Digital Object Indentifier 10.1109/TPAMI.2013.123

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XXXX 1

Covariate Shift Adaptation
for Discriminative 3D Pose Estimation
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Abstract—Discriminative, or (structured) prediction, methods have proved effective for variety of problems in computer vision; a
notable example is 3D monocular pose estimation. All methods to date, however, relied on an assumption that training (source)
and test (target) data come from the same underlying joint distribution. In many real cases, including standard datasets, this
assumption is flawed. In presence of training set bias, the learning results in a biased model whose performance degrades
on the (target) test set. Under the assumption of covariate shift we propose an unsupervised domain adaptation approach to
address this problem. The approach takes the form of training instance re-weighting, where the weights are assigned based on
the ratio of training and test marginals evaluated at the samples. Learning with the resulting weighted training samples, alleviates
the bias in the learned models. We show the efficacy of our approach by proposing weighted variants of Kernel Regression
(KR) and Twin Gaussian Processes (TGP). We show that our weighted variants outperform their un-weighted counterparts and
improve on the state-of-the-art performance in the public (HUMANEVA) dataset.

Index Terms—3D pose estimation, covariate shift adaptation, importance weight estimation, twin Gaussian processes.

1 INTRODUCTION

Many problems in computer vision can be ex-
pressed in the form of (structured) predictions of real-
valued multivariate output, y € R%, from a high-
dimensional multivariate input, € R%:. In this paper,
we focus on such models in the context of articulated
3D pose estimation.

Articulated 3D pose estimation, particularly from
monocular images and/or video, is a challenging
problem due to variability in person appearance, pose,
body shape, lighting, and motion. Despite these chal-
lenges, discriminative methods, have proved to be
effective in recovering the 3D pose [1], [2], [3], [4],
(5], [6], [71, [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17] in variety of scenarios. In these methods
the goal is to learn a direct (and often multi-modal)
mapping, f : R™ — R%, from image features (e.g.,
bag-of-words of HoG or SIFT descriptors) € R%
to 3D poses y € R%, typically expressed as joint
positions or angles. Probabilistic formulations do so
by learning the conditional distribution p(y|z) based
on the training dataset of n., image-pose pairs —
{(=f", yi")}i, (assumed to be independent and iden-
tically distributed (i.i.d.) samples from the underlying
joint density pi(x,y)). A number of methods [1],
(2], [3], [4], [51, [6], [71, [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17] of this form have been proposed
over the last decade that explore a gamut of models,
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image features and learning architectures. However,
in all cases it has been assumed that the training
and test distributions are one and the same, i.e.,
pur(Z,y) = pro(x,y), and hence the model learned
using the training feature-pose pairs can be directly
applied to the test image features, '°, to infer the
output 3D pose y'°.

The problem of dataset bias is starting to emerge
as very prominent issue in object categorization [18],
[19], [20], [21], [22], where even large datasets (e.g.,
LabelMe or ImageNet) have shown to exhibit signif-
icant (and often unexpected) biases [22] in the form
of lighting, object appearance and viewpoint to name
a few. We argue that similar issues exist in 3D pose
estimation and need to be addressed if one is to
build a system that works outside of well calibrated
laboratory setups and datasets. The issues of dataset
bias and overfitting to the training set, in 3D pose
estimation, are evident from poor generalization that
one often sees when applying such models to novel
data. In addition, we argue that within dataset bias is,
at least in certain cases, as prevalent as the between
dataset bias. While in dataset creation an effort is
typically made to make the training and test sets as
similar as possible, this is difficult to achieve precisely.
For example, Urtasun and Darrell in [16] show that
performance decreases dramatically (to as low as 25%
of the baseline) when training and test sequences
are disjoint'. Note that this is despite the fact that,
even in the disjoint case, training and test sequences
were captured by the same static cameras and with
no appreciable difference in subject appearance and

1. The baseline sampled training/test sets on per-frame bases
from the full HUMANEVA-I [23] dataset.
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lighting. Similar degradation of performance is often
observed when a subject is not included in the train-
ing set, or when training data comes from multiple
subjects (and/or motions) and at the test time only a
single subject (and/or motion) is observed [5].

Unfortunately, the domain adaptation approaches
proposed in [18], [19], [20], [21], [24], [25], [26] are
not adequate for addressing the bias in this case.
First, they typically assume categorical classification,
as opposed to multi-valued (structured) predictions.
Second, and more importantly, they are supervised
and assume existence of one or more labeled instances
from the test set to allow the transfer learning to fine
tune the source model to a target test set. In many
scenarios, such as, 3D pose estimation, obtaining 3D
pose for a test image is infeasible. To this end, we for-
mulate a novel training instance re-weighting mecha-
nism for addressing the bias in (structured) prediction
problems under the assumption of a covariate shift [27]
in an unsupervised manner; where we assume that
p(ylz) = pu(ylz) = pre(y|x), but the marginals are
different (ptr ("B) 74‘ pto(a:))'

Contributions: The key contributions of this work
is to shed some light on the potential issues of
dataset bias in the structured prediction problems,
mainly, 3D pose estimation, and to propose a sim-
ple, yet effective, solution for handling such bias
through training instance re-weighting in a covariate
shift adaptation formulation. We illustrate the efficacy
of our approach by proposing weighted variants of
Kernel Regression and Twin Gaussian Processes and
showing that they outperform their non-weighted
counterparts in various setups and with different
image features. As a consequence we achieve state-
of-the-art performance on HUMANEVA-I dataset. The
proposed training instance re-weighting, however, is
general and is amenable to most popular formulations
(e.g., Linear Regression, Mixture of Experts, GPLVM,
Kernel Information Embeddings), as well as to other
(structured) prediction problems in computer vision.

Preliminary version of this work appeared in [28];
here we provide a more comprehensive derivation
and discussion of Importance Weighted Twin Gaus-
sian Processes (IWTGP), as well as include a more
detailed experimental section that addresses model
sensitivity to parameters.

2 RELATED WORK

Discriminative models are popular in vision for var-
ious tasks, including 3D human pose [1], [2], [3], [4],
(5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], human shape [29], hand pose [30], [31] and face
pose [32] estimation. The focus of this paper is on
3D pose estimation which we discuss next; we also
discuss transfer learning techniques that motivated
our approach.

A variety of (structured) prediction methods have
been proposed for 3D pose estimation in the liter-
ature, including Nearest Neighbor regression (NN)
[13], linear Locally-Weighted Regression (LWR) [13],
Linear Regression (LR) [2], Relevance Vector Regres-
sion (RVR) [2], Kernel Regression (KR) [13] and Gaus-
sian Process Regression (GPR) [17]. The observation
that the mapping from image features to 3D pose
is typically multi-modal, due to inherent imaging
ambiguities, has led to introduction of multi-modal
alternatives and mixture models, including Mixture
of Linear Regressors (MoLR) [1], conditional Bayesian
Mixture of Experts (cMoE) [4], [8], [14], [15], Local GP
Regression (LGPR) [16] and Twin Gaussian Processes
(TGP) [5], to name a few. Mixture models, such as
MoLR and cMoE, can produce multiple solutions (one
for each expert) with the hope that ambiguities can
be resolved by an oracle [4], [8] or over time [14];
alternatively, optimization can be used to ascend to
the most prominent mode of the conditional distribu-
tion [5]. We leverage these prior methods and propose
an Importance Weighted Twin Gaussian Processes
(IWTGP) model, based on TGP [5], where importance
weights adopt the model to the test data at hand in
an un-supervised fashion.

The methods outlined above differ significantly in
learning and inference. The issue of learning from
large datasets was addressed in [4] using a forward
feature selection and bound optimization, allowing
training of cMoE models from upward of 100,000
input-output samples. A competing issue of learning
from small datasets has also received much atten-
tion, with most methods converging on intermediate
shared low-dimensional latent representations (e.g.,
shared GPLVM (sGPLVM) [6], [9] or shared Kernel
Information Embeddings (sKIE) [12]) to address over-
fitting with few input-output samples; some formu-
lations were shown to be amenable semi-supervised
learning settings [8], [9], [12] where a large number
of unpaired marginal samples, which are drawn from
the training distribution (not test distribution), are
available. We deal with training from large datasets,
as in [16] and [5], by first selecting an active set of
input-output pairs (k Nearest Neighbors to the test
input feature vector ) and then learning an INTGP
model for this reduced set. This results in a fixed
model and inference complexity regardless of training
set size (apart from the initial kNN lookup).

Our method is also motivated by recent works that
study effects of dataset biases in vision. The issue of
dataset bias has recently emerged as a serious problem
in object categorization, with Torralba and Efros [22]
showing that significant biases exist in all current
datasets. As a result, techniques for domain adaptation
in object categorization are starting to emerge [18],
[19], [20], [21], [24], [25], [26]. However, unlike our
method, the focus of such techniques, so far, has been
on a supervised setting where one or more labeled
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examples are available at test time (in the target do-
main). This allows the source models, obtained using
training data, to be adopted to the target test domain
explicitly. A more recent variant by Kulis et al. [19]
introduces a method for doing this in a cross-domain
setting, where the representation of the features at
train and test time may, in itself, be different. Our
setting, here, is substantially different, however, as we
assume that no labeled instances are present at test
time. This makes the problem more challenging, but at
the same time more realistic for our target application,
as it is unreasonable to assume that accurate 3D pose
can be annotated for monocular test images. This
setting is a special case of domain adaptation known
as covariate shift [27], where the training distribution
pu(x) and test distribution pie(x) over the inputs are
different (i.e., pu(x) # pie(x)) but the conditional
distribution of output values, p(y|x), remains same.

The influence of the covariate shift could be mit-
igated by re-weighting of the log likelihood terms
according to their importance within the test set.
Since the importance is generally unknown, the key
issue of covariate shift adaptation is to estimate these
importance weights accurately. Following this idea,
several direct importance weight estimation methods
have been recently proposed [33], [34], [35], [36]. In
this paper, we adopt an importance weight estima-
tion method called relative unconstrained least-squares
importance fitting (RuLSIF) [36], since it holds prac-
tical advantage over competing methods. Mainly, it
is computationally efficient and can naturally control
the adaptiveness to the test distribution. In contrast to
[36], however, we adopt RuLSIF for (structured) real-
valued predictions and illustrate it’s efficacy on a real-
world vision problem.

3 COVARIATE SHIFT IN 3D PosE ESTIMA-
TION

At first glance, it may not be evident why dataset bias
plays a role in discriminative models, considering that
discriminative methods are trying to model the con-
ditional distribution p(y|x) and it seems reasonable
to assume that p(y|x) = pi.(y|x) = pre(y|x) (even if
pir(x,Yy) # pre(x,y)). In other words, how can the
fact that py, () # pie(x) effect the conditional distribu-
tion? The issue is that the conditional models assume
a certain functional form and typically choose the
optimal parameters (within this functional form) by
minimizing the average regression error (i.e., average
discrepancy between the predicted and true values
on the training set). Intuitively this means that the
learned model performs more accurately in the denser
regions than in the sparser regions of p.(x), because
the denser regions dominate the average regression
error. Hence, if pi () # pie(x), the learned model
may no longer be optimal for the test set.

The formulation outlined in the previous paragraph
is known in the transfer learning community as one
of covariate shift [27]. Under covariate shift setup it
is assumed that labeled training image-pose pairs
{(2f*, yi") e, drawn iid. from p(y|x)pe () and un-
labeled test image features {z°}7*, drawn i.i.d. from
pre(x) (Which is usually different from py,(x)) are
available. The goal of (structured) prediction is to
learn a mapping, f : R%» — R, which in the most
general form can be expressed as:

y=f(z)+e, 1)

where e € R% is the noise. Under covariate shift this
mapping is learned based on a weighted set of train-
ing image-pose pairs {(w;, z'", yi*)} . Re-weighting
each training instances by the ratio (a.k.a., importance
weight), w; = wq(z!";0) = 5:'5:;;, removes the
training set bias producing an unbiased model un-
der assumption of covariate shift [27]. Note {a:;e ;L;el
are necessary to estimate the numerator. The main
challenge, however, is estimation of the importance
weight; we discuss this in detail in Section 4.

Before proceeding, however, we would like to il-
lustrate the effect of covariate shift on a synthetic
toy example. In Figure 1, we illustrate the efficacy
of our re-weighting scheme under covariate shift by
incorporating it into Kernel Regression (KR) and Twin
Gaussian Process (TGP); for details see Section 5. As
can be seen, Importance Weighted KR (IWKR) and
Importance Weighted TGP (IWTGP) can predict the
true test output well, while standard KR and TGP fails
to predict the true test output, in particular, around
x = 0.5 in the TGP case (see Figure 1-(e)). Note that
in this specific case the mean squared error (MSE)
is improved by a large margin (from 0.021 to 0.002
for INKR and from 0.038 to 0.002 for IWTGP) by

incorporating the importance weight into the learning.

4 IMPORTANCE WEIGHT ESTIMATION

The importance weight may be computed by sep-
arately estimating densities py, () and pie(x) from
training and test feature vectors and then taking their
ratio. However, density estimation is known to be
a hard problem and taking the ratio of estimated
densities tends to increase the estimation error [34].
Thus, this two step approach is not appropriate in
practice.

To avoid density estimation, direct density-ratio
estimation approaches have recently been proposed
[37]. Specifically, they estimate the ratio of probability
distributions w(x) directly without going through
density estimation. Direct density-ratio estimation has
been actively studied in the machine learning com-
munity such as kernel mean matching (KMM) [33],
the Kullback-Leibler importance estimation procedure
(KLIEP) [37], WKV [38], and unconstrained least-
squares importance fitting (uLSIF) [35]. These direct
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Fig. 1.

(e) TGP (MSE=0.038)

(f) INTGP (MSE=0.002)

Predicted outputs y by KR (b), IWKR (c), TGP (e), and IWTGP (f) under covariate shift in green. (a)

Uni-modal setting. Samples from the model y = x + 0.3sin(27z) + e where e ~ N(0,0.05%); o and x are 100

training and 300 test samples respectively (for clarity we also illustrate marginals p,(x) and pe.(x) in

(b) and (c)

bottom). (d) Multi-modal setting. Samples from the model 2 = y+ 0.3 sin(27y) + e where e ~ N(0,0.052); o and x

are training and test samples respectively (for clarity we also illustrate marginals p¢,(x) and pi.(x) in

(e) and (f)

bottom). Note that the input-output test samples are not used in the training of KR and TGP and the output test
samples are not used in the training of IWKR and IWTGP, they are plotted in the figure for illustration purposes.

density-ratio estimation methods have shown the op-
timal convergence rate for non-parametric density-
ratio estimation.

However, since the importance weight w(x) can
diverge to infinity under a rather simple setting, e.g.,
when the ratio of two Gaussian functions is consid-
ered [39], the estimation of w(x) is unstable and the
covariate shift adaptation tends to be unstable [27]. To
cope with this instability issue, slightly flattening the
importance weights is practically useful for stabilizing
the estimator (i.e., w(x)®, 0 < a < 1), even though it
cannot give an unbiased model under covariate shift
[27]. However, since estimation of w(x) is rather hard
[39], all flattened weights w(x)® are also unreliable
when w(z) is estimated poorly and, as a result, covari-
ate shift adaptation does not work well in practice.

To deal with this problem, we adopt a method that
allows us to directly learn the flattened importance
weight function without going through density es-
timation and an additional flattening operation. The
method is called the relative unconstrained least-squares
importance fitting (RuLSIF) [36].

Let us first define the relative importance weight [36]:

pte(m)
L — a)pre(x) + O‘ptr(m)’
where « is the tuning parameter to control the

0<a<l1, (2

wa(a:) = (

adaptiveness to the test distribution. If o = 0 (i.e,
§1ves no adaptation, while o = 1 (ie,,
wl( = Z - (w)) gives the full adaptation from py, () to
pre(); 0 < a < 1 will give an intermediate estimator?.
Let X'"(C R%) be the domain of training image
feature vector z'* and X' (C R%) be the domain
of test image feature vector z'°. Suppose we are
given ny, and nye i.i.d. training and test image feature
vectors, {z' | @}" € XY, i =1,...,nu}, {z | 2} €
Xt j =1,...,n4}, drawn from distributions with
densities py, () and pie(x), respectively.

The final goal of relative importance weight esti-
mation is to estimate the relative importance weight
based on the training and test image features. Let us
model the relative importance weight w,(x) by the
following kernel model:

Nte

% e (T
0)2204&(3:71,'[ ZG@ exp 52 ,
=1

®)

where 6 = (01,...,0,,.)" are parameters to be learned
from data samples, ' denotes the transpose, (-, )

2. Setting a to 0 < a < 1 is practically useful for stabilizing the
covariate shift adaptation, even though it cannot give an unbiased
model under covariate shift [36].
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is the Gaussian kernel and 7 (> 0) is the kernel
bandwidth.

The reason we use {z!°}/' as the basis centers
is as follows. The importance w,(x) tends to have
large values if the denominator (1 — a)pie(x) +api(x)
is small and the numerator pi.(x) is large. On the
other hand, w,(x) tends to have small values if
(1 — a)pre(x) + api(x) is large and pio(x) is small. If
we approximate density-ratio w,(z) using Gaussian
kernels, many kernels may be needed in the region
where w, () is large, while we may not need to have
large number of kernels in the region where w, ()
is close to zero. Following this observation, we place
kernels at high test input density regions, which is
achieved by using test points as the Gaussian centers.

The parameters 6 in the model w,(x; @) are deter-
mined so that the following expected squared-error .J
is minimized:

TO)= 34 o) [(wal:0) — walw))?]
:%Eqa(m) (W (x5 0)* — 2w (x; 0)wo () + wa (x)?]
= 1_T(XI[‘ZPW(@ [wa (xz;0) ] + 2]]‘11)t () [wa(m; 0)2]

- Epte(m) ['LUa (m’

where ¢, () = (1 — @)pso(x) + api (), and we used
Wa (T)qa (T) = Pre(T).

Approximating the expectations by empirical aver-
ages and ignore the constant, we have

0)]+Const.,

1 . Nte Ttr
= E W ( mte 0 g we (2! 0
27’lt

Nte

E W ( azm 0).
nte j=1

By substituting the kernel model Eq.(3) into J (9),
we obtain the following optimization problem:

. 1 e~
8 = argmin [QTHQ ~hTe+ZeTe|, (@
HERMe 2

where 07 6/2 is included to avoid overfitting, and v

(> 0) denotes the regularization parameter. H is the
Nte X Nye Matrix with the (¢, ¢')-th element
1— Nte
Hyp = Z Kz, i)k (zte, xf)
e 4
a Ttr
o=y wal a) k() x)f),
TNy =1
1 Tte
hy = K(xte, zf°
LS wtatat).

i=1

Then the solution to Eq. (4) can be analytically obtained
as

6=(H-+vI)'h, (5)

where I is the n¢e x n4.-dimensional identity matrix.

The performance of RuLSIF depends on the choice
of the kernel bandwidth 7 and the regularization
parameter v. Model selection of RuLSIF is possible
based on cross-validation with respect to the squared-
error criterion J [36].

Computational complexity: Learning RuLSIF has
complexity O(nj,) due to the matrix inversion. How-
ever, when the number of test samples is large,
we may reduce the number of kernels in Eq.(3) to
bie(< nte). Then, the inverse matrix in Eq.(5) can be
efficiently computed with complexity O(b3,).

5 IMPORTANCE WEIGHTED 3D HUMAN
POSE ESTIMATION

Given the derivation of the importance weight esti-
mator, in previous section, we now formulate two
regression-based methods that take these weights
into account. We start by formulating Importance
Weighted Kernel Regression (IWKR), which has a
particularly simple form and allows learning of non-
linear mapping between the image features and the
3D pose. IWKR, similar to standard KR, is well suited
for uni-modal predictions. However, in 3D pose esti-
mation, the mapping from image features to 3D pose
has been shown to be multi-modal, due to the inherent
imaging ambiguities [14]. To address this, we also
introduce an Importance Weighted Twin Gaussian
Processes model, based on [5], which in addition
imposes structure on the output 3D poses. As a result,
IWTGP is able to estimate the most prominent mode,
corresponding to the most likely 3D pose, as opposed
to averaging across modes as is the case with KR and
IWKR.

5.1 Importance Weighted Kernel Regression

In kernel regression vector-valued regression function
f,in Eq.(1), takes the following form:

flx;A) = ATk(z), (6)

where A = [ai,...,aq] € ROutxds is 3 model
parameter, d is the dimensionality of pose y, k(x) =
(1, K(z, ), K(z, oY), ..., K(z, 2 )]T, and K(z, ')
is a kernel function. We use the Gaussian kernel [40] in
our experiments: K(x,x') = exp (—% , where
px 1s the kernel bandwidth. :

Under covariate shift setup, the use of relative im-
portance weighted risk minimization was shown to be
useful for adaptation from py,(x) to pee(x) [36]:

dy
r X
(z; )HZ+§2:||047||2 ;
j=1
@)

where w, () is the relative importance weight in Eq.(2),
« is the tuning parameter to control the adaptiveness

Ntr

min | 3w () g~ AT
=1
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to the test distribution, and v > 0 is the regulariza-
tion parameter; we call this importance weighted kernel
regression (IWKR).

The solution to Eq.(7) can be obtained analytically:

A\ — (Ktrw(gtr)'l' + ’YI)_lgtrW(Ytr)T, (8)

where K' = [k(a})..... k()] € ROwtDxm,
YU = [y, ...yl | € R and W is the ng X ng,-

dimensional diagonal matrix with (¢,7)-th diagonal
element defined by W; ; = w, (!").

The above IWKR method includes two tuning pa-
rameters: kernel parameter p, and the regularization
parameter 7. These parameters can be selected us-
ing importance-weighted variant of cross-validation
(IWCV) [41].

Computational complexity: Learning IWKR has com-
plexity O((ng + 1)3). Similar to RuLSIF, when the
number of training data is large, we may reduce
the number of kernels in Eq.(6) to by (< ny + 1).
Then, the inverse matrix in Eq.(8) can be efficiently
computed with complexity O(b?,). Since IWKR also
includes the estimation of relative importance weight
and its complexity is O (b, ). Thus, the total complexity
of IWKR is O(b3) + O(b3.).

5.2 Importance Weighted Twin Gaussian Pro-
cesses

We now propose the importance-weighted variant of
twin Gaussian processes [5] called INTGP. The benefit
of IWTGP over IWKR is that it can naturally take into
account the multi-modality present in the human pose
estimation, by incorporating structure over the output
poses into the regression.

5.2.1

The Gaussian Process (GP) regression assumes a lin-
ear model in the function space with Gaussian noise
for the k-th dimension (e.g., joint position):

fr(z) = B ¢(x),
)

where there is a zero mean Gaussian prior over the
parameters 3y, ~ N(0,,X%,); 0, is the p-dimensional
zero vector and 3, is the p-dimensional covariance
matrix, ¢(x) is the function which maps a dyx dimen-
sional input vector « into an p dimensional feature
space. To make prediction for the test sample, one
needs to average over all possible parameter values,
weighted by their posterior, resulting in a Gaussian
predictive distribution. GP has similar problems with
multi-modality as KR. To address this limitation, TGP
encodes the relations between both inputs and out-
puts using GP priors. This is achieved by minimizing
the Kullback-Leibler divergence between the marginal
GP of outputs (poses) and observations (features).

Gaussian Processes Regression

yi = fu(@) + e, ex ~N(0,07),

5.2.2 Twin Gaussian Process Regression

For completeness, we include the TGP formulation
here, following closely the original derivation in [5].
To do so, we take an alternative view to GP regression,
where a joint distribution over all training outputs,
Y = [y",...,y" | € R%*"=, and an unknown test
output y for a given corresponding input « takes the

form of a joint Gaussian:
Y, K k(x)

Ui (o [wer s ] ) 00
where Y}, is the k-th row of Y, y;, is the k-th entry of
y, K is an ny x ng, matrix with each element K;; =
cov(¢p(x;), p(x;)) being a covariance function encod-
ing correlations between pairs of random variables x;
and x;; similarly k;(xz) = cov(¢(x;), ¢(x)) is a column
vector of size ni, x 1 and K (x, x) = cov(¢p(x), p(x)). A
popular choice for a covariance function is a Gaussian
with noise:

cov(@p(x;), p(x;)) =

where, py is the kernel bandwidth parameter and A is
the noise variance; §;; is the Kronecker delta function.
Because the joint distribution is Gaussian, the pre-
dictive distribution is also Gaussian and can be ob-
tained by conditioning on the observed training out-
puts Y. The mean and variance of the predictive
distribution can be derived in closed form:

m(yr) = Vi K 'k(z),
o?(yr) = K(z, ) — k(w)TK_lk(a:).

Unlike GP regression, TGP also defines the covari-
ance function over outputs (not just inputs), which
allows to model correlations in outputs. In addition,
by minimizing KL divergence between the two Gaus-
sian Processes (one going in the forward and one in
the backwards direction) it is possible to focus on the
most prominent mode in the potentially multi-modal
mapping between image features and 3D pose.

To derive the backwards GP process, note that
[YkT,yk]T, in Eq. (10), can also be thought of as a
sample from a Gaussian distribution over the outputs,

e (o L alt]),

Yk k)" L(yw, yx)
where we can empirically estimate covariance matrix
as:
Y,"

ISl

Ly,uy, = {

For a multivariate output case, we can treat each
dimension k as an independent samples from the
Gaussian distribution (see Eq. (10)) since covariance
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is independent of k. Hence, we can instead estimate
covariance matrix as:
LY’
LY = - |: :| Y y .
Uy dy yT [ }

This, however, assumes that outputs along each
dimension are i.i.d.; to account for the correlations

between outputs, we can define a more general co-
variance function over the outputs, resulting in:

Yy’ L l(y) ] )
~ N 0, . (12
[ y ] Yuy( [ (y)" L(y,y) 12)
which bares close similarity to the original GP in
Eq. (10).

TGP measures the offset between the true Gaus-
sian distribution of the inputs, Nx, and measured
Gaussian distribution of the outputs, Ny, using
Kullback-Leibler divergence. However, the output, y,
is unknown in this measure. To match the estimated
output distribution and fully observed input one as
much as possible, one is required to estimate output,
9, by minimizing the Kullback-Leibler divergence:

y = argmin Dg(Nx || Nyuy),
yeRYY
where Nx and Ny, are defined in Eq. (10) and
Eq. (12) respectively.
As a result, inference in TGP is given as the solution
to the following optimization problem [5]:

Y = argmin {1 + Ay—Ql(y)Tu

yERDy
—log [L4+ A, —Uy) LUy |, (13)
where u = K7 'k(z), n = K(z,z) — k(z)u,
K(z;,x;) = exp( W) + A\di; and L(y;,y;) =
exp (—Hy’z_iy/“Q> + Ay0;; are the Gaussian kernel

function for image feature vector « and pose fea-
ture vector y, px and p, are the kernel band-
width, U(y) — (L(y.w1)e- - Ly, yn )], k(@) =
[K(z,21),...,K(z,x,,)]",and \y and )\, are regular-
ization parameters to avoid overfitting. This nonlinear
optimization problem can be solved using a second
order BFGS quasi-Newton optimizer with cubic poly-
nomial line search for optimal step size selection [5].

5.2.3 Importance Weighting in TGP

Under covariate shift, the likelihood of Gaussian Pro-
cess can be given as [27]

Nty

Hp(y |z, 3

1 1
y H vl @t - @eE )
271'0 202 ’

where w,(z) is the relative importance weight func-
tion. Note, if we consider the MAP estimate for

ywo (i)

Eq. (14) with a prior distribution over 3, then we can
show that INKR and Eq. (14) are one and the same.

Thus, the GP regression model under covariate shift
can be represented by

Qrol=

(@)yi = wi (2)p(@) Br + ek, ex ~ N(0,02). (15)

w

That is, to achieve covariate shift adaptation in TGP,
we need to simply re-weight each input and output

by wé (). Therefore, the output of the importance
weighted TGP (IWTGP) is given by

7Y = argmin [1 + Ay — 2lw(y)Tuu,
yERYY

— 1 log [1 + /\y*lw(y)TL;llw(y)H, (16)

1
Uy, ’lHl/uir— '{ﬁ}u k ( )/

where 7, = 1+ Ax — ky(z) "
1 1
= w§ (xf )ws (=) exp <772p ) + Axdij
3 I

[Kw}i,j
1 1 _
and (Lol = wi(z)wd(z ”y+) +

tr)2

Nij, [kw(z)]i = === I 2;? I ), and
o) = wé (") exp (— . IWTGP can also
be solved using a second order, BFGS quasi-Newton
optimizer with cubic polynomial line search for opti-
mal step size selection. We ignore the weighting for
certain terms that are independent of y, and hence do
not effect the optimization, for simplicity.

t

jr) exp (
1

wé (") exp (

2
ly—v;" |l
2p2

Computational complexity: IWTGP requires matrix
inversions of ng X ny matrices, the complexity of
solving Eq.(16) is O(n? ), which is impractical when
nt, is large. To deal with this issue, we first find the M
nearest neighbors of a test input and estimate IWTGP
on the reduced set of training paired samples. Then,
the inverse matrix in Eq.(16) can be efficiently com-
puted with complexity O(M?). INTGP also includes
the estimation of relative importance weight, thus the
total complexity of IWTGP is O(M?3) + O(b3,).

5.3 Importance Weighting for Other Methods

The proposed weighting methodology is amenable
to most popular formulations (e.g., Linear Regres-
sion, conditional Bayesian Mixture of Experts (cMoE),
GPLVM, KIE), as well as to other (structured) pre-
diction problems in computer vision. For example, in
Linear Regression importance weighting can be incor-
porate via Weighted Linear Regression. Incorporating
importance weighting into cMoE would amount to
secondary weighting on top of expert assignment; for
cMoE models with soft expert assignments this would
require very minor changes to the learning procedure.
Latent variants like GPLVM and KIE can also make
use of the importance weighting, for example, in KIE
the importance weighted version of Mutual Informa-
tion can be used to learn an IWKIE model.
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6 EXPERIMENTS

We compare the performance of the proposed meth-
ods IWKR and IWTGP with their un-weighted coun-
terparts, KR [1] and TGP (we use public imple-
mentation from [5]), and weighted k-Nearest Neigh-
bors approach (WkNN) [13]. We report performance
on two publicly available datasets: Poser [2] and
HUMANEVA-I [23].

Parameters: For Poser dataset, we experimentally
(through grid search) set the TGP and IWTGP pa-
rameters to A\, = A, = 107, 2p? = 5, and 2} =
5000. For HUMANEVA-I dataset, we used the original
parameter setting of [5]: \x = A, = 1073, 2p2 =
5, and 2p§ = 5 x 10°. The number of M nearest
neighbors in TGP and IWTGP is set to min(800, ng,).
In RuLSIF, we set the a = 0.5, since it performs
favorably (see Figures 4-(a), (b), and (c) for the quan-
titative analysis with respect to the « parameter),
and by = min(500, nt.). For KR and IWKR, we set
bty = min(500, nt,), and all the parameters are chosen
by cross-validation (CV) and importance weighted
CV; in WKNN we set the number of nearest neighbors
to 25. In addition, instead of using the entire test set
to adopt the model, we use a temporal window of
20 frames (feature vectors) around the current test
sample to compute the importance weight for INTGP
and IWKR. This is more efficient and is also more
realistic, as one will typically not see the full set of
test examples all at once. Note, the temporal window
size corresponds to the number of test samples 7. In
addition, we carried out the quantitative analysis with
respect to the temporal window size of 1, 10, 20, 30
and all frames, and we found their performance are
not significantly different. Thus, we experimentally
choose 20 frames in this paper. (see Figures 4-(d), (e),
and (f) for the quantitative analysis).

Computational speed: The overhead for importance
weighting is small compared to the base methods; for
example, INTGP is about 4% slower than TGP when
entire training set is used. Moreover, experimentally
we observed that INTGP can be faster than TGP
with few samples (see Figure 2). We attribute this
to the fact that weighting in TGP can lead to an
easier optimization problem, offsetting the coast of the
weight estimation itself.

6.1

Poser dataset [2] consists of 1927 training and 418
test images, which are synthetically generated, using
Poser software package, from motion capture (Mocap)
data (54 joint angles per frame). The image features,
corresponding to bag-of-words representation with
silhouette-based shape context features, and error
metric are provided with the dataset [2]. In this exper-
iment, we use the entire 418 test images for covariate
shift adaptation. Since the Poser data is synthetically

Poser Dataset

-= =TGP
—— IWTGP+RULSIF
------ RuLSIF

pm e

Computational Time [sec]

2dOO 40‘00 60‘00 80‘00 10600 12600 14600
Number of Samples
Fig. 2. Computational time comparison. Mean com-
putational time of TGP, INTGP + RuLSIF, and RuLSIF
with respect to the number of training samples. The
horizontal axis denotes the number of training sam-
ples, and the vertical axis denotes the computational
time (sec). In this experiment, we use “Boxing” se-
quence of subject S1 of HUMANEVA-I dataset for test-
ing, where the number of frames is 251. The number
of test samples (window size) is set to 20.

generated and was tuned to uni-modal predictions
[2], there exists only a small bias between training
and test images/features.

Error metric: The proposed error measure amounts to
the root mean square error (in degrees), averaged over
all joint angles, and is given by: Errory.s.(y,y*) =
L3 (g™ — y ™) mod 360°||, where § € R
is an estimated and y* € R is a true pose vector.

Performance: Table 1 shows the pose estimation result
averaged across the test set. Proposed IWKR and
IWTGP outperform their un-weighted counterparts,
reducing error by 5% and 2% respectively. INKR and
IWTGP also compare favorably with other existing
methods reported elsewhere. It is worth mentioning
that Shared KIE required a local model computed
using a small neighborhood of 25 training samples
to achieve comparable performance (with the global
model the performance drops from 5.77 to 5.95 de-
grees on average). In contrast, the IWKR and INTGP
models are more global; INTGP takes 800 neighbors
into account and IWKR uses all the training data®.

6.2 HumanEva-l Dataset

HUMANEVA-I contains synchronized multi-view
video and Mocap data. It consists of 3 subjects
performing multiple activities: walking, jogging,
boxing, throw and catch, and gesturing. We
use the histogram of oriented gradient (HoG)
features (€ R?"Y) proposed in [5] (we refer to [5] for

3. While all the data is used it is dynamically re-weighed based
on the importance weight so not all of it is active at all times.
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TABLE 1
Performance of IWKR and IWTGP on Poser dataset.
IWTGP TGP IWKR KR NN [12] GPLVM [6] sKIE [12]
[ Error (deg) | 5.75 5.83 5.72 6.04 6.87 6.50 5.77/5.95
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Fig. 3. Performance on HUMANEVA-I dataset illustrated as a function of the number of training samples; we
averaged the error over all motions for each subject. Comparable methods according to the paired t-test at the

significance level 5% are specified by ‘o’

details*). We use training and validations sub-sets
of HUMANEVA-I and only utilize data from 3 color
cameras with a total of 9630 image-pose frames for
each camera. This is consistent with experiments in
[5]. We use half of the data (4815 frames) for training
and half (4815 frames) for testing; the test and
training data is disjoint. Where fewer, e.g., ny, = 500,
training samples are necessary (as in Figure 3) we
randomly sub-sample n, from the full training set;
to alleviate the sampling bias we sample 10 times
and average the resulting errors.

The bias in pose estimation can come in (at least)

4. We thank the authors for making their features publicly avail-
able.

two forms: (1) the training data may simply be biased
and, for example, not contain the subject present in the
test set (we call this subject transfer), or (2) the training
data may contain data from variety of subjects, mo-
tions and cameras, where as at test time only a sub-
set of that data is presented at any given time (we
call this selection bias). To evaluate our methods under
such scenarios we propose 3 experiments of interest:

Selection bias (C1): Only camera 1 data is used for
training and testing.

Selection bias (C1-3): All camera data is used for
training and testing (3 x 4815 = 14445 frames
of training and 14445 frames of test data).

Subject transfer (C1): Test subject is not included in
training phase.
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Fig. 4. (a)-(c): Performance comparison of IWTGP with respect to the « parameter on HUMANEVA-I dataset
illustrated as a function of the number of training samples; we averaged the error over all motions for each
subject. In these experiments, we fix the temporal window size to 20 frames, where it corresponds to the number
of test samples used for RuULSIF computation. (d)-(f): Performance comparison of INTGP with respect to the
temporal window size on HUMANEVA-I dataset illustrated as a function of the number of training samples; we
averaged the error over all motions for each subject. Here, we fix the o parameter to 0.5. The best method
achieving the smallest mean error and comparable methods according to the paired t-test at the significance

level 5% are specified by ‘o’.

Error metric: In HUMANEVA-I pose is encoded by
(20) 3D joint markers defined relative to the ‘tor-
soDistal” joint in camera-centric coordinate frame, so
y = [y, ...,y € R and y» € R3. Error (in
mm) for each pose is measured as average Euclidean
distance: Errorpose(d, y*) = 55 > ey |57 — y* ),
where g is an estimated pose vector, and y* is a true
pose vector.

Performance: Figure 3 shows the average mean pose
estimation error as a function of training set size
(averaged over all motions and 10 runs). The graphs
clearly show that IWTGP and IWKR outperform their
un-weighted counterparts. Moreover, IWTGP overall
compares favorably with existing methods in terms of
the overall performance.

Table 2 shows performance using the entire training
set. IWNTGP tends to have smaller error compared
to all other methods. Note that both the weighted
and their un-weighted counterparts use the same pa-
rameters and inference procedures; the key difference
is in the interest weighting that alters the learning.
Moreover, paired t-tests were conducted for all exper-
iments, we observe that about 80% cases the impor-
tance weighted methods, IWTGP and IWKR, statisti-
cally outperform their non-weighted counterparts at

p=0.05 (5%) significance. In certain settings, we see
more drastic improvements, e.g., 14% reduction in
error in subject transfer with S3 using IWTGP (and
19% using IWKR), or over 10% reduction in error in
selection bias (C1-3) with S3. We also see significant
improvements on certain specific motions (see Table
3 and Figures 6-7), where, for example, on gesture
motion under selection bias we observe improvement
by 22.6 mm (reducing error by 20%) or under subject
transfer by 64.5 mm (reducing error by 33%).

We observed that WkNN performs well (better than
TGP) in subject transfer for S3, while global methods
such as KR perform poorly. This implies that local
information tends to be more important than global
information in this case. We believe INTGP and IWKR
work well here, because while dealing with more
global representation, they can emphasize locally im-
portant information through importance weighting.
Note, for sample selection bias cases, the difference
between TGP and IWTGP is smaller compared to
cases with less training samples (see Figure 3). This
is because selection bias tends to be small if the
number of training samples is large. However, in
subject transfer case, the prediction performance of
TGP cannot be improved simply by increasing the
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TABLE 2
Performance on the entire HUMANEVA-I dataset averaged over all motions.
Subject
Transfer Type Train Test IWTGP TGP IWKR KR WKNN
51,52,53 S1 54.2 55.1 71.1 80.1 70.2
Selection Bias 51,52,S3 S2 52.5 53.2 67.6 75.5 71.5
(C1) 51,52,53 S3 57.5 57.9 75.1 86.0 72.5
51,52,53 S1 81.9 83.9 101.9 119.9 94.3
Selection Bias 51,52,53 52 72.7 75.1 102.7 120.0 100.7
(C1-3) S1,8253  S3 77.2 86.1 111.7 134.8 110.4
52,53 S1 126.2 126.9 137.3 168.4 128.2
Subject Transfer S1,S3 S2 116.7 116.6 130.5 141.5 130.6
(C1) 51,52 S3 140.0 159.7 168.4 209.1 145.5
number of training samples, since the training and 14000
test distributions are inherently different. In contrast, 12000t
IWTGP can improve the prediction accuracy in this
case by properly weighting the training samples. We 100007
find IWTGP is best suited for cases where training
o . 8000F
and test distributions are different but do overlap to
a certain extent. 6000
Analysis of importance weights: To get additional 4000¢
insights into the effect of relative importance weight- 20001
ing we plot a histogram of importance weights for

Selection Bias (C1-3) experiment, subject S3, Gesture
action in Figure 5 (window size is set to 20). Note
that the number of importance weights for each test
sample is 800, one for each training nearest neighbor
in the active set. As can be seen from the figure,
in general, the importance weighting mostly down
weights irrelevant training samples (large fraction of
importance weights fall below 1.0) and up weights
(assigns importance weight > 1) few training samples
that are most relevant with respect to the test sample.

Role of parameters: The two parameters that must
be set by hand in the importance weighting are the
a and the temporal window size. We carried out a
set of experiments to illustrate the sensitivity of the
method to those parameters in Figure 4. In particular,
as can be seen from Figure 4 (a)-(c) the method is
not sensitive to the exact value of « so long as it’s
within a moderate range, 0.25 < « < 0.75. Note that
performance, as expected, degrades as « goes to 0 (no
importance weighting) or 1 (full adaptation, which
can make weights diverge to infinity).

We also test the effect of temporal window size
(number of test samples). The experiments in Figure 4
(d)-(f) again illustrate insensitivity to exact value of
the parameter. As a result we are able to use shorter
window of 20 frames (or even fewer) without degrad-
ing the performance. Note that performance degrades
only very slightly as window is decreased to only 1
frame. We attribute this, in part, to the core property
of our model, that estimates the importance weight
ratio directly and, in part, to the fact that the resulting
importance estimate is always centered, and hence is
most accurate, at the current test point regardless of
the window size.

0.5 1 1

. 5
Relative Importance Weight (o. = 0.5)

Fig. 5. Histogram of importance weights. Horizontal
axis denotes relative importance weight and vertical
axis — count of the training samples to which weights
within the specified range were assigned. We indis-
criminately plot histogram over all importance weights
obtained during inference of “Gesture” sequence of
subject S3 in the Selection Bias (C1-3) experiment of
HUMANEVA-I dataset. The number of test samples
(window size) is set to 20. Most importance weights
down weight irrelevant training samples, while few em-
phasize most relevant training exemplars with respect
to the test samples.

7 CONCLUSIONS

We propose a simple, yet effective, unsupervised
method for addressing training set bias through co-
variate shift adaptation in (structured) prediction
problems. As part of our formulation, we also intro-
duce importance weighted variants of kernel regres-
sion (IWKR) and twin Gaussian processes (IWTGP)
which produce state-of-the-art 3D pose estimation
performance on standard datasets (HUMANEVA-I and
Poser [2]). We view our approach as the first step to-
wards eliminating bias in structured prediction prob-
lems in vision. That said, additional work is needed
to address more extreme biases, e.g., biases that lead
to entirely disjoint training and test dataset. We leave
such extreme biases as subject of future work.
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TABLE 3
Performance on the entire HUMANEVA-I dataset; we average errors over all motions and frames.
Subject
Transfer Type Train Test Motion IWTGP TGP IWKR KR WKNN
Walking 404 41.1 63.6 69.6 57.2
Jogging 51.7 52.0 74.6 85.3 75.6
Gestures 10.5 11.1 15.9 18.3 11.8
51,82,83 51 Box 39.1 40.0 55.5 62.4 50.1
ThrowCatch 129.1 131.5 145.7 165.2 156.6
Average 54.2 55.1 71.1 80.1 70.2
Walking 24.8 26.5 445 55.1 11.7
Jogging 39.3 40.2 55.6 63.1 60.0
Selection Bias Gestures 65.2 65.0 77.8 83.0 724
(C1) 51,52,53 52 Box 59.9 60.5 76.2 85.6 91.7
ThrowCatch 74.2 74.0 83.9 90.6 91.9
Average 52.5 53.2 67.6 75.5 715
Walking 57.7 59.2 80.6 91.0 80.9
Jogging 34.2 35.2 53.9 64.7 58.7
Gestures 72.7 70.6 91.9 109.5 82.7
515253 83 Box 653 68 | 738 786 67.6
ThrowCatch — — — — —
Average 57.5 57.9 75.1 86.0 72.5
Walking 92.4 96.3 120.4 132.9 114.5
Jogging 122.9 123.5 130.8 142.6 130.4
Gestures 11.2 12.0 26.3 437 12.0
51,52,53 st Box 42.0 434 68.5 91.0 54.2
ThrowCatch 141.2 144.1 163.5 189.1 160.3
Average 81.9 83.9 101.9 119.9 94.3
Walking 36.3 39.9 85.9 111.4 68.6
Jogging 94.3 97.1 127.0 141.4 146.3
Selection Bias Gestures 89.6 91.0 103.7 1154 97.8
(C1-3) 515283 52 Box 60.8 627 | 898 1084 | 830
ThrowCatch 82.4 84.9 107.3 123.2 107.6
Average 72.7 75.1 102.7 120.0 100.7
Walking 98.6 104.5 137.2 154.2 132.8
Jogging 64.4 70.5 121.4 144.9 127.7
Gestures 87.9 110.4 102.6 139.8 106.0
515253 83 Box 58.0 5.1 | 85 1003 | 752
ThrowCatch — — — — —
Average 77.2 86.1 111.7 134.8 110.4
Walking 94.9 98.3 115.3 143.4 95.6
Jogging 106.0 110.6 115.6 135.6 104.6
03 s1 Gestures 86.3 87.9 1214 187.0 100.9
4 Box 151.6 148.5 142.5 156.8 144.0
ThrowCatch 191.9 189.4 191.8 219.0 196.0
Average 126.2 126.9 137.3 168.4 128.2
Walking 108.9 108.9 124.5 127.2 126.9
Jogging 92.1 91.1 117.4 121.3 141.8
Subject Transfer 5153 s Gestures 96.3 94.8 110.1 128.5 100.8
(C1) 4 Box 177.6 178.1 168.5 184.1 168.8
ThrowCatch 108.4 109.9 132.2 146.5 114.6
Average 116.7 116.6 130.5 141.5 130.6
Walking 130.7 132.7 150.1 192.7 133.6
Jogging 116.9 120.2 147.3 1934 139.6
5152 33 Gestures 133.4 197.9 186.5 191.2 140.1
4 Box 179.2 188.0 189.7 259.2 168.5
ThrowCatch — — — — —
Average 140.0 159.7 168.4 209.1 145.5
REFERENCES for structured prediction,” Int. J. Comput. Vision, vol. 87,

(1]
(2]

(3]

(4]

(5]

A. Agarwal and B. Triggs, “Monocular human motion capture
with a mixture of regressors,” in CVPR Workshop, 2005.

A. Agarwal and B.Triggs, “Recovering 3D human pose from
monocular images,” IEEE Trans. on PAMI, vol. 28, no. 1, pp.
44—58, 2006.

A. Bissacco, M. Yang, and S. Soatto, “Fast human pose esti-
mation using appearance and motion via multi-dimensional
boosting regression,” in CVPR, 2007, pp. 1-8.

L. Bo, C. Sminchisescu, A. Kanaujia, and D. Metaxas, “Fast
algorithms for large scale conditional 3d prediction,” in CVPR,
2008.

L. Bo and C. Sminchisescu, “Twin gaussian processes

(6]

(71

(8]

(9]

no. 1-2, pp. 28-52, Mar. 2010. [Online]. Available: http:
//dx.doi.org/10.1007 /s11263-008-0204-y

C. Ek, P. Torr, and N. Lawrence, “Gaussian process latent
variable models for human pose estimation,” in Workshp on
ML for Mult. Inter., vol. 4892. LNCS, 2007.

C. Ionescu, L. Bo, and C. Sminchisescu, “Structural svm for
visual localization and continuous state estimation,” in ICCV,
2009.

A. Kanaujia, C. Sminchisescu, and D. Metaxas, “Semi-
supervised hierarchical models for 3D human pose reconstruc-
tion,” in CVPR, 2007.

R. Navaratnam, A. Fitzgibbon, and R. Cipolla, “The joint
manifold model for semi-supervised multi-valued regression,”



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XXXX

13

haS KR et KR
- —IWKR 180f —IWKR
140 --TGP 1708 -- TGP
_ - |—IWTGP . _ Tl _ON .. T
€ - - WKNN € E . £
E120 £ £t Ee0
s s 8 8 150
£ 100 & & 159 i
140
80| 140
130
11g 1 1 2
00 1000 1500 20 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 200 2500 00 1000 1500 2000
Number of Training Samples

(a) S1 (Walking)

Number of Training Samples

(b) S2 (Walking)

Number of Training Samples

(c) S3 (Walking)

0
Number of Training Samples

(d) S1 (Jogging)

Number of Training Samples

(e) S2 (Jogging)

2500

. KR KR KR KR -
< —IWKR 60| —IWKR —IWKR —IWKR
18Qf e T ..TGP TGP 130 L. TGP 160 .. TGP 120
_ —IWTGP 25 —:,\(/‘((LG,“P _ —IWTGP| _ —IWTGP _
€ - - WKNN € - - WKNN 3 - - WKNN € .
Ee0 €0 E120 Emo Eo0
s N s s s
& 140 & & i 5 80
120 ) 60
7500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500 500

Number of Training Samples

Number of Training Samples

(g) S1 (Gestures)

Number of Training Samples

(h) S2 (Gestures)

1000 1500 2000
Number of Training Samples

(i) S3 (Gestures)

2500

500 1000 1500 2000

Number of Training Samples

(j) ST (Box)

(f) S3 (Jogging

KR KR KR
130) o —IWKR —IWKR 210 150 —IWKR
. --TGP 140 --TGP -~ TGP
_teop Tes|—wTGP . —IWTGP 200 140 —IWTGP
£ - - WKNN E -+ WKNN € E
ENg " £t £t
& 100) s 51 51
i & & fir
90 1 1
80 160 100

1000

Number of Training Samples

(k) S2 (Box)

1500 2000 2500 500 1000

1500
Number of Training Samples

(1) S3 (Box)

2000 2500 500 1000

1500
Number of Training Samples

(m) S1

2000 2500 500 1000

(ThrowCatch)

1500
Number of Training Samples

(n) S2 (ThrowCatch)

2000 2500

2500

Fig. 6. Results of selection bias (C1-3). Mean error for HUMANEVA-I data with respect to the number of
training samples for each subject and each motion. The horizontal axis denotes the number of training samples,
and the vertical axis denotes the mean error. The best method achieving the smallest mean error and comparable
methods according to the paired t-test at the significance level 5% are specified by ‘o’.

Error (mm)

Error (mm)

00

' KR hak KR '
150 —IWKR 150 - —IWKR -
TGP TGP 200 160
140 —IWTGP) 140 —IWTGP) _ _ _
130 - WKNN E e Lowon E 18 E E1
T | T T 5 :
120p . g 2 2
& 1500 . 5 160 & &'
110} "7
110) 14 100
95900 1000 1500 20! 2500 7500 1000 1500 2000 2500 1‘!‘:"00 1000 1500 2000 2500 10§00 1000 1500 2000 2500 85}00 1000 1500 2000 25(
Number of Training Samples Number of Training Samples Number of Training Samples Number of Training Samples Number of Training Samples
(a) S1 (Walking) (b) S2 (Walking) (c) S3 (Walking) (d) S1 (Jogging) (e) S2 (Jogging)
0 130 0 1
KR KR KR KR
200 —IWKR —IWKR —IWKR —IWKR
--TGP 120 TGP 200 - -- TGP 170 -- TGP
180 —IWTGP) _ —IWTGP _ T —IWTGP _ —IWTGP)
E 169 -+ WKNN E 1101 WKNN £ 180 - - WKNN B -~ WKNN
5 5 5 5%
8 140 8 g N
& J\/ 5 100] 5 160] b .
1200
S o 140/\”‘ 15
10Qacae. o T s e R U o SR o--
7500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500 %00 1000 1500 2000 2500 ‘800 1000 1500 2000 2500
Number of Training Samples Number of Training Samples Number of Training Samples Number of Training Samples Number of Training Samples
(f) S3 (Jogging) (g) S1 (Gestures) (h) S2 (Gestures) (i) S3 (Gestures) () S1 (Box)
190, 1
KR KR KR KR
—IWKR 260 —IWKR 240 —IWKR 150} —IWKR
185 - TGP -+ TGP TGP TGP
_ —IWTGP _ 240 —IWTGP 230 —IWTGP| 140 —IWTGP
£ 180 o WHNN E 220 “- WHNN E 220 WHNN £ \—&
s 4 : H 51
g G g200 T 4 g2 g
& 17 & a - f S
i, N 200 o
1
500 500

1000
Number

(k) S2 (Box)

in ICCV, 2007.

maps,” in NIPS, 200

1500 2000
of Training Samples

2500 1000

2.

1500
Number of Training Samples

(1) S3 (Box)

[10] R. Rosales and S.Sclaroff, “Learning body pose via specialized

2000 2500 500

1000 1500
Number of Tt

(m) S1

raining Samples

2000 2500 105"00 1000

(ThrowCatch)

1500
Number of Training Samples

(n) S2 (ThrowCatch)

2000 2500

Fig. 7. Results of subject transfer. Mean error for HUMANEVA-I data with respect to the number of training
samples for each subject and each motion. The horizontal axis denotes the number of training samples, and
the vertical axis denotes the mean error. The best method achieving the smallest mean error and comparable
methods according to the paired t-test at the significance level 5% are specified by ‘o’.

[11] M. Salzmann, C. H. Ek, R. Urtasun, and T. Darrell, “Factorized

orthogonal latent spaces,” in AISTATS, 2010.

[12] L. Sigal, R. Memisevic, and D. Fleet, “Shared kernel informa-



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XXXX 14

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]
[21]
[22]

(23]

[24]
(25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

(36]

[37]

[38]

(39]

[40]

tion embedding for discriminative inference,” in CVPR, 2009.
G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estima-
tion with parameter-sensitive hashing,” in ICCV, vol. 2, 2003,
pp- 750—757.

C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas, “Discrim-
inative density propagation for 3D human motion estimation,”
in CVPR, 2005.

C. Sminchisescu, A. Kanaujia, and D. Metaxas, “Learning joint
top-down and bottom-up processes for 3D visual inference,”
in CVPR, 2006.

R. Urtasun and T. Darrell, “Sparse probabilistic regression for
activity-independent human pose inference,” in CVPR, 2008.
X. Zhao, H. Ning, Y. Liu, and T. S. Huang, “Discriminative
estimation of 3D human pose using gaussian processes,” in
CVPR, 2008.

Y. Aytar and A. Zisserman, “Tabula rasa: Model transfer for
object category detection,” in ICCV, 2011.

B. Kulis, K. Saenko, and T. Darrell, “What you saw is not
what you get: Domain adaptation using asymmetric kernel
transforms,” in CVPR, 2011.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual
category models to new domains,” in ECCV, 2010.

M. Stark, M. Goesele, and B. Schiele, “A shape-based object
class model for knowledge transfer,” in ICCV, 2009.

A. Torralba and A. Efros, “Ubiased look at dataset bias,” in
CVPR, 2011.

L. Sigal and M. J. Black, “Humaneva: Synchronized video and
motion capture dataset for evaluation of articulated human
motion,” in TR CS-06-08, Brown Univ., 2006.

R. Gopalan, R. Li, and R. Chellappa, “Domain adaptation for
object recognition: An unsupervised approach,” in ICCV, 2011.
B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel
for unsupervised domain adaptation,” in CVPR, 2012.

A. Bergamo and L. Torresani, “Exploiting weakly-labeled web
images to improve object classification: a domain adaptation
approach,” NIPS, 2010.

H. Shimodaira, “Improving predictive inference under covari-
ate shift by weighting the log-likelihood function,” Journal of
Statistical Planning and Inference, vol. 90, 2000.

M. Yamada, L. Sigal, and M. Raptis, “Covariate shift adapta-
tion for discriminative 3D pose estimation,” in ECCV, 2012.
L. Sigal, A. Balan, and M. Black, “Combined discriminative
and generative articulated pose and non-rigid shape estima-
tion,” 2007.

T. de Campos and D. Murray, “Regression-based hand pose
estimation from multiple cameras,” in CVPR, vol. 1, 2006, pp.
782-789.

R. Rosales, V. Athitsos, L. Sigal, and S. Scarloff, “3D hand pose
reconstruction using specialized mappings,” in ICCV, vol. 1,
2001, pp. 378-385.

G. Fanelli, J. Gall, and L. V. Gool, “Real time head pose
estimation with random regression forests,” in CVPR, 2011.
J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and
B. B. Scholkopf, “Correcting sample selection bias by unla-
beled data,” in NIPS, 2007.

M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and
M. Kawanabe, “Direct importance estimation with model se-
lection and its application to covariate shift adaptation,” in
NIPS, 2008.

T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares
approach to direct importance estimation,” JMLR, vol. 10, pp.
1391-1445, 2009.

M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and
M. Sugiyama, “Relative density-ratio estimation for robust
distribution comparison,” in NIPS, 2011.

M. Sugiyama, S. Nakajima, H. Kashima, P. Von Buenau, and
M. Kawanabe, “Direct importance estimation with model se-
lection and its application to covariate shift adaptation,” NIPS,
pp- 1433-1440, 2008.

X. Nguyen, M. Wainwright, and M. Jordan, “Estimating di-
vergence functionals and the likelihood ratio by convex risk
minimization,” Information Theory, IEEE Transactions on, vol. 56,
no. 11, pp. 5847-5861, 2010.

C. Cortes, Y. Mansour, and M. Mohri, “Learning bounds for
importance weighting,” in NIPS, 2010.

B. Scholkopf and A. J. Smola, Learning with Kernels. MIT Press,
2002.

[41] M. Sugiyama, M. Krauledat, and K.-R. Miiller, “Covariate shift
adaptation by importance weighted cross validation,” JMLR,
vol. 8, pp. 985-1005, 2007.

Makoto Yamada received the M.S. degree
in electrical engineering from Colorado State
University, Fort Collins, in 2005 and the Ph.D.
degree in statistical science from The Gradu-

My 5 ate Universities of Advanced Studies, Tokyo,
in 2010. He has held positions as a systems
e engineer for Hitachi corporation from 2005 to

2007, as a researcher with Yamaha corpora-
tion from 2007 to 2010, and as a postdoc-
toral fellow with Tokyo Institute of Technology
from 2010 to 2012. In 2012, he has held an
internship appointment in computer vision and machine learning
at Carnegie Mellon University and Disney Research Pittsburgh.
Currently, he is a research associate at NTT Communication Science
Laboratories. His research interests include machine learning and its
application to signal processing and computer vision.

Leonid Sigal received the BSc degrees
in computer science and mathematics from
Boston University in 1999, the MA degree
from Boston University in 1999, the MS de-
gree from Brown University in 2003, and the
PhD degree from Brown University in 2008.
He is a research scientist at Disney Re-
search, Pittsburgh, Pennsylvania and adjunct
faculty at Carnegie Mellon University. From
1999 to 2001, he worked as a senior vision
engineer at Cognex Corporation. He was a
postdoctoral fellow in the Department of Computer Science at the
University of Toronto from 2007 to 2009. His research interests
include computer vision, visual perception, machine learning, and
character animation. He has published numerous research articles
and book chapters in top venues within these fields, including the
IEEE Transactions on Pattern Analysis and Machine Intelligence,
International Journal of Computer Vision, CVPR, ICCV, ECCV, NIPS,
and ACM Siggraph. The topics of published articles include human
pose estimation and tracking, human motion perception, action
recognition, latent variable models, transfer learning, physics-based
models, fast approximate cloth simulation, and motion-capture. His
work received the Best Paper Awards at the Articulate Motion
and Deformable Objects Conference in 2006 (with Prof. Michael J.
Black) and in 2012 (with Micha Andriluka). He maintains an active
professional service within the community. As part of that service,
he regularly serves on program committees and reviews papers for
major computer vision, machine learning, and computer graphics
conferences, and has organized three workshops and two tutorials
(in conjunction with NIPS, CVPR, ECCV, and ICCV). He has also
coedited the book Guide to Visual Analytics of Humans: Looking at
People (Springer, 2011). He is a member of the IEEE.

Michalis Raptis received his Diploma in
Electrical and Computer Engineering from
the National Technical University of Athens,
Greece, in 2006, and the M.Sc and Ph.D de-
grees from University of California, Los An-
geles, USA, in 2008 and 2011 respectively.
As of 2011 he is a postdoctoral research as-
sociate at Disney Research, Pittsburgh. His
research interests are in the broader fields of
computer vision, pattern recognition and time
series analysis, in particular the application
of discriminative approaches to the solution of event analysis tasks.



