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Dynamical Simulation Priors for Human Motion
Tracking
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Abstract—We propose a simulation-based dynamical motion prior for tracking human motion from video in presence of physical
ground-person interactions. Most tracking approaches to date have focused on efficient inference algorithms and/or learning of prior
kinematic motion models; however, few can explicitly account for physical plausibility of recovered motion. Here, we aim to recover
physically plausible motion of a single articulated human subject. Towards this end, we propose a full-body 3D physical simulation-
based prior that explicitly incorporates a model of human dynamics into the Bayesian filtering framework. We consider the motion of
the subject to be generated by a feedback “control loop” in which Newtonian physics approximates the rigid-body motion dynamics
of the human and the environment through the application and integration of interaction forces, motor forces and gravity. Interaction
forces prevent physically impossible hypotheses, enable more appropriate reactions to the environment (e.g., ground contacts) and
are produced from detected human-environment collisions. Motor forces actuate the body, ensure that proposed pose transitions are
physically feasible and are generated using a motion controller. For efficient inference in the resulting high-dimensional state space, we
utilize an exemplar-based control strategy that reduces the effective search space of motor forces. As a result, we are able to recover
physically-plausible motion of human subjects from monocular and multi-view video. We show, both quantitatively and qualitatively, that
our approach performs favorably with respect to Bayesian filtering methods with standard motion priors.

Index Terms—articulated tracking, human pose tracking, human motion, physical simulation, physics-based priors, Bayesian filtering,
particle filtering.
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1 INTRODUCTION

We consider the problem of physically plausible human nmotig
tracking from video. Although the area of articulated pos
tracking has seen many advances, the general problem
tracking the 3D motion of a person in typical environment
from monocular image observations remains a challengeh Hi
dimensionality of human pose, variability in imaging condi
tions, appearance and clothing are but some of the issues
need to be addressed. Most prior approaches to tracking h
concentrated on developing search methods and motiorspri
that allow efficient inference in this high-dimensional eos
space. However, physical realism of such motion priors a
plausibility of the recovered motion remains an open pnoble
As a result, many existing methods suffer from visuall
distinct and physically implausible artifacts, includirigot
skate, out-of-plane rotations and jitter. With these comse Fig. 1. Incorporating physics-based dynamic simulation
in mind, we propose a method for incorporating full body with joint actuation and dynamic interaction into Bayesian
physical simulation for prediction within the probabilistic ~filtering . The figure’s motion is determined by its dynam-
tracking framework of Bayesian filtering. ics, actuation forces at joints (top) and surface interaction
Dynamical simulation has a large body of existing work it contacts (bottom).
animation [4], [16], [19], [21], [[31], [[38],[39], [[60] [[6Band
robotics [10], [28],[47],[59] and is now a commodity techno
ogy. Simulation allows to computationally account for ears e g a person’s mass, gravity, interaction with the ground
physical and biomechanical factors that affect human motigy|ane, friction, self-collisions and physical disturbaacOur
goal is to build a tracking system that can take advantage of
e M. Vondrak and O. C. Jenkins are with Department of Computierge, predictions based on such simulations so that the search for

Brown University, Providence, R, . poses can be biased towards physically valid interpretstio
E-mail: { marek, cjenkins;@cs.brown.edu lting i t d listi f

e L. Sigal is with Disney Research Pittsburgh. resulting in more accurate and realistic performance.
E-mail: Isigal@disneyresearch.com Traditionally, physical dynamics has been approximated in

motion priors only indirectly by enforcing temporal cohece
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[13] or by learning statistical models from reference human
motion capture data, as ih_[52]. Motion capture data can be
thought of as a snapshot of the dynamics that occurred at
the time when the motion was captured and within a given
environment where it was performee.g, typically on a
non-compliant level surface/ground). Such motion capture
based priors are limited to a specific motion, or class of
motions, subject to the environment at the time of collec-
tion and, consequently, have difficulty generalizing to new
environments €.g, non-level ground or stairs). In addition, )
because the underlying physical phenomena are encoded drif}y 2: Figure model 31 degree-of-freedom (DOF) human
indirectly through statistical relations over body kindivs, model with collision geometries of the figure segments
pose samples produced by such priors are not guaranteedgf): the joints and skeletal structure (middie) and the
be physically valid. As such, kinematic priors can not eHsu?"_SU"J‘I representation in an image projection (right). _MOSt
that it is physically possible to move the body from the catrelCints have 3 DOFs, except for the knee and elbow joints
pose to the proposed pose. (1 DOF)., spine joint and the clavicle joints (2 DOFs) and
To explicitly address realism of the poses generated byﬂhe root joint (6 DOFs).
kinematic model we suggest to employ physical simulation.
Predictions made by our physics-based prior can then pe . . . .
seen as results of a postfiltering process built on top ﬁg}rces. Priors over force trajectories are notoriouslydhtar

the more traditional kinematic prior model. This post-filg characterize, in part, because obtaining such trajesioite

process takes a kinematic pose produced by the kinemacrhecneral’ requires specialized equipmang( force plates and

model (“desired pose”) as an input and outputs a physican1Otlon capture data, exception beirg [6]). Due to sensjtivi

) . . of measurements the obtained trajectories are also nuetigric
feasible pose, close to the desired pose, by running pHysica

simulation of the motion of the human body, guiding thgrone to_errors [[22], [[36]. In addition, these trajectories

body’s current pose towards the desired pose. A motigﬁe intimately dependent on the terrain, speed of exegution

controller is responsible for this guidance, through aggtlon muscle tone, and even age of the subjeci [12]. Consequently,

of motor forces exerted on the body, subject to biomechhnigharagtenzmg and.stuc_zlymg such force trajectories istace
active research in biomechani¢s|[55].

constraints and constraints in the environment. We model tA . . .
. We present results demonstrating efficacy of our physics-
human body as an actuated articulated structure composed ; .
X . . .- based prior for tracking. We compare the performance of our
of three-dimensional rigid body segments connected bytgoin

whose motion is determined by the mass properties, gravi?gethOd with other commonly used kinematic priors, yielding

. . . . gorable performance under the effects of dynamic human-
interactions among the segments or with the environment and . . . o .
environment interactions occurring in monocular and multi

actuation of the joints by the motion controller. In order to. . o o
. : . iew video. We qualitatively and quantitatively demontdra
facilitate a better understanding of this model and promoge . .
. . ; : that the performance of our physics-based prior produces
use of physical simulation for tracking, we have made ttBa

. . etter tracking accuracy than standard smooth or kinematic
source code of our controller and the simulation-basedr prig 9 y

available on our project website http://brown-robotiogap/ exempla_r -based priors and is. able_z to bett-er generalizataice
. . . new environments and physical interactions.

projects/current/dynamicgtacking/.

Our simulation-based approach has a number of benefits
compared to the pure kinematic approach: (1) predictedspoge RELATED WORK
are implicitly biased towards physically plausible interfa- There has been a vast amount of work in computer vision in
tions and (2) reasonable predictions can be made even wilespast 10-15 years on articulated human motion trackirey. W
there is not enough training data available due to the dirdotus on a subset of relevant approaches here and referreade
incorporation of laws of dynamics. We chose to model motoo [17], [2S], [34] for more complete review of the literagur
forces by using a motion controller, because doing so allowsMost approaches to human tracking to daté [2].][13],
us to avoid an explicit inference over motor force trajeie®r [44] have concentrated on development of efficient infegenc
Consequently, in tracking, we only need to infer the dynaminethods that are able to handle the high-dimensionalith®f t
state of the articulated body and information required fdruman pose. Generative methods typically propose to either
motion control, keeping the dimensionality of the statecgpalearn a low-dimensional embedding of the high-dimensional
manageable. kinematic data and then attempt to solve the tracking prob-

As a more generic but less tractable alternative, one coudan in this more manageable low-dimensional space [52],
re-parameterize the body motion completely in terms of motor, alternatively, propose the use of prior models to reduce
forces and avoid the use of motion controller and the kinemaeffective search space in the original high-dimensionaktep
motion prior. However, this parameterization would requir[13]. More recent discriminative methods attempt to map
inference and priors over the force trajectories. Suchrémfee directly from image features to the 3D articulated pose from
would be particularly problematic due to the high-dimensip either monocular imagery [40], [45] or features obtainemifr
discontinuous, and nonlinear nature of the space of motoultiple views [18].
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Producing smooth and accurate tracking results remainsnéerence using standard techniquesg( particle filtering)
challenge, especially from monocular imagery. In particul challenging. Consequently, we make use of an exemplar-
many of these efforts do not address physical plausibility based prior for the dynamics to limit the effective search
estimates and often result in recovered motions that \@olapace and allow tractable inference in this high-dimeraion
the constraints imposed on the body by the world or envirospace. Exemplar-based methods similar to ours have been
ment (producing out-of-plane rotations and foot skatexhSusuccessfully used for articulated pose estimation in [[AH],
artifacts can be attributed to the general lack of physical52], dynamically adaptive animatiori [63], and humanoid
plausible priors[[7],[[8] which can account for static and/orobot imitation [20].
dynamic balance and ground-person-object interactions. Our exemplar-based prior, discussed in the previous para-

Recently, priors that directly constrain kinematics witlgraph, can be thought of as an incremental trajectory cthetro
geometric constraints imposed by the environment have bdgi], where joint angle trajectories are defined on a frame-b
introduced|[[37],[[38]. While shown to be effective, thes@opr frame basis from a database of motion capture data. As such,
models can only constrain the location of the body segmermtgr method also relates to a rich literature on controllsigle
with respect to the environment. For example, such modé¢{2]. While the use of our controller is dictated by simpijci
can encode a constraint that feet should not penetrate &#ral convenience, other controllers can also be used indhis ¢
ground plane[[37] or that feet or hands must be in sontext to produce physically plausible motion. For examples o
fixed configuration (as dictated by the environment) withan use a set of key-poses with proportional derivative (PD)
respect to one another [38]. Such geometric priors are ramntrol [19], [61], [62], a learned low-dimensional coriteo
able, however, to allow dynamically plausible environnaént[39], or a combination of controllers [15] that individugll
interactionsg.g, encode that feet must be in contact with thdeal with properties of the desired motieng, balance (using
ground in such a way as to support the resulting motéia, Zero Point Moment[11] or otherwise [48]). Note that in such

The computer graphics and robotics community, on thEses one would typically need to infer full parameters ef th
other hand, has been very successful in developing realistontroller [7], [8].
physical models of human motion. These models for the most
part have only been developed and tested in the context2of Background: Human Tracking

synthesisi(e., animation [16], [[19],[[31],[3B].[[39].[160],.[62], Tracking, including human motion tracking, is most often

[61], [57]) and humanoid rc_)bot|cE[ll.0]:[128]_,__ﬂﬁ_l7]:U59]._ formulated probabilistically using a Bayesian filter foriation
The key benefit of physics-based models in graphics "alm. In computer vision literature such filters are usually

robotics has been shown to be the ability to use these mo ﬁﬁlemented using a Particle Filter (PF). In PF fhasterior;

to plausibly re-target the Qriginal kinemati.c motions.tdne]t p(X¢|y1:), wherex; is the state of the body at framé

environments[33], dynamic interactions with the envir@mn anqy, . is the set of observations up to and including the

[57], skeletal dimensions/proportionis| [9] and temporaé-eXframe f, is approximated using a set of (typically) weighted

cutions [27]. We conjecture that the use of similar mOdels%mpIes/particles and is computed recursively,
in tracking would allow equally effective generalizatipns

beyond the scope of pure kinematic prior models. To this
end, we propose a full body physics-based dynamical mode(Xt|y1:f) O p(YfIXf)/ P(X¢|Xf-1) P(Xf-1]y1:f-1) AXf-1.
as a motion prior, for tracking, that accounts for physicall ;- > """ m — -
plausible environmental interactions. Predictive Density

Earliest work on integrating physical models with visionin this formulation,p(x;_1|y1:t—1) is the posterior from the
based tracking can be attributed to influential work by Matax previous frame ang(ys|x¢) is the likelihood that measures
et al. [30] and Wrenet al. [56]. In both [30] and [[56] a how well a hypothesis at framé& explains the observations.
Lagrangian formulation of the dynamics was employed, withiThe p(xt|x;_1) is often referred to as thetemporal prior,
the context of a Kalman filter, for tracking of simple (ncor motion model, and is the main focus of this paper
contact) upper body motions using segmented 3D markerThe temporal prior is usually modeled as a first or second
[30] or stereo|[[55] observations. In contrast, we incorpwraorder linear dynamical system with Gaussian nadise [2]},[13]
full body human dynamical simulation into a Particle Filterf44]. For example, in[2],[[13] the non-informative smooth
suited for multi-modal posteriors that commonly arise frorrior,
ambiguities in monocular imagery. More recently, Brubaker p(Xi|Xf-1) = A (Xf-1,Z), (1)

etal. [], [B] introduced a low-dimensional bloml:"Ch"imc"’llly'which facilitates continuity in the recovered motions, was

inspired model that accounts for human lower-body walkin ed: alternativelv. constant velocity temporal priorstio
dynamics. The low-dimensional nature of the modeél [7], [ rm', Y y P P

facilitated tractable inference; however, the model, &/ipibw-
erful, is inherently limited to modeling dynamics of walkin P(X¢[Xf-1,¥-1) = A (Xf-1+ V5-1,Z), )
motions in 2D and resorts to conditional kinematics to allowhereys 1 is scaled velocity learned or inferred.g, ys 1 =
tracking of walking motions in 3D and allow turning. Xf_1—X¢_2), have also been proposéd[44] and shown to have

In this work, we introduce a more general full-body moddhvorable properties when it comes to monocular imagery.
that can potentially model a large variety of human motionslowever, human motion, in general, is non-linear and non-
However, the high-dimensionality of our model makes direstationary.

Temporal Prior Posterior atf —1
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Decision Process Motion Control

We run our simulations in a world model consisting of
a known static environment3, and a loop-free articulated
structure figure) that represents the subject (Figlide 2). We

. given desired pose,
[q/ >q s 1.9, Joutput motion constraints
S

| -

given pose, output desired
kinematic pose

1) select policyv,

2)7”(q,.4,) assume “physical properties” (mass, inertial propertiesal-
q, A‘t.) q, 49, q, lision geometries) are known for each rigid body segment. Ou
(q,.d,] [d4,.q,].m predictions are produced by a filtering process that takes ne
— - pose proposals from a kinematic prior as an input. Proposed
Initialization Dynamics

predictions are corrected throughmulationof the articulated
body towards the proposed poses. The corrected poses are,
by definition, physically valid and transitions betweennhe
physically feasible. We abstract kinematic priors by cohtr
policy functions. Control policy functions map current pes

to next intended poses and implicitly encode intentions (or
objectives) of the subject. We permit a collection of (pbksi

given constraints,
apply forces to

[q_/’+| .q £+l l.e

update pose
(o))

Fig. 3. Motion Model: Control Loop. Each iteration
advances the figure state [q,q,v] by time At by (1) gen-

q, q,

erating a desired kinematic pose qq for the figure to follow
(decision process), (2) constructing corresponding motion
constraints m for generating motor forces (motion control)
and (3) applying forces on the figure, as determined
by m (dynamics). Event feedback information e records
collisions with the environment and affects selection of the
control policy for the next iteration.

motion-specific) control policies over a variety of objges
and allow inference over which policy to use at any given time
For example, the system can incorporate two different jadic
for actuated motions (actions), one for walking and another
one for jogging, or, it can provide one policy to account
for voluntary motions and another for involuntary (pasyive
body responses. We switch control policies probabilififica

(optionally) conditioned on simulation event feedbaek,
) ) ~ Pose inference in our framework takes the form of a
For this reason, more recently, it became customary torithe, icle filter (see Algorithnill) with the motion (lines-39,

model human motion as a mixture of linear models in th@ectiorB]Z) likelihood (line 12, SectiGnB.3) and noisecd
original high-dimensional state space |[32] or by learning & 5nq 10, Sectioi3.4) models explained next.
explicit non-linear low-dimensional embedding of kinemat

[23], [26], [4€], [50], [51], [52] (or mixture of low-dimerienal Algorithm 1 Update particle set for the next frame
linear embeddings [25]). The latter class of models often _ X X OENONT
takes a form of Gaussian Processes Latent Variable ModllBut: Weighted particle se{x;",w;"}Z, for frame f and
(GPLVMs) [50], [51], [52]. Consequently, to learn effedtiv.  geometry of the scené (notex%I> = [q<f'>,q(f'>,u§'>])
Iow—dimension_al latent rep_resentations, GPLVM_-basedefmd Output: Weighted particle se{x(fi)+17w(fi)+1}i“‘,1 for f+1

are often restricted to particular classes of motiewy( walk-
ing [51], golf swing [52]). While these models have shown to
be effective kinematic priors, and are able to be trainedchfro

1 {)?(fi),%}i”:l = resamplé{x\’ w{"}N )
2: for i ;= 1toN do

oo~
small datasets [52], they are inherently unable to explicit & UE) :Athen_ i
model the physical aspects of human motiery( consistency  4: qe == m(a},ay) /I predict desired pose
with gravity, balancegetc) Furthermore, it is hard for such 5: Qd +=Nd /I'add noiseng ~ 4(0,Zq)
models to generalize to different environments. For exampl 6:  else
if the kinematic prior model is trained on the data of a persory: Qg == 0
walking on level ground, it may generalize to other peoples: end if

walking on level ground with different styles or speeds|[51] 9:

¢’ ,.a¢") . = simulaté(d’,a\"],q4,G)

but it would not be able to generalize to a person walking ug, [qﬁiilvq?il] T=1s /I add noisens ~ 4 (0,Zs)

the stairs, as discussed in the results. _ (i) (i) 1 ~(0) .
110 Ugyq ~P(Us14]0¢7,€) /I sample next policy

3 TRACKING WITH DYNAMICAL SIMULATION 12 Wi == p(yriallarly.afl,))  # image likelinood

. . . N - . 13: end for

Dynamical Newtonian simulation is explicitly suited as a

temporal prior (motion model) to address physical realism

in predictions. Temporal priop(X;|xf_1) encodes temporal

relationship between states and implicitly approximategen- 3-1 Body Model and State Space

lying processes that govern the motion represented by th&$gure state captures information about the pose and dontro

states. We assume that true human motion is determinedgnlicy and is represented by a vecter= [g,q,u], where

dynamics and a feedback-based thought process that tagksR3! is kinematic pose of the bodg € R3! is the time

the actuation of the body (through muscles) such that disirerivative of the kinematic pose (velocity), ands a discrete

motion would be performed. Our physics-based motion modeentifier designating the control policy currently in use.

idealizes this concept by assuming that the thought pra@ess Our figure (body) consists of 13 rigid body segments and

be abstracted by a discrete feedback control loop illstrat  has a total of 31 degrees of freedom (DOFs), as illustrated

Figure[3. We use this loop to draw samples from the prior.in Figure [2. Segments are linked to parent segments by
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either 1-DOF (hinge), 2-DOF (saddle) or 3-DOF (ball and 0os | gl AULE=0) o
socket) rotational joints to ensure that only relevanttiotes Error G(nmm) || 32.1 | 30.2 | 35.0 | 37.1 | 38.3 | 70.8

about specific joint axes are possi_blg. The root segment is TABLE 1

“.cc?nrlected to_the world space origin by a 6.'DOF. gIOba1’racking errors as a function of p(us+1 = Ajus,e=0) (L1

Jo"?t. whose DC.)F values define the global O“en.tatlon.a.ndwalking). For details on the error metric see Section [4l

position of the figure (body). The values of rotational joint

DOFs are encoded using Euler angles. Collision geometries

attached to segments affect physical aspects of the motigg, a simpler alternative to constraints, the motion cotgrol

while additional segment shapes define visual appearancec6fild generate motor forces directly leyg, a proportional-

the segments and have an impact on the evaluation of Wrivative servd57].

likelihood discussed later. In order to optionally allow the control process to react to
Joint DOF values concatenated along the kinematic tregternal events” that took place during simulation, weorec

define thekinematic posgq, of the body. Joint DOF velocities, event feedback informatioe, from the simulator and use it in

g, defined as the time derivatives, together with the kinetnathe decision process to help choose the control policy fer th

poseq determine thelynamic poseq,q]. The pose is consid- next time step (see Sectibn 3]2.1). We currently restricseifi

eredinvalid if it causes self-penetration of body parts and/ab modeling reactions to unanticipated heavy impaetg,(as

penetration with the environment (detected by the simukatoin Figure[IB) that are unlikely to be represented well in the

collision detection library), or if the joint DOF values areraining motion capture set. Hence, our feedback inforomati

outside of the valid ranges that are learned from the trginigonsists of only a binary indicator variable recording viest

motion capture data. These constraints on the kinematie p@se body has collided with the environment, detected when a

allow us to reject invalid samples early in the filtering p@ss. relative velocity at a body contact exceeds a threshold of 1
Control policy v identifies the policy function to be usedm/s during simulation.

for generating next pose proposals. The policy functdn

[9,6] — qq determings the next desired (intended) kir1_emat§2_1 Decision Process

poseqq that the subject attempts to reach frdgq] during . _ ) )
simulation and is typically obtained by sampling from ar he deC|§|on process in the controllloop is responsible for
associated kinematic motion prior. We implement two cdntrél) @PPlying the current control policy to propose a next
policies, anactive motion policy @) for actuated motions, Inténded kinematic posg to be corrected by simulation and
whereqq is obtained from kernel regression on training motiok?) determining which policy the current policy should st
capture data, and passivemotion policy @) for unactuated t© after the simulation completes, utilizing the event fesrk
motions, where no particular desired pose is proposed dRPrmation from the simulation. We switch policies by a
consequently no motor forces are applied during simulatioffochastic process in which the new poligy,, is sampled

Consequentlyv € {A P} is binary (see Sectiof 3.2.1 and"om simplep(vs1|ut, e) distributions that do not take pose or
Figure[3 for illustration). velocity information into account. In practice, we assuima t

p(i+1 = Alus =Ae=0)=p(vry1 =Alus =Pe=0) and

. estimate the value of(vf 1 = Alus,e=0)=1—p(Vfr1=
3.2 Motion Model and Control Loop Plu;,e=0)=0.9 usiné Cross va|lidation. 2I'he beth\vior of the
Sampling from our physics-based motion prior is realizegacker as a function gf(vs,1 = Alus = A e= 0) is illustrated
by executing the control loop. For every state hypothesis Table[1. The value gb(vs, 1 =Alus =A e=1)=p(Ut 1=
x = [q,,0] at one frami one loop iteration is taken to Ajuf = P,e=1)is set by hand as in our data impacts of desired
produce a hypothesis at the next frame, as illustrated ifagnitude happen very infrequently and hence learningi(eve
Figure[3 and Algorithni]1. using cross-validation) is inconclusive. Motivated by][63:

The update procedure uses the current control policy furlet p(v, 1 = Ajus,e=1) =0.

tion m¥ to propose the next desired kinematic page= . ) . ) )
n°([q,q]) for the figure to approachdécision processsee Passwg motion P). This pollcy applies no motor forces, as
Sectior[3.211)Dynamics simulatiorfsee Section 3.2.3) filters if the figure was unconscious. As a result, qpis g(_anerated
this pose to be physically valid by performirgpnstrained and no a_ctuat|0n takes place when the pollcy_/ is in effect. _Its
rigid body simulationof the motion of the subject, guidingPUrPose is to account for unmodeled dynamics in the active
its current posdq, ] towardsqg, subject to biomechanical Motion polu;y and it should typlcglly be activated for short
and environment constraints, dictated by the scene gepmdigriods of time or when the body is in the free fall.

G. The guidance is realized through application of apprmpriaActive motion (A). Our active motion-capture based policy

rr:cotor _forces, gelnerated _|mpI|C|tIy bithi S|ml_JIator frorr|1|em S generates desired kinematic poses so that the proposeoimoti
of motion control constraints) set up by thenotion controller 14 |50k similar to training motion capture. We take an

(s_ee Se_ctiorESIZ.Z) fronfg, g] and qg. In_case no desired exemplar based approach resembling! [20].] [40]. [63] and
Kinematic pose was proposed by the poliey= 0, no motor extend it to work with dynamic poses. To that end, we first

forces are generated and the subject is let move passiv? m a database of observed input-output pairs (from tngini

1. Where unnecessary, for clarity of notation, we omit scitipss for frame motion _captur(_e data) between a dyna_mlc pose at frdme
identity and super-scripts for hypothesis identity. and a kinematic pose at franfet-1, {[q7,q3],97,1}f_4. For
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. [5], [45]. The former is closely related to kernel regressio

N but in addition produces the measure of uncertainty for

2 the prediction; the latter allows for multi-modal predacts.

g Because we are conditioning on both the kinematics and
velocity information, the multi-modality does not seem to
be as abundant as with pure kinematic modéls [B]) [45].
Furthermore, as with traditional kinematic motion pridtds

& reasonable to assume that the underlying degrees of freedom

> are much lower than those encoded by the full kinematic

= state. With that in mind, low-dimensional motion prioesd,

é Latent Variable Gaussian Process Latent Variable Mo8é&k [5
[51], [52] or Mixture of Factor Analyzers [25]) are likely to

facilitate more efficient inference methods. The use of such
Fig. 4. Control Policies. Predictions made by the control latent variable models in this context remains future work.

loop from a given initial dynamic pose (top and bottom
left) for a time duration of 2 seconds. The top row shows 3.2.2 Motion Control
poses generated by the active motion policy, the bottom The motion controller conceptually approximates muscle ac
row shows the poses generated by the passive policy. tuation of the subject to move the body from the current pose
[g,q] towards the intended kinematic pogg when the state
is updated by dynamics. Becausg is generated using a
pose invariance to global position and heading, corresipgndstatistical model, kernel regression, it is not guaranteeoe
degrees of freedom are removed frggnandqs. free of self and world penetrations. Motion control, togeth
Given this database, that can span training data frapith physical simulation, is responsible for resolving sbe
multiple subjects and activities, and a new query dynamignetrations and producing a new pose for the body model
pose[q,q], our objective is to determine the next intendechat is close togy and can be physically reached from the
kinematic poseqy. We formulate this objective as in_[40]current pose. We formulate motion control as a set of soft
using ak nearest neighbors (k-NN) kernel regression methodagrange multiplier-based constrainis [4] gnand ¢ that
where a set of similar prototypes/exemplars to the queimplicitly yield actuation forces. Each constraint is definas
point [g,q] is first found in the database and then t¢ an equality or inequality with a softness constant deteimgin
is obtained by weighted averaging over their correspondinghat portion of the constraint force should actually be aupl
outputs; the weights are set proportional to the similaoty to the constrained bodies. Magnitudes of actuation forees c
the prototype/exemplar to the query point. This inferenme cbe bounded to account for biomechanical properties of the

be formally written as, human motion, like muscle power limits or joint resistance.
1 _ . Unlike traditional constraint-based controllers][21] ttlok
G =7 K(dt([a},9%],19,9])) - di+1, (3) rectly constrain and track both linear and angular DOFs ef th
[a7.q7]eneighborhoodh ¢ figure, our objective is to constrain only the angular quaesi

so that the trajectory traced by the root segment would tresul
similarity measure anH{ is thekernelfunction that determines from interactions with the environméhHowever, control that

: : : tracks joint angles alone is problematic. One of the prob-
the weight falloff as a function of distance from the quer . At A i
point. };ematlc cases is illustrated in Figuré 5 (right) and (boftom

We use a similarity measure that is a linear combination gfonsm_ier the case \_/vhere the d_e5|red_ klnematlc_ FRSES
positional and velocity information, |nfea_5|ble e.g_, causing penetration _W|th t.he e_nwronment).
Leaving the linear DOFs unconstrained, in this case, often
di ([97,0%],]9,9])) =w-dm(9,q7) + (1 —w)-dm(§,q3), (4) leads to unexpected toe contacts/impacts with an envirohme
o during simulation which can affect the motion adversely: Fo
wheredy (-) denotes a Mahalanobis distance betwgeand eyxample, impacts at 