a one-shot classifier via instance-based learning (such as K-
nearest neighbor), non-parametric methods [20], [21], [22],
deep generative models [23], [24], or Bayesian auto-encoders
[25]. Compared with our work, these methods employ a rich
class of generative models to explain the observed data, rather
than directly augmenting instance features as proposed.

Transfer learning-based approaches, are explored via the
paradigm of learning to learn [1] or meta-learning [26].
Specifically, these approaches employ the knowledge from
auxiliary data to recognize new categories with few examples
by either sharing features [19], [27], [28], [29], [30], [31],
semantic attributes [32], [33], [34], or contextual information
[35]. Recently, the ideas of learning metric spaces from
source data to support one-shot learning were quite exten-
sively explored. Examples include matching networks [36]
and prototypical networks [37]. Generally, these approaches
can be roughly categorized as either meta-learning algorithms
(including MAML [38], Meta-SGD [39], DEML+Meta-SGD
[40], META-LEARN LSTM [41], Meta-Net [42], R2-D2[43],
Reptile[44], WRN [45]) and metric-learning algorithms (in-
cluding Matching Nets [36], PROTO-NET [37], RELATION
NET [46], MACO [47], and Cos & Att. [48]). In [49], [50],

they maintained external memory for continuous learning.
MAML [51] can learn good initial neural network weights
which can be easily fine-tuned for unseen categories. The
[52] used graph neural network to perform message-passing
inference from support images to test images. TPN [53]
proposed a framework for transductive inference thus to
solve the data-starved problem. Multi-Attention [54] utilized
semantic information to generate attention map to help one-
shot recognition, whereas we directly augment samples in the
semantic space and then map them back to the visual space.
With respect to these works, our framework is orthogonal but
potentially useful – it is useful to augment instance features
of novel classes before applying such methods.

B. Augmenting training instances

The standard augmentation techniques are often directly
applied in the image domain, such as flipping, rotating, adding
noise and randomly cropping images [2], [55], [56]. Recently,
more advanced data augmentation techniques have been stud-
ied to train supervised classifiers. In particular, augmented
training data can also be employed to alleviate the problem of
instances scarcity and thus avoid overfitting in one-shot/few-
shot learning settings. Previous approaches can be categorized
into six classes of methods: (1) Learning one-shot models
by utilizing the manifold information of a large amount of
unlabelled data in a semi-supervised or transductive setting
[3]; (2) Adaptively learning the one-shot classifiers from off-
shelf trained models [4], [5], [6]; (3) Borrowing examples from
relevant categories [7], [57] or semantic vocabularies [58],
[59] to augment the training set; (4) Synthesizing additional
labelled training instances by rendering virtual examples [8],
[9], [10], [11], [60] or composing synthesized representations
[12], [13], [61], [62], [63], [64] or distorting existing training
examples [2]; (5) Generating new examples using Generative
Adversarial Networks (GANs) [65], [66], [67], [68], [69], [70],
[71], [72], [73]; (6) Attribute-guided augmentation (AGA) and
Feature Space Transfer [14], [74] to synthesize samples at
desired values, poses or strength.

Despite the breadth of research, previous methods may
suffer from several problems: (1) semi-supervised algorithms
rely on the manifold assumption, which, however, cannot be
effectively validated in practice. (2) transfer learning may
suffer from the negative transfer when the off-shell models or
relevant categories are very different from one-shot classes; (3)
rendering, composing or distorting existing training examples
may require domain expertise; (4) GAN-based approaches
mostly focuse on learning good generators to synthesize
“realistic” images to “cheat” the discriminators. Synthesized
images may not necessarily preserve the discriminative infor-
mation. This is in contrast to our network structure, where
the discriminative instances are directly synthesized in visual
feature domain. The AGA [14] mainly employed the attributes
of 3D depth or pose information for augmentation; in contrast,
our methods can additionally utilize semantic information to
augment data. Additionally, the proposed dual TriNet networks
can effectively augment multi-layer features.
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C. Embedding Network structures

Learning of visual-semantic embeddings has been explored
in various ways, including with neural networks, e.g., Siamese
network [75], [76], discriminative methods (e.g., Support
Vector Regressors (SVR) [32], [77], [78]), metric learning
methods [36], [79], [80], or kernel embedding methods [27],
[81]. One of the most common embedding approaches is to
project visual features and semantic entities into a common
new space. However, when dealing with the feature space of
different layers in CNNs, previous methods have to learn an
individual visual semantic embedding for each layer. In con-
trast, the proposed Dual TriNet can effectively learn a single
visual-semantic embedding for multi-layer feature spaces.

Ladder Networks [82] utilize the lateral connections as
auto-encoders for semi-supervised learning tasks. In [83],
the authours fused different intermediate layers of different
networks to improve the image classification performance.
Deep Layer Aggregation [84] aggregated the layers and blocks
across a network to better fuse the information across layers.
Rather than learn a specific aggregation node to merge differ-
ent layers, our dual TriNet directly transforms, rescales and
concatenates the features of different layers in an encoder-
decoder structure.

III. DUAL TRINET NETWORK FOR SEMANTIC DATA
AUGMENTATION

A. Problem setup

In one-shot learning, we are given the base categories Cbase,
and novel categories Cnovel(Cbase

⋂
Cnovel = ∅) with the

total class label set C = Cbase ∪ Cnovel. The base categories
Cbase have sufficient labeled image data and we assume the
base dataset Dbase =

{
Ibasei , zbasei ,ubase

zi

}Nbase

i=1
of Nbase

samples. Ibasei indicates the raw image i; zbasei ∈ Cbase is a
class label from the base class set; ubase

zi is the semantic vector
of the instance i in terms of its class label. The semantic vector
ubase
zi can be either semantic attribute [32], semantic word

vector [15] or any representation obtained in the subspace
constructed or learned from semantic relationship of classes.

For novel categories Cnovel, we consider the another dataset
Dnovel =

{
Inoveli , znoveli ,unovel

zi

}
and each class znoveli ∈

Cnovel . For the novel dataset, we have a support set and
test set. Support set Dsupport =

{
Isupporti , zsupporti ,usupport

zi

}
(Dsupport ∈ Dnovel) is composed of a small number of
training instances of each novel class. The test set Dtest ={
Itesti , ztesti ,utest

zi

}
(Dtest ∈ Dnovel, Dsupport

⋂
Dtest = ∅)

is not available for training, but is used for testing. In general,
we only train on Dbase and Dsupport ,which contain adequate
instances of base classes and a small number of instances of
novel classes respectively. Then we evaluate our model on
Dtest, which only consists of novel classes. We target learning
a model that can generalize well to the novel categories, by
using only a small support set Dsupport.

B. Overview

Objective. We seek to directly augment the features of the
training instances of each target class. Given one training

instance Isupporti from the novel classes, the feature extrac-
tor network can output the instance feature

{
fl
(
Isupporti

)}
(l = 1, · · · , L); and the augmentation network g (x) can
generate a set of synthesized features g

({
fl
(
Isupporti

)})
.

Such synthesized features are used as additional training
instances for one-shot learning. As illustrated in Fig. 1, we
use the ResNet-18 [16] and propose a Dual TriNet network
as the feature extractor network and the augmentation network
respectively. The whole architecture is trained in an end-to-end
manner by combining the loss functions of both networks,

{Ω,Θ} = argmin
Ω,Θ

J1 (Ω) + λ · J2 (Θ) (1)

where J1 (Ω) and J2 (Θ) are the loss functions for ResNet-18
[16] and dual TriNet network respectively; Ω and Θ represent
corresponding parameters. The cross entropy loss is used for
J1 (Ω) as in [16]. Eq. (1) is optimized using base dataset
Dbase.

Feature extractor network. We train ResNet-18 [16] to
convert the raw images into feature vectors. ResNet-18 has
4 sequential residual layers, i.e., layer1, layer2, layer3 and
layer4 as illustrated in Fig. 1. Each residual layer outputs
a corresponding feature map fl (Ii) , l = 1, . . . 4. If we
consider each feature map a different image representation,
ResNet-18 actually learns a Multi-level Image Feature (M-
IF) encoding. Generally, different layer features may be used
for various one-shot learning tasks. For example, as in [2],
the features of fully connected layers can be used for one-
shot image classification; and the output features of fully
convolutional layers may be preferred for one-shot image
segmentation tasks [85], [86], [87]. By combining features
from multiple levels, our method can be applied to a variety
of different visual tasks.

Augmentation network. We propose an encoder-decoder
architecture – dual TriNet (g (x) = gDec ◦ gEnc (x)). As illus-
trated in Fig. 1, our dual TriNet can be divided into encoder-
TriNet gEnc (x) and decoder-TriNet sub-network gDec (x).
The encoder-TriNet maps visual feature space to a semantic
space. This is where augmentation takes place. The decoder-
TriNet projects the augmented semantic space representation
back to the feature space. Since ResNet-18 has four layers,
the visual feature spaces produced by different layers can use
the same encoder-decoder TriNet for data augmentation.

C. Dual TriNet Network

The dual TriNet is paired with ResNet-18. Feature repre-
sentations obtained from different layers of such a deep CNN
architecture, are hierarchical, going from general (bottom lay-
ers) to more specific (top layers) [88]. For instance, the features
produced by the first few layers are similar to Gabor filters [56]
and thus agnostic to the tasks; in contrast, the high-level layers
are specific to a particular task, e.g., image classification.
The feature representations produced by layers of ResNet-
18 have different levels of abstract semantic information.
Thus a natural question is whether we can augment features
at different layers? Directly learning an encoder-decoder for
each layer will not fully exploit the relationship of different
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Figure 1. Overview of our framework. We extract image features by ResNet-18 and augment features by dual TriNet. Encoder TriNet projects features
to the semantic space. After augmenting data in semantic space, we use the decoder TriNet to obtain the corresponding augmented features. Both real and
augmented data are used to train the classification model. Note that: (1) the small green arrow indicates the max pooling with 2 × 2, and following by a
“conv” layer which is the sequence Conv-BN-ReLU.

layers, and thus may not effectively learn the mapping between
feature spaces and the semantic space. To this end, we propose
the dual TriNet network.

Dual TriNet learns the mapping between the Multi-level
Image Feature (M-IF) encoding and the Semantic space. The
semantic space can be either semantic attribute space, or
semantic word vector space introduced in Sec. III-A. Semantic
attributes can be pre-defined by human experts [14]. Semantic
word vector ubase

zi is the projection of each vocabulary entity
wi ∈ W , where vocabulary W is learned by word2vec [15]
on a large-scale corpus. Furthermore, the subspace ubase

zi
can be spanned by Singular Value Decomposition (SVD) of
the semantic relationship of classes. Specifically, we can use{

ubase
zi ; unovel

zj

}
zi∈Cbase,zj∈Cnovel

to compute the semantic re-

lationship M of classes using cosine similarity. We decompose
M = UΣV by SVD algorithm. The U is a unitary matrix
and defines a new semantic space. Each row of U is taken as
a new semantic vector of one class.

Encoder TriNet is composed of four layers corresponding
to each layer of ResNet-18. It aims to learn the function ûzi =
gEnc ({fl (Ii)}) to map all layer features {fl (Ii)} of instance
i as close to the semantic vector uzi of instance i as possible.
The structure of subnetwork is inspired by the tower of Hanoi
as shown in Fig. 1. Such a structure can efficiently exploit
the differences and complementarity of information encoded
in multiple layers. The encoder TriNet is trained to match
the four layers of ResNet-18 by merging and combining the
outputs of different layers. The decoder TriNet has inverse
architecture to project the features ûzi from semantic space to
the feature space f̂l (Ii) = gDec (gEnc ({fl (Ii)})). We learn

TriNet by optimizing the following loss:

J2 (Θ) = E

[
4∑

l=1

(
fl (Ii)− f̂l (Ii)

)2

+ (ûzi − uzi)
2

]
+λP (Θ)

(2)
where Ii ∈ Dbase and Θ indicates the parameter set of
dual TriNet network and P (·) is the L2−regularization term.
The dual TriNet is trained on Dbase and used to synthesize
instances in the form of l-th layer feature perturbations with
respect to a given training instance from Dsupport.

D. Feature Augmentation by Dual TriNet

With the learned dual TriNet, we have two ways to augment
the features of training instances. Note that the augmentation
method is only used to extend Dsupport.

Semantic Gaussian (SG). A natural way to augment fea-
tures is by sampling instances from a Gaussian distribu-
tion. Specifically, for the feature set

{
fl
(
Isupporti

)}
(l =

1, · · · , L) extracted by ResNet-18, the encoder TriNet
can project the

{
fl
(
Isupporti

)}
into the semantic space,

gEnc

({
fl
(
Isupporti

)})
. In such a space, we assume that

vectors can be corrupted by a random Gaussian noise without
changing a semantic label. This can be used to augment the
data. Specifically, we sample the k − th semantic vector vGk

i

from Isupporti using semantic Gaussian as follows,

vGk
i ∼ N

(
gEnc

({
fl
(
Isupporti

)})
, σE

)
(3)

where σ ∈ R is the variance of each dimension and E is the
identity matrix; σ controls the standard deviation of the noise
being added. To make the augmented semantic vector vGk

i

still be representative of the class of zsupporti , we empirically
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set σ to 15% of the distance between usupportzi and its nearest
other class instance usupport

zj (zsupporti 6= zsupportj ) as this
gives the best performance. The decoder TriNet generates the
virtual synthesized sample gDec

(
vGk
i

)
which shares the same

class label zsupporti with the original instance. By slightly
corrupting the values of some dimensions of semantic vectors,
we expect the sampled vectors vGk

i to still have the same
semantic meaning.

Semantic Neighborhood (SN). Inspired by the recent work
on vocabulary-informed learning [58], the large amount of
vocabulary in the semantic word vector space (e.g., word2vec
[15]) can also be used for augmentation. The distribution of
such vocabulary reflects the general semantic relationships in
the linguistic corpora. For example, in word vector space, the
vector of “truck” is closer to the vector of “car” than to the
vector of “dog”. Given the features

{
fl
(
Isupporti

)}
of training

instance i, the k-th augmented data vNk
i can be sampled from

the neighborhood of gEnc

({
fl
(
Isupporti

)})
, i.e.,

vNk
i ∈ Neigh

(
gEnc

({
fl
(
Isupporti

)}))
(4)

Neigh
(
gEnc

({
fl
(
Isupporti

)}))
⊆ W indicates the nearest

neighborhood vocabulary set of gEnc ({fl (Iti)}) and W indi-
cate vocabulary set learned by word2vec [15] on a large-scale
corpus. These neighbors correspond to the most semantically
similar examples to our training instance. The features of
synthesized samples can again be decoded by gDec

(
vNk
i

)
.

There are several points we want to highlight. (1) For
one training instance Isupporti , we use as the Gaussian
mean in Eq (3) or neighborhood center in Eq (4), the
gEnc

({
fl
(
Isupporti

)})
rather than its ground-truth word vec-

tor usupport
zi . This is due to the fact that usupport

zi only repre-
sents the semantic center of class zsupporti , not the center for
the instance i. Experimentally, on miniImageNet dataset, aug-
menting features using usupport

zi , rather than gEnc ({fl (Iti)}),
leads to 3 ∼ 5% performance drop (on average) in 1-shot/5-
shot classification. (2) Semantic space Gaussian noise added in
Eq (3) or semantic neighborhood used in Eq (4) result in the
synthesized training features that are highly nonlinear (non-
Gaussian) for each class. This is the result of non-linear de-
coding provided by TriNet gDec (x) and ResNet-18 ({fl (Iti)}).
(3) Directly adding Gaussian noise to {fl (Iti)} is another naive
way to augment features. However, in miniImageNet dataset,
such a strategy does not give any significant improvement in
one-shot classification.

E. One-shot Classification

Having trained feature extractor network and dual TriNet
on base dataset Dbase, we now discuss conducting one-shot
classification on the target dataset Dnovel. For the instance i in
Dnovel we can extract the M-IF representation fl

(
Inoveli

)
(l =

1, 2, ..., L) using the feature extractor network. We then use the
encoder part of TriNet to map all layer features {fl (Ii)} of
instance i to semantic vector gEnc

({
fl
(
Isupporti

)})
.

Our framework can augment the instance, producing mul-
tiple synthetic instances in addition to the original one{

vGk
i

}
∪
{

vNk
i

}
using semantic Gaussian and/or semantic

neighborhood approaches discussed. For each new semantic
vector vk

i ∈
{

vGk
i

}
∪
{

vNk
i

}
, we use decoder TriNet to map

them from semantic space to all layer features
{
xaugmenti
l

}
=

gDec(v
k
i ) (l = 1, 2, ..., L). The features that are not at the final

L-th layer are feed through from l+1-th layer to L-th layer of
feature extractor network to obtain

{
x̂augment
l

}
. Technically,

one new semantic vector vk
i can generate L instances: one

from each of the L augmented layers. Consistent with previous
work [2], [16], the features produced by the final layer are
utilized for one-shot classification tasks. Hence the newly
synthesized L-th layer features

{
x̂augmenti
l

}
obtained from

the instance i and original L-th layer feature fL
(
Isupporti

)
are used to train the one-shot classifier gone−shot(x) in a
supervised manner. Note that all augmented feature vectors
obtained from instance i are assumed to have the same class
label as the original instance i.

In this work, we show that the augmented features can
benefit various supervised classifiers. To this end three classi-
cal classifiers, i.e., the K-nearest neighbors (KNN), Support
Vector Machine (SVM) and Logistic Regression (LR), are
utilized as one-shot classifier gone−shot(x). In particular, we
use gone−shot(x) to classify the L-th layer feature fl (Itesti )
of test sample Itesti at the test time.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on four datasets. Note that (1)
on all datasets, ResNet-18 is only trained on the training
set (equivalent to base dataset) in the specified splits of
previous works. (2) The same networks and parameter settings
(including the size of input images) are used for all the
datasets; hence all images are resized to 224× 224.

miniImageNet. Originally proposed in [36], this dataset has
60,000 images from 100 classes; each class has around 600
examples. To make our results comparable to previous works,
we use the splits in [41] by utilizing 64, 16 and 20 classes for
training, validation and testing respectively.

Cifar-100. Cifar-100 contains 60,000 images from 100 fine-
grained and 20 coarse-level categories [89]. We use the same
data split as in [90] to enable the comparison with previous
methods. In particular, 64, 16 and 20 classes are used for
training, validation and testing respectively.

Caltech-UCSD Birds 200-2011 (CUB-200). CUB-200 is a
fine-grained dataset consisting of a total of 11,788 images
from 200 categories of birds [91]. As the split in [47], we
use 100, 50 and 50 classes for training, validation and testing.
This dataset also provides 312 dimensional semantic attribute
vectors on a per-class level.

Caltech-256. Caltech-256 has 30,607 images from 256 classes
[92]. As in [90], we split the dataset into 150, 56 and 50 classes
for training, validation and testing respectively.

B. Network structures and Settings

The same ResNet-18 and dual TriNet are used for all four
datasets and experiments.
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Methods miniImageNet (%) CUB-200(%)
1-shot 5-shot 1-shot 5-shot

META-LEARN LSTM [41] 43.44±0.77 60.60±0.71 40.43 49.65
MAML [38] 48.70±1.84 63.11±0.92 38.43 59.15

Meta-Net [42] 49.21±0.96 - - -
Reptile[44] 49.97 65.99 - -

MAML* [38] 52.23±1.24 61.24±0.77 - -
Meta-SGD* [39] 52.31±1.14 64.66±0.89 - -

DEML+Meta-SGD [40] 58.49±0.91 71.28±0.69 - -
MACO [47] 41.09±0.32 58.32±0.21 60.76 74.96

Matching Nets* [36] 47.89±0.86 60.12±0.68 - -
PROTO-NET [37] 49.42±0.78 68.20±0.66 45.27 56.35

GNN [52] 50.33±0.36 66.41±0.63 - -
R2-D2 [43] 51.5±0.2 68.8±0.1 - -

MM-Net [50] 53.37±0.48 66.97±0.35 - -
Cos & Att. [48] 55.45±0.89 70.13 ±0.68 - -

TPN [53] 55.51 69.86 - -
SNAIL [93] 55.71±0.99 68.88±0.92 - -

RELATION NET [46] 57.02±0.92 71.07±0.69 - -
Delta-encoder [57] 58.7 73.6 - -

WRN [45] 59.60±0.41 73.74±0.19 - -
ResNet-18 52.73±1.44 73.31±0.81 66.54±0.53 82.38±0.43

ResNet-18+Gaussian Noise 52.14±1.51 71.78±0.89 65.02±0.60 80.79±0.49
Ours: ResNet-18+Dual TriNet 58.12±1.37 76.92±0.69 69.61±0.46 84.10±0.35

Table I
RESULTS ON miniIMAGENET AND CUB-200. THE “±” INDICATES 95% CONFIDENCE INTERVALS OVER TASKS.*: INDICATES THE CORRESPONDING

BASELINES THAT ARE USING RESNET-18. NOTE THAT “±” IS NOT REPORTED ON CUB-200 IN PREVIOUS WORKS.

Parameters. The dropout rate and learning rate of the auto-
encoder network are set to 0.5 and 1e−3 respectively to prevent
overfitting. The learning rate is divided by 2 every 10 epochs.
The batch size is set to 64. The network is trained using Adam
optimizer and usually converges in 100 epochs. To prevent
randomness due to the small training set size, all experiments
are repeated multiple times. The Top-1 accuracies are reported
with 95% confidence interval and are averaged over multiple
test episodes, the same as previous work [41].

Settings. We use the 100-dimensional semantic word vectors
extracted from the vocabulary dictionary released by [58]. The
class name is projected into the semantic space as a vector
ubase
zi or unovel

zi . The semantic attribute space is pre-defined
by experts [32], [91]. In all experiments, given one training
instance the dual TriNet will generate 4 augmented instances
in the semantic space. Thus we have 4 synthesized instances
of each layer which results in 16 synthesized instances in the
form of 4−th layer features. So one training instance becomes
17 training instances at the end.

C. Competitors and Classification models

Competitors. The previous methods we compare to are run
using the same source/target and training/testing splits as used
by our method. We compare to Matching Nets [36], MAML
[38], Meta-SGD [39], DEML+Meta-SGD [40], PROTO-NET
[37], RELATION NET [46], META-LEARN LSTM [41],
Meta-Net [42], SNAIL [93] , MACO [47], GNN [52], MM-
Net[50], Reptile [44], TPN [53], WRN [45], Cos & Att. [48],
Delta-encoder [57] and R2-D2[43]. To make a fair comparison,
we implement some of the methods and use ResNet-18 as a
commmon backbone architecture.

Classification model. KNN, SVM, and LR are used as
the classification models to validate the effectiveness of our

augmentation technique. The hyperparameters of classification
models are selected using cross-validation on a validation set.

D. Experimental results on miniImageNet and CUB-200

Settings. For miniImageNet dataset we only have a semantic
word space. Give one training instance, we can generate 16
augmented instances for Semantic Gaussian (SG) and Seman-
tic Neighborhood (SN) each. On CUB-200 dataset, we use
both the semantic word vector and semantic attribute spaces.
Hence for one training instance, we generate 16 augmented
instances for SG and SN each in semantic word vector space;
and additionally, we generate 16 virtual instances (in all four
layers) for Semantic Gaussian (SG) in semantic attribute space,
which we denote Attribute Gaussian (AG).

Variants of the number of augmented samples. Varying
the number of augmented samples does not significantly affect
our performance. To show this, we provide 1-shot accuracy on
CUB dataset with the different numbers of augmented samples
(Table II). As shown, the improvements from increasing the
number of augmented samples saturate at a certain point.

Results. As shown in Tab. I, the competitors can be di-
vided into two categories: Meta-learning algorithms (includ-
ing MAML, Meta-SGD, DEML+Meta-SGD, META-LEARN
LSTM and Meta-Net) and Metric-learning algorithms (includ-
ing Matching Nets, PROTO-NET, RELATION NET ,SNAIL
and MACO). We also report the results of ResNet-18 (without
data augmentation). The accuracy of our framework (ResNet-
18+Dual TriNet) is also reported. The Dual TriNet synthesizes
each layer features of ResNet-18 as described in Sec. III-D.
ResNet18+Gaussian Noise is a simple baseline that synthe-
sizes 16 samples of each test example by adding Gaussian
noise to the 4− th layer features. We use SVM classifiers for
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Semantic Neighbourhood Semantic Gaussian Attribute Gaussian
0 2 4 10 50 0 2 4 10 50 0 2 4 10 50

L1 66.5 67.1 67.2 67.3 67.2 66.5 67.1 67.2 67.1 67.2 66.5 67.1 67.1 67.1 67.1
L2 66.5 67.0 67.1 67.1 67.0 66.5 67.1 67.1 67.1 67.0 66.5 67.1 67.3 67.3 67.2
L3 66.5 67.1 67.3 67.3 67.3 66.5 67.1 67.3 67.3 67.2 66.5 67.0 67.4 67.5 67.5
L4 66.5 67.4 67.5 67.4 67.4 66.5 67.1 67.3 67.2 67.3 66.5 67.1 67.6 67.6 67.5

M-L 66.5 68.0 68.1 68.1 68.1 66.5 67.9 68.0 68.0 68.0 66.5 68.2 68.3 68.4 68.3
Table II

ABLATION STUDY OF THE NUMBER OF AUGMENTED SAMPLES IN SEMANTIC SPACE ON CUB. WE REPORT 5-WAY 1-SHOT ACCURACY. L1, L2, L3, AND
L4 INDICATE THAT WE ONLY USE THE AUGMENTED FEATURES OF LAYER 1, LAYER 2, LAYER 3 AND LAYER 4 RESPECTIVELY. M-L INDICATES THAT WE

USE ALL AUGMENTED FEATURES FROM FOUR LAYERS;

Figure 2. One-shot Results of feature augmentation by different layers/classifiers on CUB-200 and miniImageNet. “NoAug”, “Layer1”, “Layer2”, “Layer3”,
“Layer4” indicate the one-shot learning results without any augmentation, with the feature augmentation by using layer 1, layer 2, layer 3, layer 4 of ResNet-18.
“Multi-L” denotes the performance of using all augmented instances of one-shot learning. The X-axis represents the different supervised classifiers.

ResNet-18 , ResNet18+Gaussian Noise and ResNet-18+Dual
TriNet in Tab. I. In particular, we found that,

(1) Our baseline (ResNet-18) nearly beats all the other
baselines. Greatly benefiting from learning the residuals,
Resnet-18 is a very good feature extractor for one-shot learning
tasks. Previous works [38][39][36] designed their own network
architectures with fewer parameters and used different objec-
tive functions. As can be seen from Tab. I, after replacing
their backbone architecture with ResNet-18, they still behave
worse than our baseline (Resnet-18). We argue that this is
because ResNet-18 is more adaptable to classification task
and it can generate more discriminative space using Cross
Entropy Loss than other objective functions used in metric
learning. However, this topic is beyond our discussion. We
want to clarify that since our augmentation method is capable
of being combined with arbitrary approaches, we choose the
strongest baseline to the best of our knowledge. This baseline
can be enhanced by our approach, illustrate the universality of
our augmentation.

(2) Our framework can achieve the best performance. As
shown in Tab. I, the results of our framework, i.e., ResNet-
18+Dual TriNet can achieve the best performance and we can
show a clear improvements over all the other baselines on both
datasets. This validates the effectiveness of our framework
in solving the one-shot learning task. Note, DEML+Meta-
SGD [40] uses the ResNet-50 as the baseline model and
hence has better one-shot learning results than our ResNet-

18. Nevertheless, with the augmented data produced by Dual
TriNet we can observe a clear improvement over ResNet-18.

(3) Our framework can effectively augment multiple layer
features. We analyze the effectiveness of augmented fea-
tures in each layer as shown in Fig. 2. On CUB-200 and
miniImageNet, we report the results in 1-shot learning cases.
We have several conclusions: (1) Only using the augmented
features from one single layer (e.g., Layer1 – Layer 4 in Fig.
2) can also help improve the performance of one-shot learning
results. This validates the effectiveness of our dual TriNet of
synthesizing features of different layers in a single framework.
(2) The results of using synthesized instances from all layers
(Multi-L) are even better than those of individual layers. This
indicates that the augmented features at different layers are
intrinsically complementary to each other.

(4) Augmented features can boost the performance of
different supervised classifiers. Our augmented features are
not designed for any one supervised classifier. To show this
point and as illustrated in Fig. 2, three classical supervised
classifiers (i.e., KNN, SVM and LR) are tested along the
X-axis of Fig. 2. Results show that our augmented features
can boost the performance of three supervised classifiers
on one-shot classification cases. This further validates the
effectiveness of our augmentation framework.

(5) The augmented features by SG, SN and AG can also
improve few-shot learning results. We compare different
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Figure 3. One-shot results of feature augmentation by different types of semantic spaces on CUB-200 and miniImageNet. “Single Layer” indicates the best
one-shot performance augmented by using only single layer. “Multi-layer” represents the results of using synthesized instances from all layers.

types of feature augmentation methods of various semantic
spaces in Fig. 3. Specifically, we compare the SG and SN
in semantic word vector space; and AG in semantic attribute
space. On CUB-200 dataset, the augmented results by SG,
SN and AG are better than those without augmentation.
The accuracy of combining the synthesized instance features
generated by any two of SG, SN, and AG can be further
improved over those of SG, SN or AG only. This means
that the augmented feature instances of SG, SN and AG are
complementary to each other. Finally, we observe that by
combining augmented instances from all methods (SG, SN
and AG), the accuracy of one-shot learning is the highest one.

(6) Even the semantic space inferred from the semantic
relationships of classes can also work well with our frame-
work. To show this point, we again compare the results in Fig.
3. Particularly, we compute the similarity matrix of classes
in miniImageNet obtained using semantic word vectors. The
SVD is employed to decompose the similarity matrix and
the left singular vectors of SVD are assumed to span a new
semantic space. Such a new space is hence utilized in learning
the dual TriNet. We employ the Semantic Gaussian (SG) to
augment the instance feature in the newly spanned space for
one-shot classification. The results are denoted “SVD-G”. We
report the results of SVD-G augmentation in miniImageNet
dataset in Fig. 3. We highlight several interesting observations.
(1) The results of SVD-G feature augmentation are still better
than those without any augmentation. (2) The accuracy of
SVD-G is actually slightly worse than that of SG, since the
new spanned space is derived from the original semantic word
space. (3) There is almost no complementary information in
the augmented features between SVD-G and SG, still partly
due to the new space spanned from the semantic and the
word space. (4) The augmented features produced by SVD-G
are also very complementary to those from SN as shown in
the results of Fig. 3. This is due to the fact that additional
neighborhood vocabulary information is not used in deriving
the new semantic space. We have a similar experimental
conclusion on CUB-200 as shown in Tab. IV.

E. Experimental results on Caltech-256 and CIFAR-100

Settings. On Caltech-256 and CIFAR-100 dataset we also use
the semantic word vector space. For one training instance, we
synthesize 16 sugmented features for SG and SN individually
from all four layers of ResNet-18. On these two datasets, the
results of competitors are implemented and reported in [40].
Our reported results are produced by using the augmented
feature instances of all layers, both by SG and SN. The SVM
classifier is used as the classification model.

Results. The results on Caltech-256 and CIFAR-100 are
illustrated in Tab. III. We found that (1) our method can still
achieve the best performance as compared to the state-of-
the-art algorithms, thanks to the augmented feature instances
obtained using the proposed framework. (2) The ResNet-18 is
still a very strong baseline; and it can beat almost all the other
baselines, except the DEML+Meta-SGD which uses ResNet-
50 as the baseline structure. (3) There is a clear margin of
improvement from using our augmented instance features over
using ResNet-18 only. This further validates the efficacy of the
proposed framework.

V. FURTHER ANALYSIS

A. Comparison with standard augmentation methods

Besides our feature augmentation method, we also compare
the standard augmentation methods [2] in one-shot learning
setting. These methods include cropping, rotation, flipping,
and color transformations of training images of one-shot
classes. Furthermore, we also try the methods of adding the
Gaussian noise to the ResNet-18 features of training instances
of one-shot classes as shown in Tab. I. However, none of
these methods can improve the classification accuracy in one-
shot learning. This is reasonable since the one-shot classes
have only very few training examples. This is somewhat
expected: such naive augmentation methods intrinsically just
add noise/variance, but do not introduce extra information to
help one-shot classification.
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Methods Caltech-256 (%) CIFAR-100 (%)
1-shot 5-shot 1-shot 5-shot

MAML [38] 45.59±0.77 54.61±0.73 49.28±0.90 58.30±0.80
Meta-SGD [39] 48.65±0.82 64.74±0.75 53.83±0.89 70.40±0.74

DEML+Meta-SGD [40] 62.25±1.00 79.52±0.63 61.62±1.01 77.94±0.74
Matching Nets [36] 48.09±0.83 57.45±0.74 50.53±0.87 60.30±0.82

ResNet-18 60.13±0.71 78.79±0.54 59.65±0.78 76.75±0.73
ResNet-18+Dual TriNet 63.77±0.62 80.53±0.46 63.41±0.64 78.43±0.62

Table III
RESULTS ON CALTECH-256 AND CIFAR-100 DATASETS. THE “±” INDICATES 95% CONFIDENCE INTERVALS OVER TASKS.

Method Shots R-18 Layer Data Augmentation
SN SG SD SN+SG SG+SD SN+SD SN+SG+SD

KNN
1 64.30 S. 65.12 65.21 65.38 66.82 65.50 67.21 67.23

M. 65.58 65.61 65.78 67.29 65.77 67.82 67.91
5 77.66 S. 78.34 78.42 78.62 79.01 78.66 79.12 79.36

M. 79.01 78.96 79.04 79.51 79.09 79.56 79.71

SVR
1 66.54 S. 67.63 67.49 67.69 68.23 67.60 68.41 68.56

M. 68.10 68.03 68.22 68.71 67.98 68.89 69.01
5 82.38 S. 83.01 83.07 83.02 83.59 83.11 83.42 83.44

M. 83.47 83.51 83.60 83.82 83.49 83.99 84.10

LR
1 64.22 S. 65.29 65.33 65.43 66.59 65.46 66.89 67.01

M. 65.71 65.92 65.89 67.12 65.74 67.63 67.55
5 82.51 S. 83.37 83.31 83.60 83.61 83.59 83.62 83.69

M. 83.82 83.83 83.90 84.21 83.71 84.23 84.17
Table IV

THE CLASSIFICATION ACCURACY OF ONE-SHOT LEARNING ON CALTECH-UCSD BIRDS IN 5-WAY. NOTE THAT: “S.” AND “M.” INDICATES THE
SINGLE AND MULTIPLE LAYERS RESPECTIVELY. “SD” IS SHORT FOR “SVD-G”. “R-18” IS SHORT FOR “RESNET-18”.

Figure 4. Visualization of the original and augmented features.

Methods MiniImagenet CUB-200 Caltech-256 CIFAR-100
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ResNet-18 52.73 73.31 66.54 82.38 60.13 78.79 59.65 76.75
ResNet-18+U-net 56.41 75.67 68.32 83.24 61.54 79.88 62.32 77.87

ResNet-18+Auto-encoder 56.80 75.27 68.56 83.24 62.41 79.77 61.76 76.98
Ours without encoder 50.69 70.79 64.15 80.06 58.78 76.45 57.46 75.12
Ours without decoder 48.75 65.12 62.04 78.16 58.67 76.45 53.19 68.74

Ours 58.12 76.92 69.61 84.10 63.77 80.53 63.41 78.43
Table V

RESULTS OF USING ALTERNATIVE AUGMENTATION NETWORKS.OURS INDICATES RESNET-18+DUAL-TRINET.
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B. Dual TriNet structure

We propose the dual TriNet structure which intrinsically
is derived from the encoder-decoder architecture. Thus we
further analyze the other alternative network structures for
feature augmentation. In particular, the alternative choices
of augmentation network can be the auto-encoder [94] of
each layer or U-net [95]. The results are compared in Tab.
V. We show that our dual TriNet can best explore the
complementary information of different layers, and hence our
results are better than those without augmentation (ResNet-
18), with U-net augmentation (ResNet-18+U-net) and with
auto-encoder augmentation (ResNet-18+Auto-encoder). This
validates that our dual TriNet can efficiently merge and exploit
the information of multiple layers for feature augmentation. In
addition, we conduct experiments to prove that the encoder
part and decoder part is necessary. If we simply used the
semantic vector of true label ubase

zi instead of using encoder
gEnc

({
fl
(
Isupporti

)})
, the augmented samples actually hurt

the performance. In the case where we do the classification
in the semantic space, effectively disabling the decoder, the
performance drops by over 5%. This is because of the loss of
information during the mapping from visual space to semantic
space, but in our approach, we keep original information and
have additional information from semantic space.

C. Visualization

Using the technique in [96], we can visualize the image
that can generate the augmented features f̂l (Ii) = g (fl (Ii))
in ResNet-18. We first randomly generate an image Ii0 . Then
we optimize Ii0 by reducing the distance betwen fl (Ii0) and
f̂l (Ii) (both are the output of ResNet-18):

Ii0 = argmin
Ii0

1

2

∥∥∥fl (Ii0)− f̂l (Ii)
∥∥∥2

2
+ λ ·R (Ii0) (5)

where R (·) is the Total Variation Regularizer for image
smoothness; λ = 1e−2. When the difference is small enough,
Ii0 should be representation of the image that can generate the
corresponding augmented feature.

By using SN and the visualization algorithm above, we
visualize the original and augmented features in Fig. 4. The
top row shows the input images of two birds, one roof,
and one dog. The blue circles and red circles indicate the
visualization of original and augmented features of Layer 1 –
Layer 4 respectively. The visualization of augmented features
is similar, and yet different from that of original image. For
example, the first two columns show that the visualization
of augmented features actually slightly change the head pose
of the bird. In the last two columns, the augmented features
clearly visualize a dog which is similar have a different
appearance from the input image. This intuitively shows why
our framework works.

VI. CONCLUSIONS

This work purposes an end-to-end framework for feature
augmentation. The proposed dual TriNet structure can effi-
ciently and directly augment multi-layer visual features to

boost the few-shot classification. We demonstrate our frame-
work can efficiently solve the few-shot classification on four
datasets. We mainly evaluate on classification tasks; it is also
interesting and future work to extend augmented features to
other related tasks, such as one-shot image/video segmentation
[86], [87]. Additionally, though dual TriNet is paired with
ResNet-18 here, we can easily extend it for other feature
extractor networks, such as ResNet-50.
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