
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2012)
P. Kry and J. Lee (Editors)

Multi-linear Data-Driven Dynamic Hair Model with Efficient
Hair-Body Collision Handling

Peng Guan1 Leonid Sigal2 Valeria Reznitskaya2 Jessica K. Hodgins2,3

1Brown University 2Disney Research, Pittsburgh 3Carnegie Mellon University

Figure 1: Real-time animation of 900 guide multi-linear hair model, with interactive control over the hair softness (red slider,
the higher the softer) and length (blue slider, the higher the longer); bottom row shows interactive control of wind strength
(arrow length) and direction (arrow orientation).

Abstract
We present a data-driven method for learning hair models that enables the creation and animation of many interac-
tive virtual characters in real-time (for gaming, character pre-visualization and design). Our model has a number
of properties that make it appealing for interactive applications: (i) it preserves the key dynamic properties of
physical simulation at a fraction of the computational cost, (ii) it gives the user continuous interactive control
over the hair styles (e.g., lengths) and dynamics (e.g., softness) without requiring re-styling or re-simulation, (iii)
it deals with hair-body collisions explicitly using optimization in the low-dimensional reduced space, (iv) it al-
lows modeling of external phenomena (e.g., wind). Our method builds on the recent success of reduced models
for clothing and fluid simulation, but extends them in a number of significant ways. We model motion of hair in a
conditional reduced sub-space, where the hair basis vectors, which encode dynamics, are linear functions of user-
specified hair parameters. We formulate collision handling as an optimization in this reduced sub-space using fast
iterative least squares. We demonstrate our method by building dynamic, user-controlled models of hair styles.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation;

1. Introduction

Hair animation is a difficult task, primarily due to the large
volume of hairs that need to be considered (a typical hu-
man head consists of 100,000 hair strands) and the complex
hair motions and interactions. Despite this, there has been

enormous success in model acquisition [PMC⇤08], simula-
tion [SLF08, DDB11] and rendering of hair (e.g., Rapun-
zel’s hair in Tangled [WSM⇤10]). Such high-quality sim-
ulations, however, are expensive and require off-line pro-
cessing. The approach of Daviet and colleagues [DDB11]
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simulates 25 seconds of video in 48 hours (using 2,000
rods) and that of Salle and colleagues [SLF08] simulates
1 frame in 4-38 minutes. Real-time applications, such as
prototyping and games, have more stringent computational
budgets, and hence often rely on less realistic models which
are either entirely procedural [CMM09], topologically con-
strained [YSK09], or approximate simulation using low-
resolution (e.g., guide curves or strips [KHS04]) or level of
detail models [WLL⇤05].

Rather than attempt to create a fast physically accurate
simulation, our goal is to learn a flexible low-dimensional
representation of dynamic hair motion that is compact and
fast, but at the same time expressive enough to convey the
dynamic behaviors seen in high-resolution simulations. Our
data-driven approach generates motion that models the dy-
namics of hair and provides a level of accuracy comparable
to the input data. Our method builds on the recent success
of reduced models for clothing [dASTH10] and fluid simu-
lation [TLP06], but extends them in a number of significant
ways. It is a general method that is also applicable in other
domains, for example for modeling clothing. The approach
of de Aguiar and colleagues [dASTH10] is a special case of
our model. Here we focus primarily on hair animation.

We leverage hair simulations produced by a standard sim-
ulation package (Shave and a Haircut [Alt06]) to build a
highly efficient multi-linear model of hair motion as a func-
tion of several user-controlled parameters (hair length, soft-
ness and wind direction). To build this model, we make two
basic assumptions: (i) characters in interactive domains typi-
cally exist in finite configuration spaces, where, for example,
the user has control over the transitions between a finite set
of motions (e.g., as in motion graphs); or has limited dy-
namic control over the raw character motion (e.g., as with
most interactive controllers); and (ii) there exists a contin-
uous manifold space of hair models parameterized by geo-
metric, dynamic, and external factors acting on the hair. The
second assumption is motivated by hair grooming and sim-
ulation tools that typically provide continuous control over
similar parameters but off-line.

Our method takes, as input, multiple sets of hair motions
produced by a simulator under various perturbations in the
parameters of interest, and learns a reduced multi-linear dy-
namical model approximating the behavior of hair exhibited
across all sets. As a consequence, one can think of the con-
ditional dynamic base vectors, modeling hair evolution, as
being functions of real-valued factors that can be specified
by the user at test time. Thus using a discrete set of simula-
tions, we are able to build a continuous and intuitive space
of dynamic hair models. Because our learning method is sta-
tistical in nature, the raw results from the multi-linear model
can only approximately resolve body-hair contacts. This lim-
itation can cause unwanted hair-body penetrations. To ex-
plicitly handle this problem in our model, we propose an
optimization step that resolves collisions by optimizing the

reduced space representation directly. This process is effi-
cient because we only need to optimize a small set of hair
parameters, instead of raw hair strand vertex positions.

Unlike prior real-time hair-simulation methods that typi-
cally rely on low-resolution models (with a handful of strips
or wisps), our model is considerably more efficient and can
deal with up to 4,000 guide hair strands at a small fraction of
the computational cost. In contrast to most model reduction
approaches [TLP06], we assume no specific form for the dy-
namics. In contrast to data-driven methods [dASTH10], we
do not learn a single linear dynamical model, but rather a
family of models parameterized by semantic user-specifiable
parameters (including external factors like the wind); we
also explicitly and efficiently deal with hair-body collisions,
which was a limitation of [dASTH10].

Contributions: We introduce a data-driven multi-linear
reduced-space dynamical model for modeling hair. It is ex-
plicitly parameterized by a number of real-valued factors
(e.g., hair length, hair softness, wind direction/strength, etc.)
that make it easy to adjust the groom and motion of hair
interactively at test time. We formulate our model using ten-
sor algebra and illustrate how dynamics can be incorporated
within this framework. Further, we explicitly address the
issue of hair-body collisions by a very efficient optimiza-
tion procedure formulated directly in the reduced space and
solved using a form of iterative least squares. Our formu-
lation goes substantially beyond current reduced-space dy-
namical models (e.g., [dASTH10]).

2. Related Work

A large body of work exists on hair modeling, simulation,
and rendering. We refer the reader to a survey [WBK⇤07]
and prior SIGGRAPH course notes [BHC⇤08, YT10] for an
overview. Hair simulation approaches can loosely be orga-
nized into two classes of methods: those that model hair as
a continuous medium and those that model it as a set of dis-
joint, possibly interacting, groups [WBK⇤07].

Continuous medium models, model hair as a contin-
uum and model complex interactions between strands using
fluid dynamics (smooth particle hydrodynamics) [BCN03,
HMT01]. Such methods, however, are slow and do not cap-
ture the clustering effects observed in longer hair.

Disjoint models typically model hair using a sparse set
of hair guides, hair strips, or wisps. Hair guides are repre-
sentative strands that are simulated; the dense hair model
is then created by interpolating the position of the remain-
ing strands from a set of hair guides [CJY02]. This ap-
proximation allows nearly real-time performance with a
moderate number of guides (a GPU implementation with
166 simulated strands can run at 15 FPS [TB08]). Hair
strips model hair using thin flat patches (NURBS surfaces)
[KH01]. Using a strip to represent tens or hundreds of indi-
vidual strands leads to significant efficiencies, particularly in
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collision handling, resulting in real-time performance; con-
sequently this approach is often used in games. However,
strips are unable to represent complex hair styles or motions.
Wisps model bundles of hair strands as volumetric primi-
tives [CCK05,WS92,YXWY00]. These approaches are par-
ticularly good at modeling hair styles with well-defined clus-
ters; however, they are typically computationally expensive
(e.g., requiring seconds per frame to compute [CCK05]).
Another promising approach uses the hair mesh structure for
modeling the hair volume; topological constraints allow an
automatic and unique way to trace the path of individual hair
strands through this volume [YSK09]. With a coarse resolu-
tion mesh this approach is able to simulate hair at 92 FPS.
However, the coarse resolution of the mesh does not allow
for fine movement of individual strands. Level of detail mod-
els such as one proposed by Ward and colleagues [WLL⇤05]
can improve performance, on average, by leveraging lower
resolution simulations when character is further away from
the camera; however, at closeups the simulation is still rela-
tively expensive (about 8 FPS).

Our model conceptually builds on the clothing model in-
troduced by [dASTH10]. In particular, for a given setting of
factors, our model reduces to a model very similar to theirs.
However, our model is considerably more general as it al-
lows for the real-valued factors, that account for the hair
groom, style, and external phenomena, to be controlled in-
teractively. These factors in essence modulate the basis of
the learned dynamical model. In contrast, their model would
require a separate model to be learned each time parame-
ters of simulation or groom of the hair changed; producing
models for only a discrete set of simulations performed at
training. We are also able to model external factors, such as
(controllable) wind, which would not be possible with their
approach. In addition, we explicitly deal with collision de-
tection and resolution in the reduced space; [dASTH10] only
approximately maintains depth ordering and requires a cus-
tom rendering pipeline to resolve problematic cases. Self-
collisions in the reduced spaces were previously addressed
in [BJ10]. That approach is not applicable, however, to hair-
body collisions as the topology of both the body and the hair
is changing over time.

Our formulation builds on the formalism of multilinear
subspace learning from tensor data; a survey of related meth-
ods is available from [LPV11]. In the past, multi-linear mod-
els have been used for face recognition [VT02b] and transfer
[VBPP05], human motion modeling [MLC10] and image-
based texture mapping [VT04]. Unlike prior methods that
use multi-linear models as a way to build generative repre-
sentations of spatial or spatio-temporal data, we utilize them
to build conditional models of hair dynamics. Finally, be-
cause we use style (or groom) as one of the factors, the space
of geometric variations in hair groom can also be modeled.
This addition allows users to create styles on-line without
explicit grooming by an animator in much the way that hu-
man body shapes are modeled in [ACP03].

3. Representation

We use a physically based hair simulation software (Shave
and a Haircut [Alt06]) to simulate a large number of hair
guides, each guide being the proxy for a bundle of hair
strands. Our method operates on hair guides as this is a typi-
cal representation for hair simulators. However, unlike other
methods (e.g., [TB08]) that use few (up to 200) hair guides
to reduce simulation complexity, we utilize up to 4,000 hair
guides with our model†. The hair guides are simulated on the
head of the virtual character, animated and skinned using a
set of 35 motion capture sequences. We adopt a standard ap-
proach to interpolate between hair guides to obtain a full set
of hair strands [ND05].

Hair: We use Ng guides per-frame and every guide
gk(1  k  Ng) is a curve represented by Nm = 15
points in 3D (see Figure 2). We generate three dif-
ferent datasets with Ng being 198, 962, and 3980 re-
spectively. Let gk,1,gk,2, ...,gk,Nm 2 R3 be the points on
guide k. We concatenate the x,y,z coordinates of points
from the guide and obtain gk = [gk,1,gk,2, ...,gk,Nm ] =
[gk,1,x,gk,1,y,gk,1,z, ...,gk,Nm,x,gk,Nm,y,gk,Nm,z] 2 R3Nm . We
put together all the guides and use a tall vector h =
[g1,g2, ...,gNg ]

T 2 RNh to represent one frame of hairs,
where Nh = 3NmNg.

Body: Similarly we represent the body using a set of ver-
tices of the triangular mesh (see Figure 2). For the pur-
poses of our model we only need to consider the head and
the shoulders (the bust) of the mesh with which hair can
potentially come in contact. Assuming that there are Nn
vertices in the bust and that each vertex is represented as
bi = [bi,x,bi,y,bi,z] 2 R3, at a single frame the body is repre-
sented using b = [b1,b2, ...,bNn ]

T 2 RNb , where Nb = 3Nn.

3.1. Dimensionality Reduction in Canonical Space

Given the correlation among the hair guides (and body ver-
tices) and the constrained topology of hair points, the under-
lying number of degrees of freedom (DOF) is much less than
Nh (or Nb in the case of the body). Hence, we adopt Princi-
pal Component Analysis (PCA) to reduce the dimensional-
ity of the two representations. We are able to capture most of
the variation in the geometric hair appearance using a much
lower dimensional space (typically 50 to 100); as the config-
uration of the bust is much more constrained, we use only 10
dimensions to represent it. The choice of the space in which
the hair and bust are represented is also an important practi-
cal issue. Representation in the original world space hinders
generalization [dASTH10]. Therefore, we model the motion
in a canonical space of the bust.

† In effect we show that by treating all hair strands as guide curves
in our framework, we can forego the interpolation step as our model
learns to incorporate “interpolation" as part of the mapping from the
reduced space to the full-dimensional hair representation.
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Figure 2: Hair and body parametrization: We represent
hair using control points on a sparse set of guides and body
using vertices making up the triangular mesh of bust.

We assume that the hair motion is only determined by the
motion of the bust. We do not consider hair-hand interac-
tion in this work. To normalize hairs and bust at frame t,
we transform all the hair points and the bust vertices into a
canonical space by: (1) subtracting the average position of
the bust vertices, pt = 1

Nn
SNn

i=1bi,t 2 R3 and (2) rotating the
bust (and hairs) around the Y-axis, rt 2R1 such that the head
is facing towards the positive Z-axis; the negative Y-axis is
the gravity direction. PCA is applied on the normalized data.

As a result, the hair at frame t, ht 2RNh can be written as:

ht = Ry(rt)[Qhyt +µh]+pt , (1)

where Ry(rt) is a 3⇥3 rotation matrix around the Y-axis that
rotates the hairs from a canonical space back to world space,
Qh 2 RNh⇥dh are the eigenvectors learned by the hair PCA,
dh is the dimension we choose to represent the hair, µh is
the mean location of hairs in the canonical space, and yt is a
vector of hair PCA coefficients for frame t.

The bust vertices are represented in a similar way:

bt = Ry(rt)[Qbxt +µb]+pt , (2)

where Qb 2 RNb⇥db are the eigenvectors learned by the bust
PCA, db is the dimension we choose to represent the bust,
µb is the mean location of bust vertices learned from training
data, and xt is a vector of bust PCA coefficients for frame t.

4. Multi-linear Hair Framework

The appearance of hair is a composite effect of many factors,
such as length, softness, head pose and motion. We explicitly
parameterize our hair model using these real-valued factors.
By changing the values of any of these factors, we are able
to synthesize hair with different appearance, configuration
and motion. To simplify the formulation, we first introduce a
generative multi-linear model for hair appearance in a given
frame and then illustrate how that model can be extended to
incorporate dynamics for synthesis.

Multi-linear algebra provides us with a mathematical

framework to factorize hair appearance. The simulated hair
exemplars, parameterized by reduced representation, are
built into a data tensor D that is later decomposed in or-
der to separate and represent each constituent factor. We use
the Matlab Tensor Toolbox [BK06] to perform tensor oper-
ations. Hair data is built into a N > 2 tensor or N-way array
D, and N-mode singular value decomposition (N-SVD) or-
thogonalizes N spaces and decomposes the tensor into the
mode�N product [VT02a, VT02b]:

D = Z⇥1 U1⇥2 U2...⇥i Ui...⇥N UN . (3)

The core tensor Z governs the interaction between the mode
matrices U1,...,UN , and each mode matrix Ui is obtained by
mode� i flattening of D [BK06].

We introduce the formulation in terms of a simple model
with two factors, but build and discuss a variety of other
models of this form in the results section. We prepare the
training dataset such that we have Nl = 2 different hair
lengths (short and long) and Ns = 2 different hair softnesses
(soft and stiff). Note that all hair models in our dataset are
in correspondence, i.e., contain the same number of hair
strands, the same number of points per strand and the same
scalp attachment points. Each hair length and softness com-
bination corresponds to approximately Nf = 12000 frames
of different head poses from 35 training sequences (animated
using motion capture data). The total size of the training set
is Nl⇥Ns⇥Nf frames. We now show how we can represent
hair, y 2 Rdh , using a multi-linear generative model.

For the simple case of the two factors of length and soft-
ness, our hair data tensor D is a dh ⇥Nl ⇥Ns ⇥Nf array,
which is decomposed to:

D = Z⇥1 Uhair⇥2 Ulength⇥3 Uso f tness⇥4 Ucon f ig. (4)

Z 2 Rdh⇥Nl⇥Ns⇥N⇤
f , with N⇤f = min(Nf ,dh ·Nl ·Ns) = dh ·

Nl ·Ns, is the core tensor and Uhair is the hair mode ma-
trix which will be projected out (see Figure 3). The Nl ⇥Nl
mode matrix Ulength spans the space of hair length parame-
ters, each row of which corresponds to a different hair length
in our dataset. Similarly, the Ns⇥Ns mode matrix Uso f tness
spans the space of hair softness parameters, each row of
which corresponds to a different hair softness in our dataset.
Ucon f ig spans the space of hair configurations that encode
variations in hair appearance as the body moves. This model
characterizes how hair length, softness and configuration in-
teract and multiplicatively modulate the appearance of hair.

We can synthesize novel hair length and softness by in-
terpolating between the rows in Ulength (Uso f tness). This in-
terpolation corresponds to convex combination of bases, us-
ing barycentric coordinates, and can be extended to a dataset
with Nl > 2 and/or Ns > 2. Let vlength 2RNl (vso f tness 2RNs )
be a vector of coefficients that interpolates between the rows
of Ulength (Uso f tness). Note that for our simple dataset, where
Nl = 2, vlength = UT

length · [a,(1�a)]T , where a 2 (0,1).

We can generate hair coefficients, y, by specifying all the
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Figure 3: Multi-linear hair model: The representation of the hair tensor D (left) as a core tensor and mode matrices (right).

constituent factors (length, softness, and configuration):

y = Z⇥1 Uhair⇥2 vlength⇥3 vso f tness⇥4 vcon f ig. (5)

Eq. 5 allows us to generate hair with different appearance
using only a few matrix multiplications. In fact, to synthe-
size hairs with fixed style (length and softness), we can pre-
compute M 2 Rdh⇥(Nl ·Ns·N⇤

f )

M= Z⇥1 Uhair⇥2 vlength⇥3 vso f tness, (6)

which corresponds to a linear space that spans the hair PCA
coefficients. Only one matrix multiplication is needed to ob-
tain y = M· vcon f ig, where vcon f ig is the set of coefficients
that encode hair configuration. However, for a given frame
we do not have explicit knowledge of vcon f ig a priori, in-
stead in the next section we show how we can solve for
vcon f ig by conditioning the model on the bust pose and pre-
vious hair configurations; conditioning on previous hair con-
figurations allows us to model dynamics.

5. Dynamics

The simple formulation above is unable to model dynam-
ics and there is no intuitive way to condition the model to
obtain vcon f ig for a given frame. To address the first limi-
tation, we build a generative model over a short (3-frame)
temporal window of hair and bust configurations. This al-
lows us to model the relationship between the (presumably
unknown) hair configuration at the current frame and the
(presumably known) body as well as (presumably known)
hair configurations at the past frames. To address the second
limitation, we show how this model can then be conditioned
to predict/simulate the configuration of the hair at the cur-
rent frame. More specifically, we assume a second order dy-
namical model on the hair (consistent with a second order
ODE governing the true dynamics and empirical observa-
tions in [dASTH10]). We also assume a control signal xt , in
the form of a bust at time t, that governs the motion of the
hair and (later) collision detection.

Dynamic Multi-linear Hair Model: We learn a multi-
linear model as in Section 4, but with augmented vectors
wt = [xt ;yt�2;yt�1;zt,t�2;zt�1,t�2;yt ] 2 Rda , where da =

db +3dh +10, and zt, j 2 R5 encodes the relative global bust
translation and rotation at frame t with respect to frame j:

zt, j =

2

4
Ry(�r j)(pt �p j)

sin(rt � r j)
cos(rt � r j)

3

5 . (7)

Note that we need to add zt,t�2 and zt�1,t�2 because the
body and hair are normalized into a canonical space, so the
incremental global motion is lost and needs to be added back
(in the form of these auxiliary variables). The resulting hair
tensor is D 2 Rda⇥Nl⇥Ns⇥N⇤

f , where N⇤f = da ·Nl ·Ns. We
also experimented with a complete generative model over
the 3-frame temporal window (by adding xt�1 and xt�2 to
the augmented vector wt ) as well as with longer temporal
windows but longer windows did not result in better perfor-
mance, often led to over-fitting, and resulted in higher di-
mensional (more expensive) model inference.

Simulation as Inference: For every time instant, we need
to estimate yt to animate the hair. To do so, we treat yt as
missing data and infer it using the generative multi-linear
model above operating on the augmented representation wt ;
we do so by conditioning on the part of the vector wo

t that
is observed at a given time instance. In the general case
(t � 3), wo

t = [xt ;yt�2;yt�1;zt,t�2;zt�1,t�2] 2 Rda�dh . For
every time instance, we condition our model on the observed
part, wo

t , and infer/predict the missing part, yt 2 Rdh (i.e.,
hair coefficients for the current frame). For a given hair style
(fixed hair length and softness), our pre-computed matrix
M= [Mo;My] computed using Equation 6, can be decom-
posed into two parts, consisting of bases for reconstruction
of observed variables, Mo, and yt itself.

From Section 4, we know that wt = [wo
t ;yt ] = M ·

vcon f ig,t . Hence, we can solve for the linearly optimal
vcon f ig,t for the current frame t by doing a linear sub-space
solve, vcon f ig,t = (Mo)† ·wo

t , where † is the pseudo inverse.
We can then reconstruct yt from vcon f ig,t , resulting in a very
efficient and compact iterative simulation equation,

yt =My · (Mo)† ·wo
t . (8)

Note, that if we want to change the hair style anywhere (or
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continuously) within a sequence, we just need to re-compute
My · (Mo)†. For a general case we then have,

yt =My · (Mo)† · [xt ;yt�2;yt�1;zt,t�2;zt�1,t�2]. (9)

For a given set of factors, the model can be interpreted as
a second order conditional linear dynamical system, similar
to the one proposed in [dASTH10], i.e.,

yt = Axt +B1yt�2 +B2yt�1 +C1zt,t�2 +C2zt�1,t�2,
(10)

where

My · (Mo)† = [A B1 B2 C1 C2]. (11)

Therefore, the model proposed by de Aguiar and colleagues
is a special case of our more general formulation.

For the cases where t = 1,2, the process is very sim-
ilar except that wo

t = [xt ], and the missing part becomes
[yt�2;yt�1;zt,t�2;zt�1,t�2;yt ].

5.1. Stability of dynamics

Similarly to [dASTH10], we can measure the stability of the
learned model by looking at the largest eigenvalue, lmax, of
linear dynamics matrix of the dynamical system, namely:


B1 B2

Idh⇥dh 0dh⇥dh

�
. (12)

The key difference between our approach and [dASTH10] is
that B1 and B2 are both functions of the factors, vlength and
vso f tness, in the multi-linear model. Hence, to prove stability
we need to ensure that the largest eigenvalue lmax is  1 for
any value of factors in our model, i.e., we need to show that:

lmax = arg max
a2[0,1],b2[0,1]

lmax(a,b) 1. (13)

where a and b are parameters interpolating between the
bases of Ulength and Uso f tness respectively. Taking argmax is
difficult in practice, therefore we resort to an approximation
obtained by evaluating argmax using a set of discrete sam-
ples (by uniformly and finely sampling a and b in the range
of 0 to 1) and assuming eigenvalues are locally smooth as a
function of a and b. We report the lmax for several hair con-
figurations in Table 1. We observe that all trained models are
stable with lmax consistently < 1.

6. Collision Handling

The reconstructed hairs ht , which are a function of pre-
dicted hair coefficients yt , may penetrate the bust. We pro-
pose a simple and efficient method to resolve collisions. This
method is based on minimizing hair-bust penetration while
keeping the predicted hair coefficients unchanged as much
as possible. Collision handling is done in the normalized co-
ordinates in the reduced PCA space (for efficiency).

Our measurement of collision is based on a simple ap-
proximation of the signed distance to the body mesh. For a

hair point hi(y), we find its nearest neighbor vertex on the
bust b j. (We drop the temporal subscript for clarity.) Then
the dot product of b j’s surface normal vector and the offset
vector hi(y)� b j locally approximates the signed distance
to the body mesh for hi(y).

pC(y) = Â
(i, j)2C

r
⇣

nT
b j ·

�
hi(y)�b j

�⌘
, (14)

where C is a set of correspondences between hair guide point

hi and its closest bust vertex b j, r(x) =

(
0 x� 0
x2/(s2 + x2) x < 0

is a robust error function which only penalizes negative
signed distance (i.e., penetrating guide points), nb j is the
normal for bust vertex b j.

Method A: A straightforward way to remove collisions
is to minimize the energy function

EC(y) = p1 pC(y)+p2dC(y)+p3sC(y) (15)

with respect to the hair PCA coefficients y. The first term,
defined in Eq. (14), minimizes penetration. The second term,

dC(y) = ||y�y0||2, (16)

ensures that the resulting hair coefficients are close to the
prediction from the model (to preserve dynamics); where y0
are the predicted hair PCA coefficients from the multi-linear
dynamical model. The third term,

sC(y) = Â
k2[1,Ng]

||gk,1(y)� g̃k,1||2 (17)

ensures that the hair roots are at correct positions on the
scalp; where g̃k,1 is the true hair root position on the scalp
for the k-th guide and gk,1(y) is the model position. p1, p2
and p3 are the relative weights for each of the terms.

Assuming, y⇤t = argminEC(yt) are the optimized hair co-
efficients for frame t, the final hair guides in the world space
are obtained by: h⇤t = Ry(rt)[Qhy⇤t +µh]+pt . For efficiency,
the nearest neighbor correspondences C are pre-computed,
at each frame, based on the model prediction before we use
gradient decent optimization on Eq. (15).

Method B: Method A is fast but still involves a relatively
expensive gradient optimization. We propose an approxima-
tion scheme which is around 50X faster than Method A
while producing very similar results. The key idea is to re-
formulate the optimization in Method A in terms of a series
of linear least squares (LLS) problems that can be solved
extremely efficiently in closed form. dC(y) and sC(y) in
Eq. (15) already have a convenient quadratic form and re-
quire no special treatment. The first term in Eq. (15), pC(y),
however, is an asymmetric error function and requires ap-
proximation. We approximate pC(y) by taking into account
only the set of hair points that currently penetrate P:

pC(y)⇡ Â
(i, j)2C

T
i2P

||nT
b j · (hi(y)�b j)||2 (18)
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Figure 4: Sub-sampling factor: Illustrated are sub-
sampling factors of 1 (top) and 15 (bottom) on the 3,980 hair
guide dataset. There is almost no visual difference among the
hairs corresponding to different sub-sampling factors.

With this approximation, every term in Eq. (15) takes
quadratic form and all the variables are linear functions of
unknowns y, resulting in a standard LLS problem. Because
the approximation in Eq. (18) is instantaneous and only deals
with the current penetrating guide vertices, new penetrations
may be introduced in the solution. To address this, we iter-
atively solve the optimization in Eq. (15), and for each iter-
ation, re-compute Eq. (18), including the current set of pen-
etrating points. However, we only compute hair-body corre-
spondences C once at the beginning of the optimization and
use it throughout the iterations (three to five iterations are
sufficient in practice).

Sub-sampling: Method B allows real-time hair collision
handling when the number of hair guides Ng is moderate,
but is still expensive for large number of strands. In this sce-
nario, the computational bottleneck of Method B becomes
computing the nearest neighbor correspondences C. To ad-
dress this, we sub-sample the hair guide strands and only
perform collision handling on selected guides. The intuition
is that because we are modeling hair in the PCA sub-space,
the hair guides are correlated and guides within some neigh-
borhood will generally move together. Assuming this is the
case, resolving collisions for some hair guides will implic-
itly help resolve collisions for nearby hair guides. To achieve
this goal we re-write Eq. (18) once again, resulting in the fi-
nal form for pC(y):

pC(y)⇡ t Â
(i, j)2C

T
i2P

T
i2St

||nT
b j · (hi(y)�b j)||2, (19)

where t is the sub-sample factor (e.g., t = 2 will choose ev-
ery other hair guide for collision handling), and St is the
selected subset of hair strands corresponding to t.

7. Experiments

We generate three datasets with different numbers of hair
guides Ng: a sparse hair dataset with Ng = 198, a main
hair dataset with Ng = 962, and a dense hair dataset with
Ng = 3980. For the sparse hair dataset, we synthesize four
sets of hair simulations (long soft, long stiff, short soft,

and short stiff) to learn a two factor model. The main hair
dataset is separated into two parts. The first part has the same
four styles as the sparse dataset. The second part consists
of long soft hairstyle (i) without wind and with wind di-
rections of (ii) +z, (iii) +x, and (iv) -x. We use these four
simulation datasets to learn a multilinear model with exter-
nal wind strength and directions as constituent factors. The
dense hair dataset has only one style (long soft) because it
is expensive to generate training data due to the memory
constraints and computing resources. We use the dense hair
dataset to demonstrate the sub-sampling strategy for colli-
sion handling. Each dataset consists of 35 different training
body motions from which we learn our multi-linear dynamic
hair model and 7 test motions on which we perform our ex-
periments; our test and training sets are disjoint. We choose a
dimensionality of dh = 100 for hair coefficients, which rep-
resents around 98% energy of the PCA subspace. We set
p1 = 0.08, p3 = 1.5 in Equation 15 for all the experiments.

Model Highlights: A key property of our model is that users
are able to interactively change the style of the hair, includ-
ing softness and length, or apply external forces such as
wind (Figure 1). We show side-by-side comparison of dif-
ferent hair lengths in Figure 5 (a)-(d), where (a)-(c) show
the interpolated hair lengths with hair length factor being 0
(shortest), 0.5 (interpolated median), and 1 (longest), while
(d) shows an extrapolation example where the length factor
is 1.35. We can generate additional hair styles, not part of
our training sets, by mixing the long and short hair styles we
model. Figure 5 (e)(f) show two examples. This functionality
opens a possibility for interactive hairstyle design. The com-
parison to the raw simulation can be found in the accompa-
nying video and shows that our data-driven method can ade-
quately approximate dynamic behaviors of hair (sometimes
with fewer body-hair collisions as compared to the original).

Collision Handling: We show the performance of collision
handling algorithms on the sparse hair dataset (Ng = 198),
but also find similar trends in all other datasets. We define the
following measurements for quantitative evaluation: (1) Pen-
etration rate: the ratio of penetrating hair points to the total
hair points. Penetration is defined by Equation 14. (2) The
mean of maximal penetration amount over all frames in a
sequence. The maximal penetration amount for each frame
is defined as max |nT

b j
· (hi�b j)|, where hi is a penetrating

hair point (see Equation 14). “penetration rate" is the most
straightforward measurement while the “maximal penetra-
tion amount" provides an upper-bound of how deep a hair
point penetrates. These two quantities are informative but
not necessarily perceptual; we can arbitrarily decrease p2 in
Equation 15 to achieve better collision handling. Therefore,
we use the third measurement: (3) deviation from the hair co-
efficients prediction: ||l̃T (y⇤� y0)||/||y0||, where y0 is the
model prediction, y⇤ are the hair coefficients after collision
handling, and l̃ = [l1,l2, ...,ldh ]

T /Âdh
i=1 li are the normal-

ized eigenvalues of the hair PCA subspace. We weight the
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(a) (b) (c) (d) (e) (f)

Figure 5: Creating different grooms: (a) short, (b) interpolated medium, (c) long, (d) extrapolated long, (e) and (f) new hair
grooms created by segmenting hair guides into segments and mixing long and short lengths (in (a) and (c)) for each segment.

hair coefficients deviation y⇤� y0 according to the impor-
tance of the principal directions.

In Figure 6, we show the above-mentioned three measures
versus different hair coefficients prior weight p2. The plot is
based on a representative test sequence with long soft hairs
which includes complex motions. Note that the ground truth
hair simulations from Shave and a Haircut in themselves
have a non-negligent penetration rate of 1.9% and the mean
of maximal penetration amount of 3.8 mm. Our collision
handling algorithms (both MethodA and B) significantly re-
duce the penetration. The final penetration rates and amount
of Method B are very similar to A which indicates that the
iterative least squares does approximate the asymmetric er-
ror function in A well. As we can see from Figure 6 (right),
the deviation from the original hair coefficients prediction
varies between 1.3% and 5.5%, which visually corresponds
to very natural dynamics. See the accompanying video for
the visual results. Based on these three curves, our selection
of p2 is 0.13 for all the experiments.

Sub-sampling for collision handling: When we model the
dense hair dataset (3980 hair guides and 59700 hair points),
the cost of Method B is dominated by determining nearest
neighbor correspondences C and penetration set P. There-
fore, we show in Figure 7 that we can efficiently sub-sample
the hair guides to perform collision handling while still
achieving almost the same results. When the sub-sample fac-
tor t increases (see Equation 19), the curve of the penetration
rate is almost flat, which indicates that we can sub-sample
the hairs significantly without sacrificing the collision han-
dling performance, because the dense hair guides are highly
correlated. Figure 4 visually shows the collision handling re-
sults using a sub-sample factor of 1 and 15. There is almost
no visual difference between two cases. There is, however,
a large computational gain; we achieve a 12X speed up by
using a sub-sample factor of 15. We plot the time cost of the
collision handling procedure (from the predicted hair coeffi-
cients y0 to final hair coefficients y⇤) versus the sub-sample
factor t. As t increases, the time cost drops significantly.
The sub-sampling strategy makes it possible for our method
to potentially deal with even more hair strands in real time.

Quantitative Evaluation: We show the hair vertex location
differences between the Shave and a Haircut simulation and

Sparse L-soft L-stiff S-soft S-stiff lmax
Training 3.39 2.09 1.73 1.23 0.9792
Testing 3.61 1.93 1.91 1.14
Main L-soft L-stiff S-soft S-stiff
Training 2.85 1.66 1.20 0.84 0.9646
Testing 2.93 1.57 1.22 0.78
Main L-soft L-wind+z L-wind+x L-wind-x
Training 2.97 4.23 4.50 4.32 0.9663
Testing 3.12 4.27 4.47 4.21
Dense L-soft
Training 2.76 0.9621
Testing 2.71

Table 1: Average vertex error and stability: Average ver-
tex error for all the datasets (using Euclidean distance mea-
sured in cm) and the stability measurement lmax computed
over 35 training and 7 testing sequences. “L" and “S" rep-
resent long and short hair styles respectively.

our end results in Table 1. Stiff hairs have much lower er-
rors compared to soft hairs, because the motion of the stiff
hairs are more constrained. The long soft hairs with wind
have high errors, because wind leads to less predictable hair
behavior. The fact that training and testing sequences get
similar errors (in some cases the errors of the testing se-
quences are lower) indicates the generalization power of our
method. The stability measurement lmax for each dataset is
also shown in the table. These values are all below 1, which
shows that our models are stable.

Performance: The speed of our method and the Shave and
a Haircut (Shave) simulation package are shown in Table
2. Maya and Shave were run on an Intel Core 2 Extreme
X9650, 3.67 GHz processors with 4 GB of RAM. Our model
was implemented on a GPU and run on a comparable AMD
Phenom(tm) 2 X4 965 processor, 3.4GHz with 8 GB of
RAM. The amount of RAM is irrelevant as the model is
very compact and easily fits in memory. Note that most of
our model (everything except collision detection) is perfectly
parallelizable; collision detection requires LLS implementa-
tion which could also be made efficient on parallel archi-
tectures. Our method easily achieves real-time (45-70 FPS)
and it is 9� 25X faster than Shave. We report the results
based on long soft hairs, which tend to have the most col-
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Figure 6: Collision handling measurements versus hair coefficients prior. We show the comparison results for method A, two
intermediate steps of method B, final results of method B, and before collision handling.

Runtime (FPS)
Hair Our Method Shave

#Strands #Vert Syn Col Recon Total
198 2970 1429 74.6 5000 70 7.7
962 14430 1429 52.9 2500 50 5.5

3980 59700 1429 49 909 45 1.8

Table 2: Runtime performance: Speed comparison (frames
per second) between our method and Shave software pack-
age. We divide our method into “Syn" (computing the ini-
tial hair coefficients from the multi-linear dynamic model),
“Col" (remove hair-body penetration), and “Recon" (re-
construction of the hair vertices from hair coefficients). We
choose the sub-sample factor t = 1,5,15 for hair strands
= 198,962,3980 respectively.

lisions. As the number of hair guides increases, our method
becomes comparatively much more efficient, due to the ben-
efit of a low-dimensional model that can capture correla-
tions. These results show the potential of our method to deal
with large number of hair guides; in doing so it also allevi-
ates the need for additional hair interpolation for rendering.
Further speedups are possible using level of detail models
and/or culling for parts of the groom that are not visible.

The memory requirement for the our model is quite low.
A hair tensor model which has 2 factors with hair dimension
of 100 takes approximately 15mb. Adding another factor
will double the size, however, too many factors are unlikely.
The key advantage of modeling hair in the reduced space is
that dimensionality of the hair coefficients is a function of
the underlying complexity of the hair motion, and is highly
sub-linear with respect to the number of hair strands and the
number of vertices per strand. This property also makes the
model scalable with the complexity of the hair.

Collision handling for cloth: Our collision handling ap-
proach is not limited to hair; it can be used, for example,
to resolve body-cloth collisions for clothing. We test our
approach on the results of [dASTH10] (see supplemental
video). In [dASTH10], the collisions were not resolved ex-
plicitly. In contrast, we resolve all the interpenetrations with-
out resorting to a custom rendering pipeline.

Figure 7: Dense hair sub-sampling: Left: penetration rates
comparisons between “before collision handling" (red) and
various sub-sample factors on a representative sequence
(blue). The penetration rates are computed on the full hairs.
Right: Time cost of collision handling procedure versus var-
ious sub-sample factors.

8. Discussion and Limitation

We present a method for data-driven animation of hair. The
multi-linear nature of our model allows us to control the ap-
pearance and motion of hair in real-time. Our method ef-
ficiently deals with collisions by formulating collision han-
dling as an iterative least squares optimization in the reduced
space. While we illustrate our model on hair, the formula-
tion is general and would work for other physical simula-
tions such as clothing and fur.

Because our model lives in a low-dimensional subspace
we are not able to resolve hair-to-hair collisions explicitly, as
the motion of individual hair strands is not independent. That
said, our model is able to resolve hair-to-hair collisions im-
plicitly by learning how hair strands should interact based on
the input simulations. However, because there is no commer-
cially available simulator that is able to produce such effects,
we cannot show any results with hair-to-hair collisions.

We construct two types of reduced models with a number
of parameters: short vs. long, stiff vs. soft, and with/without
wind as an external force. Naturally there are many other
parameters that we might want to include in the hair model:
curly vs. straight, dry vs. wet, greasy vs. clean as well as
other external forces such as tugs, barrettes, and headbands.
In our experiments, the existing model was robust to the
modeled parameter space, with no combination of param-
eters within the modeled ranges (or slightly outside) produc-
ing unnatural results. The tensor algebra is general enough
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to extend to more factors. However, with more factors being
used, the size of the training examples grows exponentially.
In theory, if we want to model x factors simultaneously, we
need 2x sets of training data to represent all the combinations
of all factors. It would be challenging to keep all the data in
memory for training (requiring out of core SVD algorithm).
In practice, the animators can choose what factors they want
to model to avoid the explosion problem.

In conclusion, the approach to creating a reduced space
model presented here appears quite powerful. We expect that
implementing this approach for other physical simulations
such as clothing and fur would be easy and would result in
approximate dynamic models that could be computed and
rendered many times faster than real time. This functional-
ity would be useful in visualization of character motion dur-
ing the animation process as well as allowing rich secondary
motion to be added to real-time applications such as games.
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alistic hair simulation: animation and rendering. In ACM SIG-
GRAPH 2008 courses (2008), pp. 89:1–89:154.

[BJ10] BARBIC J., JAMES D. L.: Subspace self-collision culling.
ACM Transactions on Graphics (TOG) 29, 3 (2010), 1–9.

[BK06] BADER B. W., KOLDA T. G.: Algorithm 862: Matlab
tensor courses for fast algorithm prototyping. ACM Trans. Math-
ematical Software 32, 4 (2006), 635–653.

[CCK05] CHOE B., CHOI M. G., KO H.-S.: Simulating com-
plex hair with robust collision handling. In Proceedings of the
2005 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2005), SCA ’05, pp. 153–160.

[CJY02] CHANG J. T., JIN J., YU Y.: A practical model for
hair mutual interactions. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2002), SCA ’02, pp. 73–80.

[CMM09] CASSOL V., MARSON F., MUSSE S.: Procedural hair
generation. In VIII Brazilian Symposium on Games and Digital
Entertainment (SBGAMES) (2009).

[dASTH10] DE AGUIAR E., SIGAL L., TREUILLE A., HODGINS
J. K.: Stable Spaces for Real-time Clothing. ACM Transactions
on Graphics (TOG) 29, 4 (2010), 1–9.

[DDB11] DAVIET G., DESCOUBES F. B., BOISSIEUX L.: A hy-
brid iterative solver for robustly capturing coulomb friction in
hair dynamics. ACM Transactions on Graphics (TOG) 30, 6
(2011), 336–342.

[HMT01] HADAP S., MAGNENAT-THALMANN N.: Modeling
dynamic hair as a continuum. Computer Graphics Forum 20,
3 (2001), 329–338.

[KH01] KOH C. K., HUANG Z.: A simple physics model to ani-
mate human hair modeled in 2d strips in real time. In Eurograph-
ics Workshop on Animation and Simulation (2001).

[KHS04] KOSTER M., HABER J., SEIDEL H.-P.: Real-time ren-
dering of human hair using programmable graphics hardware. In
Computer Graphics International (2004).

[LPV11] LU H., PLATANIOTIS K. N., VENETSANOPOULOS
A. N.: A survey of multilinear subspace learning for tensor data.
Pattern Recognition 44, 7 (2011).

[MLC10] MIN J., LIU H., CHAI J.: Synthesis and editing of per-
sonalized stylistic human motion. ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (2010).

[ND05] NGUYEN H., DONNELLY W.: Hair animation and ren-
dering in the Nalu demo. GPU Gems 2 (2005).

[PMC⇤08] PARIS S., MATUSIK W., CHANG W., JAROSZ W.,
ZWICKER M., KOZHUSHNYAN O. I., DURAND F.: Hair photo-
booth: Geometric and photometric acquisition of real hairstyles.
ACM Transactions on Graphics (TOG) 27, 3 (2008).

[SLF08] SELLE A., LENTINE M., FEDKIW R.: A mass spring
model for hair simulation. ACM Transactions on Graphics (TOG)
27, 3 (2008).

[TB08] TARIQ S., BAVOIL L.: Real time hair simulation and ren-
dering on the GPU. In ACM SIGGRAPH Talk (2008).

[TLP06] TREUILLE A., LEWIS A., POPOVIC Z.: Model reduc-
tion for real-time fluids. ACM Transactions on Graphics (TOG)
25, 3 (2006).

[VBPP05] VLASIC D., BRAND M., PFISER H., POPOVIC J.:
Face transfer with multilinear models. ACM Transactions on
Graphics (TOG) 24, 3 (2005), 426–433.

[VT02a] VASILESCU M. A. O., TERZOPOULOS D.: Multilinear
analysis of image ensembles: Tensorfaces. In European Conf. on
Computer Vision (2002), pp. 447–460.

[VT02b] VASILESCU M. A. O., TERZOPOULOS D.: Multilinear
image analysis for facial recognition. In International Conf. on
Pattern Recognition (2002), pp. 511–514.

[VT04] VASILESCU M. A. O., TERZOPOULOS D.: Tensortex-
tures: Multilinear image-based rendering. ACM Transactions on
Graphics (TOG) (2004), 336–342.

[WBK⇤07] WARD K., BERTAILS F., KIM T.-Y., MARSCHNER
S., CANI M.-P., LIN M.: A survey on hair modeling: Styling,
simulation, and rendering. IEEE Transactions on Visualization
and Computer Graphics 13, 2 (2007), 213–234.

[WLL⇤05] WARD K., LIN M. C., LEE J., FISHER S., MACRI
D.: Modeling hair using level-of-detail representations. In Pro-
ceedings of the 16th Int Conf on Computer Animation and Social
Agents (2005), CASA ’03, pp. 153–160.

[WS92] WATANABE Y., SUENAGA Y.: A trigonal prism-based
method for hair image generation. IEEE Computer Graphics and
Applications 12, 1 (1992), 47–53.

[WSM⇤10] WARD K., SIMMONS M., MILNE A., YOSUMI H.,
ZHAO X.: Simulating rapunzel’s hair in Disney’s Tangled. ACM
SIGGRAPH (talk article as ACM Trans. on Graphics) (2010).

[YSK09] YUKSEL C., SCHAEFER S., KEYSER J.: Hair meshes.
ACM Transactions on Graphics (TOG) 28, 5 (2009).

[YT10] YUKSE C., TARIQ S.: Advanced techniques in real-time
hair rendering and simulation. In ACM SIGGRAPH 2010 courses
(2010).

[YXWY00] YANG X. D., XU Z., WANG T., YANG J.: The clus-
ter hair model. Graph. Models 62 (March 2000), 85–103.

c� The Eurographics Association 2012.


