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ABSTRACT

Learning how to localize and separate individual object
sounds in the audio channel of the video is a difficult task.
Current state-of-the-art methods predict audio masks from
artificially mixed spectrograms, known as Mix-and-Separate
framework. We propose an audio-visual co-segmentation,
where the network learns both what individual objects look
and sound like, from videos labeled with only object labels.
Unlike other recent visually-guided audio source separation
frameworks, our architecture can be learned in an end-to-end
manner and requires no additional supervision or bounding
box proposals. Specifically, we introduce weakly-supervised
object segmentation in the context of sound separation. We
also formulate spectrogram mask prediction using a set of
learned mask bases, which combine using coefficients con-
ditioned on the output of object segmentation — a design that
facilitates separation. Extensive experiments on the MUSIC
dataset show that our proposed approach outperforms state-
of-the-art methods on visually guided sound source separa-
tion and sound denoising.

Index Terms— Co-segmentation, spectrogram, mix-and-
separate framework, mask coefficient

1. INTRODUCTION
Multi-modal, visual and auditory, perception is an important
research topic. Human brain has remarkable ability to isolate
specific conversation from a noisy environment, as noted by
Cherry through “cocktail party effect” [1]. At the same time,
we can recognize objects and segment regions corresponding
to those objects using our visual and auditory systems. We
can also imagine how a particular, visually depicted, object
may sound. Each object has unique physical properties, some
of which can be visually observed, which leads it to generate
a unique sound modulated by interactions with other objects
and the environment. Therefore, working jointly with audi-
tory and visual cues can be very useful for recognition of ob-
jects, localization of object regions and separation of sounds
they make. Separating sounds of each object from a video has
wide range of applications including audio denoising, hearing
aids, automated transcription of speech and music, equaliza-
tion, audio event remixing and dialog following.

Recent methods for audio-visual source separation [2, 3,
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Fig. 1. Visually-guided Sound Source Separation. Our
method first detects and segments object(s) which make
sound(s), in a weakly-supervised manner, and then separates
their respective audio signals.
4] utilize “mix-and-separate” approach to train neural net-
work architectures using self-supervision. The paradigm is
simple, given a video, mix the audio track by combining audio
channel with one from another video, and train the network
to recover the original audio back, conditioned on the visual
encoding of corresponding video content. This paradigm ef-
fectively synthesizes “cocktail party effect” by mixing clean
sound(s) with others not present in the scene. While effective
in training models for variety of tasks, such as sound source
separation [2, 4] and on-/off-screen audio identification [5],
this approach implicitly assumes that videos contain single-
source sounds and attempts to correlate regions of the video
with spectrograms [4]. Co-separation approach recently in-
troduced by Gao et al. [2] addresses single-source limitation,
but relies on object detectors trained with an external dataset
annotated with bounding boxes for potential audible objects.
In addition, while audio classes and corresponding spectro-
gram segmentations, that correspond to detected regions, are
“discovered” during training, the model has no capacity to
refine object detectors themselves to be optimal for sound-
source separation task; e.g., an entire object region is implic-
itly assumed to produce the sound.

Inspired by prior work, we aim to address aforementioned
limitations. Specifically, we propose a weakly-supervised
audio-visual detection and separation method. Our approach,
similar to [2], does not assume single-source video; but, un-
like [2], also does not rely on externally trained object detec-
tion module or object-level annotations of any kind. Instead,
we leverage weak video-level labels to jointly learn visual and
auditory segmentors that depend on one another. Our archi-
tecture has two paths: (1) a video frame semantic segmenta-
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tion path designed to segment a frame into a set of regions
using an attention mechanism that generates per-object-class
attention map trained using weak frame-level classification
objective; and (2) a spectrogram mask prediction path which
takes both mixed spectrogram and pooled object-class image
features and outputs a dense spectrogram mask with an objec-
tive to mask out the mixed-in sound. The spectrogram mask
prediction branch is implemented using attention U-Net ar-
chitecture [6], similar to [2, 4]. However, importantly, un-
like prior methods, we train U-Net to produce a set of base
masks from which a final mask is constructed using a set of
sparse coefficients predicted from multi-modal audio-visual
features. This architecture design takes inspiration from [7].
We find that such bi-linear decomposition is very useful in
practice, allowing spectrograms to collaborate in learning a
set of auditory sound bases, while relying on coefficient pre-
dictor to figure out how those should mix for a specific object
type. Finally, despite having weaker supervision (no object
annotations), compared to [2], we illustrate superior perfor-
mance on the benchmark MUSIC and cross-dataset perfor-
mance on AudioSet datasets.
Contributions. Our main contribution is an audio-visual co-
segmentation approach for sound source separation, where
the network learns both what individual objects look like and
sound like, from videos labeled with only, one or more, ob-
ject labels. This formulation and architecture has a number
of appealing properties. Mainly, it does not assume single
sound source input data, can be learned in an end-to-end
manner, and requires no additional supervision or bounding
box proposals. On the technical side, we introduce weakly-
supervised object segmentation in the context of sound sep-
aration. We also formulate spectrogram mask prediction us-
ing a set of learned mask bases which are combined using
sparse coefficients conditioned on multi-modal (visual object
and auditory) features. Extensive experiments on the MU-
SIC dataset [4] show that our proposed approach outperforms
state-of-the-art methods on visually guided sound source sep-
aration and sound denoising.

2. RELATED WORK
Audio-only sound source separation. Sound source separa-
tion is a challenging problem in speech processing and was
first illustrated by “cocktail party effect” [1]. Classical ap-
proaches for the task include local Gaussian modeling [8],
and Non-negative Matrix Factorization (NMF) [9]. Recently,
deep learning based approaches [2, 3, 4] have gained pop-
ularity and most of recent methods use ”Mix-and-Separate”
framework to train the network by artificially mixing multi-
ple audio streams first and then learning to separate each au-
dio from the mixture. We also use mix-and-separate idea, but
use visual features to guide audio separation.
Audio-visual source separation. Multi-modal learning has
recently become a popular topic in the computer vision com-
munity. Auditory signal is used to supervise vision model

during training in [10]. Similarly, in [11] visual features are
used to guide sound models. Following [4, 12], we use audio-
visual features to perform the separation. Unlike [2], we do
not use any pre-trained object detector and propose an end-to-
end approach to detect, localize and separate sound sources.

Weakly supervised visual learning. Given a video, our ap-
proach is able to detect which audio signals correspond to
which objects and localize those objects within the video
frames in a weakly-supervised manner. Earlier approaches
address weakly-supervised object detection and segmenta-
tion using Multiple Instance Learning (MIL) [13]. More re-
cently, pseudo-annotation generation [14] has gained popu-
larity. Motivated by [15], we generate pseudo-annotations
for weakly-supervised segmentation; and use these to visually
guide the network to separate sound in an end-to-end fashion
instead of using pre-trained object detectors [2].

3. APPROACH

We introduce a method for visually-guided sound separation,
which leverages segmented object regions predicted to make
sounds. In this section we first formalize our audio-visual
sound source separation and detection task (Section 3.1) and
then focus on describing the proposed deep neural network
architecture for solving it (Section 3.2).

3.1. Problem Formulation
In this work, we use ”Mix-and-Separate” framework [16, 2,
4], a well known approach for the task of sound source sepa-
ration. The idea is to generate an artificially complex auditory
signal by mixing multiple individual audio signals and learn
to separate each individual sound of interest from the compo-
sition (see Figure 1 for illustration).

Given two input videos V1 and V2 with accompanying
audio A1(t) and A2(t), respectively, we detect and segment
objects, that make sound, from each video using a weakly
supervised segmentation network. Then we generate a com-
plex mixed auditory signal Am(t) = A1(t) + A2(t) by mix-
ing two audio signals A1(t) and A2(t). Using a short-time
Fourier transform (STFT) [17] with F -frequency bins, we
transformed the mixed signal Am(t) into a magnitude spec-
trogram AM 2 RF⇥N

+ . AM represents the change of fre-
quency and phase over the time in mixed auditory signal.
Suppose V1 contains two objects O0

1 and O00
1 and correspond-

ing audios A1(t)0 and A1(t)00 accordingly. Similarly, V2 con-
tains one object O2 with accompanying audio A2(t). Now
our goal is to separate sounds A1(t)0, A1(t)00 and A2(t) of
each detected object O0

1, O00
1 and O2 by predicting a spectro-

gram mask µn with the supervision of visual cues. To train
the network one can use either ratio or binary mask and ob-
tain object level magnitude spectrogram by An = AM ⇥ µn.
Finally, one can apply Inverse Short-Time Fourier transform
(ISTFT) [17] to reconstruct object level wave-form sounds.

2



ResNet-18

3 x 3

Conv

Drop-out
1 x 1

Conv
Drop-out

non-linear

activation
Normalization

Expansive	attention	detector

1 x 1

Conv

Discriminative
attention	detector

C x H x W

C x H x W

1
0

2
4

 x
 H

 x
 W

Attended Map (Xm)

Average

Pooling C x 1 x 1

Classification

Score (Sc)

Classification

Loss

Input video frame

Audio Mixture

STFT

Spectrogram

Attention U-Net

Concatenate Audio-Visual

Feature

Conv

1024 x 8 x 8

Conv

512 x 4 x 4

Conv

32 x 2 x 2

Conv

32 x 1 x 1

Mask Co-efficient Generator

Audio 

Mask 

32 x 256 x 256

Mask Assembly

[Sigmoid(PM
T
)]

Predicted Mask

BCE/L1 Loss

Segmentation Network

attention
attention

attention
attention

attention

attention

Vf

Vfm

Af

WAV

M

P

AE

AD

Fig. 2. Weakly-supervised Audio-Visual Architecture. ResNet-18 followed by a 3 ⇥ 3 convolution layer is used to extract
visual feature (Vf ) from input video frames and fed to the segmentation network to detect the sound sources. Depending on
the classification scores from the segmentation network, we generate soft semantic segmentations by producing class-specific
attention map (Xm). We use this attention map to pool features from respective image regions of Vf generating Vfm. The
resultant feature is concatenated with the bottleneck features of attention u-net to generate audio-visual feature (WAV ). WAV

is passed to the mask coefficient generator to generate k mask coefficients (M). At the same time, attention U-Net generates k
audio channels (P) and combined linearly (�(PMT )) to predict final audio spectrogram mask guided by visual feature.

3.2. Weakly-supervised Audio-Visual Architecture
We propose a weakly-supervised audio-visual detection and
separation architecture illustrated in Figure 2. Our architec-
ture has two paths: (1) a video frame semantic segmentation

path designed to detect objects that have potential to make
sounds and segment them out in the frame, using an atten-
tion mechanism that generates per-object-class attention map,
trained using weak frame-level classification objective (top
block in yellow in Figure 2); and (2) a spectrogram mask pre-

diction path which takes both mixed audio and pooled object-
class image features and outputs a dense mask with an objec-
tive to mask out the mixed-in sound (bottom block, Figure 2).

We propose an end-to-end approach, unlike [2], to detect
and segment objects from the input video frame. The input
to our video frame segmenter is an RGB image/frame. The
output is two fold – (i) a one-channel semantic segmentation
attention map, per object class, that highlights regions where
this object is present and (ii) probability of this object being
present in the first place. Note, that (i) is only meaningful for
objects that are present (probability of presence is high, above
a threshold ⌧ ).

The spectrogram mask prediction path is trained to gener-
ate a (binary or real-valued) mask that masks-out the mixed-
in sound. Prior approaches decode the multi-modal encod-
ing of the mixed-audio and visual representation of attended
frame [4], or an object region in the frame [2], into a mask
directly. Instead, we utilize an attention U-Net architecture
to first dynamically generate auditory mask bases from the
mixed spectrogram itself. We then generate coefficients for
these bases conditioned on the multi-modal features. The fi-
nal mask is constructed as a coefficient-weighted combination
of predicted bases. This decomposition allows shared learn-

ing of bases, and focuses visual conditioning on a few coeffi-
cients; this, we find, significantly improves the performance.
Video frame semantic segmentation. We use ResNet-
18 [18] as backbone network followed by a 3⇥ 3 convolution

to extract H ⇥W spatial visual features Vf 2 R1024⇥H⇥W

from the input video frame. These features are feed to the
segmentation network to detect and segment objects. Fol-
lowing [15], our object detection network uses a decoupled
spatial neural attention to detect and localize salient object
regions simultaneously. The segmentation network contains
two branches: (1) Expansive attention detector which iden-
tifies object regions and generates expansive attention map
AE 2 RC⇥H⇥W ; and (2) Discriminative attention detector
that predicts the discriminative parts and generates discrimi-
native attention map AD 2 RC⇥H⇥W . Expansive attention
detector consists of a drop-out layer, 1⇥ 1 convolution layer,
another drop-out layer, a non-linear activation layer (Eq. 1)
and a spatial-normalization step (Eq. 2). Each element in AE

is defined as follows:

↵c
(i,j) = F (WT

c Vf (:, i, j) + bc), (1)

↵c
(i,j) =

↵c
(i,j)

PH
i

PW
j ↵c

(i,j)

, (2)

where c 2 C and F (·) denote channel/class and non-linear
activation respectively. Discriminative attention detector con-
tains a 1 ⇥ 1 convolution layer and directly outputs a class-
specific object attention map AD. We combine both atten-
tions and generate final attention maps as follows: Xm =
AE �AD, where � is the element-wise multiplication. Each
depth channel of Xm is passed through a spatial average

pooling layer to generate classification score for correspond-
ing class; this results in S 2 R|C| class scores. Then we apply
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a multi-label classification loss (c-loss) denoted as follows:

L
c�loss

= �
CX

c


y
c

log

1

1 + e�Sc
+ (1� y

c

) log

e�Sc

1 + e�Sc

�
,

(3)
where yc denotes binary GT label for corresponding c-th

class and |C| is the number of object classes.
Note that Xm can be interpreted as soft semantic segmen-

tation (segmentation can be obtained by thresholding Xc
m),

with each channel corresponding to a specific object type. We
can detect which objects are present, at test time, in a given
video frame, by thresholding the classification scores S.
Attention U-Net for audio processing. Motivated by [4],
in this work, we use time-frequency representation of sound.
Therefore, first we apply STFT on the input mixture sound
to generate corresponding spectrogram. Then magnitude of
spectrogram is transformed into log-frequency scale and used
for further processing. Following [6], we use attention U-Net
to extract audio features from the log magnitude of spectro-
gram. Attention U-Net uses attention gate (AG) to highlight
discriminative features while passing through the skip con-
nection. We use 7 convolutions (or down-convolutions) and 7
de-convolutions (or up-convolution) with skip connections in
between for attention U-Net. The size of input spectrogram
is 1 ⇥ 256 ⇥ 256 and the final output of attention U-Net are
audio mask bases (P 2 Rk⇥256⇥256) with k channels/bases.
In this work, we use 32 as the value of k.
Mask Coefficient Generator. Following [7], the goal of
mask coefficient generator is to predict k mask coefficients:
M 2 Rk. In this work, we use audio-visual feature to gener-
ate mask coefficient. Based on classification scores, Sc, that
are above a certain threshold, ⌧ , from the segmentation net-
work, we select corresponding class-specific attention chan-
nel(s) of Xm and apply weighted pooling on the visual feature
Vf to generate attended visual feature for a corresponding
object – Vfm. The attended visual feature is concatenated
with bottleneck U-Net feature, Af , to produce audio-visual
feature vector WAV . WAV is fed to the mask coefficient
generator to predict k mask coefficient (M). The mask coef-
ficient generator consists of a series of convolution layers with
non-linear activations and batch-normalization. In this paper,
we use ReLU as non-linear activation function. We predict
final magnitude of spectrogram, µA, by linearly combining k
audio mask bases from P with the mask coefficient M:

µA = �(PMT ). (4)

The predicted magnitude of spectrogram µA is combined with
the phase of input spectrogram. Then we use the inverse
STFT to get a wave-form of the prediction. Our ultimate goal
is to learn spectrogram masks of two types: binary or ratio.
Following [4], in case of binary mask we use per-pixel sig-
moid cross entropy loss (i.e., BCE Loss, LBCE , to train the
network). Similarly, per-pixel L1 loss [20] is used to train the
network when we use ratio mask.

4. EXPERIMENTS
4.1. Datasets
MUSIC dataset. We evaluate our method using MUSIC
dataset [4] which contains 685 untrimmed videos of musical
solos and duets. We find that 31 videos are now missing from
YouTube. The train/val/test split of MUSIC dataset is unavail-
able. Therefore, we follow the train/val/test split of [2] where
the first/second video in each category is considered as the
validation/test data, and the rest used for training data.
AudioSet-SingleSource. This is a small dataset, assembled
in [21], which we only use for evaluation. The dataset con-
sists of 15 musical instruments plus additional sounds pro-
duced by animals and vehicles. For our cross-dataset experi-
ment we randomly select 11 out of 15 musical instruments for
evaluation. Note, number of the instruments are unseen by the
model – not in the MUSIC dataset that we use for training.

4.2. Pre-processing and implementation details
Following [4], to reduce the computational cost, we sub-
sampled the audio signals to 11kHz and sample approx-
imately 6 secs audio by random cropping from each
untrimmed video. A Hann window size of 1022 and a
hop length of 256 is used to compute STFT and generate a
512 ⇥ 256 Time-Frequency audio spectrogram which is fur-
ther re-sampled on a log-frequency scale to obtain a 256⇥256
Time-Frequency representation. This representation is used
as input to the attention U-Net. We obtain an output predicted
mask and apply an inverse sampling step to convert the mask
back to linear frequency scale of size 512 ⇥ 256 followed by
an inverse STFT to recover wave-form signal. Following [2],
we randomly sample 1-frame to train the model. To process
the input video frame, we use ResNet-18 [18] pre-trained on
ImageNet. We follow the experimental protocol of [4] and
randomly sample 2 videos from MUSIC dataset to generate
mixed audio for training and testing.

4.3. Sound source separation and detection
Evaluation Metrics. To measure performance we use
three widely used metrics for sound separation: Signal-to-
Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR),
and Signal-to-Artifact Ratio (SAR). All the results are re-
ported using widely used mir eval library [22]. The baselines
used to quantitatively compare our results (in Table 1) are de-
scribed in supplementary material.
Visually guided sound source separation. Table 1 shows
quantitative evaluation of experimental results on MUSIC
dataset, using both binary and ratio masks. We also include
sound separation results with and without weakly-supervised
segmentation network, as an ablation, to show the importance
of that module in our architecture. We note that additionally
removing the mask-coefficient component effectively reduces
our model to the Sound-of-Pixels [4] baseline – the reason we
do not include this variant. We note that improvements due to
our decomposible construction of the mask are very signifi-
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Table 1. Audio separation results on MUSIC test set. Performance reported using SDR/SIR/SAR. SDR and SIR capture
separation accuracy; SAR only captures the absence of artifacts.

Ratio Mask Binary Mask
Methods SDR (") SIR (") SAR (") SDR (") SIR (") SAR (")
NMF-MFCC [19] 0.92 5.68 6.84 - - -
AV-Mix-and-Separate [2] 3.23 7.01 9.14 - - -
Sound-of-Pixels [4] 7.81 11.06 14.05 7.26 12.25 11.11
CO-SEPARATION [2] 7.64 13.8 11.3 - - -
Ours (Mask coefficient) 8.40 12.53 14.11 9.25 15.98 12.45
Ours (Mask coefficient + Seg. Net) 9.14 13.35 14.18 9.29 15.09 12.43

Table 2. Multi-label object classification accuracy. Perfor-
mance in (%) on the MUSIC test set.

Threshold value(⌧ ) 0.1 0.2 0.3 0.4 0.5
Binary mask 80.30 91.41 93.18 92.68 88.89
Ratio mask 83.08 91.92 93.69 93.18 89.65

Table 3. Cross dataset evaluation of audio separation.
Evaluation of the model trained using the MUSIC dataset on
the AudioSet-SingleSource dataset; using ratio mask. SAR is
responsible for capturing absence of artifacts, therefore, it can
be higher even when separation results are poor.

Methods SDR (") SIR (") SAR (")
Sound-of-Pixels [4] 0.72 20.14 16.10
Ours(Mask coeff.) 5.11 26.57 13.95
Ours(Mask coeff. + Seg. Net) 7.19 29.98 12.15

cant (7.26 vs. 9.25 in SDR using binary mask). The improve-
ments due to weakly-supervised detection and segmentation
is slightly more modest (8.40 vs. 9.14 in SDR using ratio
mask) but are still substantial. Consistent with [2], we find
SDR and SIR metric to be most informative.

Figure 3 shows corresponding qualitative results. The first
and second rows illustrate randomly sampled video mixture
pairs and corresponding spectrograms of the mixed sound.
The third and fourth rows show ground truth and predicted
separated spectrograms. Finally fifth row illustrated predicted
spectrogram generated by running pre-train model from [2]1.
One can clearly see that our method outperforms the state-of-
the-art [2] in both quality and sharpness of resulting spectro-
grams. See supplementary material for additional ablations.
Sound object detection and segmentation. Our object de-
tection and segmentation utilizes a weakly-supervised net-
work. Importantly, in addition to weakly-supervised loss, au-
dio separation pathway, that depends on the resulting segmen-
tations, provides additional regularization. We measure accu-
racy of our object detection network by computing multi-class
classification accuracy on the MUSIC test set, as reported in
Table 2 as a function of the threshold ⌧ . Results illustrate
that we can achieve high accuracy of up to 93.69% and that
regularization with ratio mask variant of the audio network is
consistently better for visual object detection. We visualize
segmentation localization qualitatively (dataset does not con-
tain spatial annotations for quantitative analysis) in Figure 4.

1
https://github.com/rhgao/co-separation

Input	video
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Mixed
Spectrogram
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truth

Spectrogram

Predicted
Spectrogram

Predicted
Spectrogram

by	[2]

Fig. 3. Qualitative audio separation results on MUSIC test
set. Test samples, our results and comparison with [2] are
shown. See text for details and discussion.
Cross-dataset experiments. We also perform cross dataset
testing to evaluate the generality of our method. We do so by
measuring the performance of our proposed model, trained on
MUSIC dataset, by applying it on the AudioSet-SingleSource
dataset. The results are presented in Table 3. Note the nearly
10⇥ performance increase in SDR as compared to [4].
Audio separation for unseen objects. We also conduct a
small experiment to see how the models perform for sepa-
rating objects/instruments that the model has not seen during
training. The results are presented in Table 4. Here, the model
never seen some instruments (e.g., Banjo, Marimba) during
training on MUSIC dataset but evaluated on those instruments
from AudioSet-SingleSource dataset. In this case the model
is relying on similarity of novel instruments to those used in
training our model.

5. CONCLUSION
In this paper, we introduce an end-to-end audio-visual co-
segmentation network to separate and detect sound source
without requiring additional supervision or bounding box pro-
posal and solve the problem in a weakly supervised manner
from large-scale unlabeled videos. Moreover, our mask co-
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Table 4. Audio separation for unseen objects. Toy experiment with cross dataset setting where the model never seen some
instruments during training on MUSIC dataset.

Sound-of-Pixels [4] Ours
Instruments SDR (") SIR (") SAR (") SDR (") SIR (") SAR (")
Banjo/Electric Guitar 0.03 0.08 24.82 1.08 2.16 12.20
Saxophone/Marimba 3.64 5.30 11.07 12.19 19.97 16.00
Cello/Electric Guitar 0.79 0.81 28.20 2.07 3.57 9.33

acoustic guitarxylophoneacoustic guitarcello

Fig. 4. Attended object map. Attended maps (red higher at-
tention) that correspond to object classes (in bottom). Result
from our learned weakly-supervised segmentation network.

efficient generator facilitates separation conditioned on the
output from the segmentation network. Both quantitative
and qualitative results show the effectiveness of our proposed
method compared to the existing state-of-the-art methods for
sound source separation.
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