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Dynamical Simulation Priors for Human Motion
Tracking
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Abstract—We propose a simulation-based dynamical motion prior for tracking human motion from video in presence of physical
ground-person interactions. Most tracking approaches to date have focused on efficient inference algorithms and/or learning of prior
kinematic motion models; however, few can explicitly account for physical plausibility of recovered motion. Here, we aim to recover
physically plausible motion of a single articulated human subject. Towards this end, we propose a full-body 3D physical simulation-
based prior that explicitly incorporates a model of human dynamics into the Bayesian filtering framework. We consider the motion of
the subject to be generated by a feedback “control loop” in which Newtonian physics approximates the rigid-body motion dynamics
of the human and the environment through the application and integration of interaction forces, motor forces and gravity. Interaction
forces prevent physically impossible hypotheses, enable more appropriate reactions to the environment (e.g., ground contacts) and
are produced from detected human-environment collisions. Motor forces actuate the body, ensure that proposed pose transitions are
physically feasible and are generated using a motion controller. For efficient inference in the resulting high-dimensional state space, we
utilize an exemplar-based control strategy that reduces the effective search space of motor forces. As a result, we are able to recover
physically-plausible motion of human subjects from monocular and multi-view video. We show, both quantitatively and qualitatively, that
our approach performs favorably with respect to Bayesian filtering methods with standard motion priors.

Index Terms—articulated tracking, human pose tracking, human motion, physical simulation, physics-based priors, Bayesian filtering,
particle filtering.

✦

1 INTRODUCTION

We consider the problem of physically plausible human motion
tracking from video. Although the area of articulated pose
tracking has seen many advances, the general problem of
tracking the 3D motion of a person in typical environments
from monocular image observations remains a challenge. High
dimensionality of human pose, variability in imaging condi-
tions, appearance and clothing are but some of the issues that
need to be addressed. Most prior approaches to tracking have
concentrated on developing search methods and motion priors
that allow efficient inference in this high-dimensional pose
space. However, physical realism of such motion priors and
plausibility of the recovered motion remains an open problem.
As a result, many existing methods suffer from visually
distinct and physically implausible artifacts, includingfoot
skate, out-of-plane rotations and jitter. With these concerns
in mind, we propose a method for incorporating full body
physical simulation for prediction within the probabilist ic
tracking framework of Bayesian filtering .

Dynamical simulation has a large body of existing work in
animation [4], [16], [19], [21], [31], [33], [39], [60], [63] and
robotics [10], [28], [47], [59] and is now a commodity technol-
ogy. Simulation allows to computationally account for various
physical and biomechanical factors that affect human motion,
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Fig. 1. Incorporating physics-based dynamic simulation
with joint actuation and dynamic interaction into Bayesian
filtering . The figure’s motion is determined by its dynam-
ics, actuation forces at joints (top) and surface interaction
at contacts (bottom).

e.g., a person’s mass, gravity, interaction with the ground
plane, friction, self-collisions and physical disturbances. Our
goal is to build a tracking system that can take advantage of
predictions based on such simulations so that the search for
poses can be biased towards physically valid interpretations,
resulting in more accurate and realistic performance.

Traditionally, physical dynamics has been approximated in
motion priors only indirectly by enforcing temporal coherence
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[13] or by learning statistical models from reference human
motion capture data, as in [52]. Motion capture data can be
thought of as a snapshot of the dynamics that occurred at
the time when the motion was captured and within a given
environment where it was performed (e.g., typically on a
non-compliant level surface/ground). Such motion capture-
based priors are limited to a specific motion, or class of
motions, subject to the environment at the time of collec-
tion and, consequently, have difficulty generalizing to new
environments (e.g., non-level ground or stairs). In addition,
because the underlying physical phenomena are encoded only
indirectly through statistical relations over body kinematics,
pose samples produced by such priors are not guaranteed to
be physically valid. As such, kinematic priors can not ensure
that it is physically possible to move the body from the current
pose to the proposed pose.

To explicitly address realism of the poses generated by a
kinematic model we suggest to employ physical simulation.
Predictions made by our physics-based prior can then be
seen as results of a post-filtering process built on top of
the more traditional kinematic prior model. This post-filtering
process takes a kinematic pose produced by the kinematic
model (“desired pose”) as an input and outputs a physically
feasible pose, close to the desired pose, by running physical
simulation of the motion of the human body, guiding the
body’s current pose towards the desired pose. A motion
controller is responsible for this guidance, through application
of motor forces exerted on the body, subject to biomechanical
constraints and constraints in the environment. We model the
human body as an actuated articulated structure composed
of three-dimensional rigid body segments connected by joints
whose motion is determined by the mass properties, gravity,
interactions among the segments or with the environment and
actuation of the joints by the motion controller. In order to
facilitate a better understanding of this model and promote
use of physical simulation for tracking, we have made the
source code of our controller and the simulation-based prior
available on our project website http://brown-robotics.org/wp/
projects/current/dynamicaltracking/.

Our simulation-based approach has a number of benefits
compared to the pure kinematic approach: (1) predicted poses
are implicitly biased towards physically plausible interpreta-
tions and (2) reasonable predictions can be made even when
there is not enough training data available due to the direct
incorporation of laws of dynamics. We chose to model motor
forces by using a motion controller, because doing so allows
us to avoid an explicit inference over motor force trajectories.
Consequently, in tracking, we only need to infer the dynamic
state of the articulated body and information required for
motion control, keeping the dimensionality of the state space
manageable.

As a more generic but less tractable alternative, one could
re-parameterize the body motion completely in terms of motor
forces and avoid the use of motion controller and the kinematic
motion prior. However, this parameterization would require
inference and priors over the force trajectories. Such inference
would be particularly problematic due to the high-dimensional,
discontinuous, and nonlinear nature of the space of motor

Fig. 2. Figure model. 31 degree-of-freedom (DOF) human
model with collision geometries of the figure segments
(left), the joints and skeletal structure (middle) and the
visual representation in an image projection (right). Most
joints have 3 DOFs, except for the knee and elbow joints
(1 DOF), spine joint and the clavicle joints (2 DOFs) and
the root joint (6 DOFs).

forces. Priors over force trajectories are notoriously hard to
characterize, in part, because obtaining such trajectories, in
general, requires specialized equipment (e.g., force plates and
motion capture data, exception being [6]). Due to sensitivity
of measurements the obtained trajectories are also numerically
prone to errors [22], [36]. In addition, these trajectories
are intimately dependent on the terrain, speed of execution,
muscle tone, and even age of the subject [12]. Consequently,
characterizing and studying such force trajectories is a source
of active research in biomechanics [55].

We present results demonstrating efficacy of our physics-
based prior for tracking. We compare the performance of our
method with other commonly used kinematic priors, yielding
favorable performance under the effects of dynamic human-
environment interactions occurring in monocular and multi-
view video. We qualitatively and quantitatively demonstrate
that the performance of our physics-based prior produces
better tracking accuracy than standard smooth or kinematic
exemplar-based priors and is able to better generalize to certain
new environments and physical interactions.

2 RELATED WORK

There has been a vast amount of work in computer vision in
the past 10-15 years on articulated human motion tracking. We
focus on a subset of relevant approaches here and refer reader
to [17], [29], [34] for more complete review of the literature.

Most approaches to human tracking to date [2], [13],
[44] have concentrated on development of efficient inference
methods that are able to handle the high-dimensionality of the
human pose. Generative methods typically propose to either
learn a low-dimensional embedding of the high-dimensional
kinematic data and then attempt to solve the tracking prob-
lem in this more manageable low-dimensional space [52],
or, alternatively, propose the use of prior models to reduce
effective search space in the original high-dimensional space
[13]. More recent discriminative methods attempt to map
directly from image features to the 3D articulated pose from
either monocular imagery [40], [45] or features obtained from
multiple views [18].

http://brown-robotics.org/wp/projects/current/dynamical_tracking/
http://brown-robotics.org/wp/projects/current/dynamical_tracking/
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Producing smooth and accurate tracking results remains a
challenge, especially from monocular imagery. In particular,
many of these efforts do not address physical plausibility of
estimates and often result in recovered motions that violate
the constraints imposed on the body by the world or environ-
ment (producing out-of-plane rotations and foot skate). Such
artifacts can be attributed to the general lack of physically
plausible priors [7], [8] which can account for static and/or
dynamic balance and ground-person-object interactions.

Recently, priors that directly constrain kinematics with
geometric constraints imposed by the environment have been
introduced [37], [38]. While shown to be effective, these prior
models can only constrain the location of the body segments
with respect to the environment. For example, such models
can encode a constraint that feet should not penetrate the
ground plane [37] or that feet or hands must be in some
fixed configuration (as dictated by the environment) with
respect to one another [38]. Such geometric priors are not
able, however, to allow dynamically plausible environmental
interactions,e.g., encode that feet must be in contact with the
ground in such a way as to support the resulting motion,etc.

The computer graphics and robotics community, on the
other hand, has been very successful in developing realistic
physical models of human motion. These models for the most
part have only been developed and tested in the context of
synthesis (i.e., animation [16], [19], [31], [33], [39], [60], [62],
[61], [57]) and humanoid robotics [10], [28], [47], [59].

The key benefit of physics-based models in graphics and
robotics has been shown to be the ability to use these models
to plausibly re-target the original kinematic motions to other
environments [33], dynamic interactions with the environment
[57], skeletal dimensions/proportions [9] and temporal exe-
cutions [27]. We conjecture that the use of similar models
in tracking would allow equally effective generalizations,
beyond the scope of pure kinematic prior models. To this
end, we propose a full body physics-based dynamical model
as a motion prior, for tracking, that accounts for physically
plausible environmental interactions.

Earliest work on integrating physical models with vision-
based tracking can be attributed to influential work by Metaxas
et al. [30] and Wrenet al. [56]. In both [30] and [56] a
Lagrangian formulation of the dynamics was employed, within
the context of a Kalman filter, for tracking of simple (no
contact) upper body motions using segmented 3D marker
[30] or stereo [56] observations. In contrast, we incorporate
full body human dynamical simulation into a Particle Filter,
suited for multi-modal posteriors that commonly arise from
ambiguities in monocular imagery. More recently, Brubaker
et al. [7], [8] introduced a low-dimensional biomechanically-
inspired model that accounts for human lower-body walking
dynamics. The low-dimensional nature of the model [7], [8]
facilitated tractable inference; however, the model, while pow-
erful, is inherently limited to modeling dynamics of walking
motions in 2D and resorts to conditional kinematics to allow
tracking of walking motions in 3D and allow turning.

In this work, we introduce a more general full-body model
that can potentially model a large variety of human motions.
However, the high-dimensionality of our model makes direct

inference using standard techniques (e.g., particle filtering)
challenging. Consequently, we make use of an exemplar-
based prior for the dynamics to limit the effective search
space and allow tractable inference in this high-dimensional
space. Exemplar-based methods similar to ours have been
successfully used for articulated pose estimation in [40],[43],
[52], dynamically adaptive animation [63], and humanoid
robot imitation [20].

Our exemplar-based prior, discussed in the previous para-
graph, can be thought of as an incremental trajectory controller
[21], where joint angle trajectories are defined on a frame-by-
frame basis from a database of motion capture data. As such,
our method also relates to a rich literature on controller design,
[42]. While the use of our controller is dictated by simplicity
and convenience, other controllers can also be used in this con-
text to produce physically plausible motion. For example, one
can use a set of key-poses with proportional derivative (PD)
control [19], [61], [62], a learned low-dimensional controller
[39], or a combination of controllers [15] that individually
deal with properties of the desired motion,e.g., balance (using
Zero Point Moment [11] or otherwise [48]). Note that in such
cases one would typically need to infer full parameters of the
controller [7], [8].

2.1 Background: Human Tracking

Tracking, including human motion tracking, is most often
formulated probabilistically using a Bayesian filter formulation
[14]. In computer vision literature such filters are usually
implemented using a Particle Filter (PF). In PF theposterior,
p(x f |y1: f ), where x f is the state of the body at framef
and y1: f is the set of observations up to and including the
frame f , is approximated using a set of (typically) weighted
samples/particles and is computed recursively,

p(x f |y1: f )
︸ ︷︷ ︸

Posterior atf

∝ p(y f |x f )
︸ ︷︷ ︸

Likelihood

∫
Temporal Prior
︷ ︸︸ ︷

p(x f |x f−1)

Posterior atf −1
︷ ︸︸ ︷

p(x f−1|y1: f−1) dx f−1
︸ ︷︷ ︸

Predictive Density

.

In this formulation,p(x f−1|y1: f−1) is the posterior from the
previous frame andp(y f |x f ) is the likelihood that measures
how well a hypothesis at framef explains the observations.
The p(x f |x f−1) is often referred to as the temporal prior,
or motion model, and is the main focus of this paper.

The temporal prior is usually modeled as a first or second
order linear dynamical system with Gaussian noise [2], [13],
[44]. For example, in [2], [13] the non-informative smooth
prior,

p(x f |x f−1) = N (x f−1,Σ), (1)

which facilitates continuity in the recovered motions, was
used; alternatively, constant velocity temporal priors ofthe
form:

p(x f |x f−1,γ f−1) = N (x f−1+ γ f−1,Σ), (2)

whereγ f−1 is scaled velocity learned or inferred (e.g., γ f−1 =
x f−1−x f−2), have also been proposed [44] and shown to have
favorable properties when it comes to monocular imagery.
However, human motion, in general, is non-linear and non-
stationary.
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Fig. 3. Motion Model: Control Loop. Each iteration
advances the figure state [q, q̇,υ ] by time ∆t by (1) gen-
erating a desired kinematic pose qd for the figure to follow
(decision process), (2) constructing corresponding motion
constraints m for generating motor forces (motion control)
and (3) applying forces on the figure, as determined
by m (dynamics). Event feedback information e records
collisions with the environment and affects selection of the
control policy for the next iteration.

For this reason, more recently, it became customary to either
model human motion as a mixture of linear models in the
original high-dimensional state space [32] or by learning an
explicit non-linear low-dimensional embedding of kinematics
[23], [26], [46], [50], [51], [52] (or mixture of low-dimensional
linear embeddings [25]). The latter class of models often
takes a form of Gaussian Processes Latent Variable Models
(GPLVMs) [50], [51], [52]. Consequently, to learn effective
low-dimensional latent representations, GPLVM-based models
are often restricted to particular classes of motion (e.g., walk-
ing [51], golf swing [52]). While these models have shown to
be effective kinematic priors, and are able to be trained from
small datasets [52], they are inherently unable to explicitly
model the physical aspects of human motion (e.g., consistency
with gravity, balance,etc.) Furthermore, it is hard for such
models to generalize to different environments. For example,
if the kinematic prior model is trained on the data of a person
walking on level ground, it may generalize to other people
walking on level ground with different styles or speeds [51],
but it would not be able to generalize to a person walking up
the stairs, as discussed in the results.

3 TRACKING WITH DYNAMICAL SIMULATION

Dynamical Newtonian simulation is explicitly suited as a
temporal prior (motion model) to address physical realism
in predictions. Temporal priorp(x f |x f−1) encodes temporal
relationship between states and implicitly approximates under-
lying processes that govern the motion represented by these
states. We assume that true human motion is determined by
dynamics and a feedback-based thought process that tasks
the actuation of the body (through muscles) such that desired
motion would be performed. Our physics-based motion model
idealizes this concept by assuming that the thought processcan
be abstracted by a discrete feedback control loop illustrated in
Figure 3. We use this loop to draw samples from the prior.

We run our simulations in a world model consisting of
a known static environment,G, and a loop-free articulated
structure (figure) that represents the subject (Figure 2). We
assume “physical properties” (mass, inertial properties and col-
lision geometries) are known for each rigid body segment. Our
predictions are produced by a filtering process that takes next
pose proposals from a kinematic prior as an input. Proposed
predictions are corrected throughsimulationof the articulated
body towards the proposed poses. The corrected poses are,
by definition, physically valid and transitions between them
physically feasible. We abstract kinematic priors by control
policy functions. Control policy functions map current poses
to next intended poses and implicitly encode intentions (or
objectives) of the subject. We permit a collection of (possibly
motion-specific) control policies over a variety of objectives
and allow inference over which policy to use at any given time.
For example, the system can incorporate two different policies
for actuated motions (actions), one for walking and another
one for jogging, or, it can provide one policy to account
for voluntary motions and another for involuntary (passive)
body responses. We switch control policies probabilistically,
(optionally) conditioned on simulation event feedback,e.

Pose inference in our framework takes the form of a
particle filter (see Algorithm 1) with the motion (lines 3−9,
Section 3.2), likelihood (line 12, Section 3.3) and noise (lines
5 and 10, Section 3.4) models explained next.

Algorithm 1 Update particle set for the next frame

Input: Weighted particle set{x(i)f ,w(i)
f }N

i=1 for frame f and

geometry of the sceneG (notex(i)f = [q(i)
f , q̇(i)

f ,υ (i)
f ])

Output: Weighted particle set{x(i)f+1,w
(i)
f+1}

N
i=1 for f +1

1: {x̃(i)f , 1
N}

N
i=1 := resample({x(i)f ,w(i)

f }N
i=1)

2: for i := 1 to N do
3: if υ̃ (i)

f = A then

4: qd := πA([q̃(i)
f , ˜̇q(i)

f ]) // predict desired pose
5: qd += ηd // add noise:ηd ∼ N (0,Σd)
6: else
7: qd := /0
8: end if
9: [q(i)

f+1, q̇
(i)
f+1,e] := simulate([q̃(i)

f , ˜̇q(i)
f ],qd,G)

10: [q(i)
f+1, q̇

(i)
f+1]+= ηs // add noise:ηs ∼ N (0,Σs)

11: υ (i)
f+1 ∼ p(υ (i)

f+1|υ̃
(i)
f ,e) // sample next policy

12: w(i)
f+1 := p(y f+1|[q

(i)
f+1, q̇

(i)
f+1]) // image likelihood

13: end for

3.1 Body Model and State Space

Figure state captures information about the pose and control
policy and is represented by a vectorx = [q, q̇,υ ], where
q ∈ R

31 is kinematic pose of the body,̇q ∈ R
31 is the time

derivative of the kinematic pose (velocity), andυ is a discrete
identifier designating the control policy currently in use.

Our figure (body) consists of 13 rigid body segments and
has a total of 31 degrees of freedom (DOFs), as illustrated
in Figure 2. Segments are linked to parent segments by
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either 1-DOF (hinge), 2-DOF (saddle) or 3-DOF (ball and
socket) rotational joints to ensure that only relevant rotations
about specific joint axes are possible. The root segment is
“connected” to the world space origin by a 6-DOF global
“joint” whose DOF values define the global orientation and
position of the figure (body). The values of rotational joint
DOFs are encoded using Euler angles. Collision geometries
attached to segments affect physical aspects of the motion,
while additional segment shapes define visual appearance of
the segments and have an impact on the evaluation of the
likelihood discussed later.

Joint DOF values concatenated along the kinematic tree
define thekinematic pose, q, of the body. Joint DOF velocities,
q̇, defined as the time derivatives, together with the kinematic
poseq determine thedynamic pose[q, q̇]. The pose is consid-
ered invalid if it causes self-penetration of body parts and/or
penetration with the environment (detected by the simulator’s
collision detection library), or if the joint DOF values are
outside of the valid ranges that are learned from the training
motion capture data. These constraints on the kinematic pose
allow us to reject invalid samples early in the filtering process.

Control policy υ identifies the policy function to be used
for generating next pose proposals. The policy functionπυ :
[q, q̇] 7→ qd determines the next desired (intended) kinematic
poseqd that the subject attempts to reach from[q, q̇] during
simulation and is typically obtained by sampling from an
associated kinematic motion prior. We implement two control
policies, anactive motion policy (A) for actuated motions,
whereqd is obtained from kernel regression on training motion
capture data, and apassivemotion policy (P) for unactuated
motions, where no particular desired pose is proposed and
consequently no motor forces are applied during simulation.
Consequently,υ ∈ {A,P} is binary (see Section 3.2.1 and
Figure 4 for illustration).

3.2 Motion Model and Control Loop

Sampling from our physics-based motion prior is realized
by executing the control loop. For every state hypothesis
x = [q, q̇,υ ] at one frame1, one loop iteration is taken to
produce a hypothesis at the next frame, as illustrated in
Figure 3 and Algorithm 1.

The update procedure uses the current control policy func-
tion πυ to propose the next desired kinematic poseqd =
πυ([q, q̇]) for the figure to approach (decision process, see
Section 3.2.1).Dynamics simulation(see Section 3.2.3) filters
this pose to be physically valid by performingconstrained
rigid body simulationof the motion of the subject, guiding
its current pose[q, q̇] towardsqd, subject to biomechanical
and environment constraints, dictated by the scene geometry
G. The guidance is realized through application of appropriate
motor forces, generated implicitly by the simulator from a set
of motion control constraintsm set up by themotion controller
(see Section 3.2.2) from[q, q̇] and qd. In case no desired
kinematic pose was proposed by the policy,m = /0, no motor
forces are generated and the subject is let move passively.

1. Where unnecessary, for clarity of notation, we omit sub-scripts for frame
identity and super-scripts for hypothesis identity.

p(υ f+1 = A|υ f ,e= 0)
0.95 0.9 0.75 0.5 0.25 0.0

Error (in mm) 32.1 30.2 35.0 37.1 38.3 70.8

TABLE 1
Tracking errors as a function of p(υ f+1 = A|υ f ,e= 0) (L1

walking). For details on the error metric see Section 4.

As a simpler alternative to constraints, the motion controller
could generate motor forces directly bye.g., a proportional-
derivative servo[57].

In order to optionally allow the control process to react to
“external events” that took place during simulation, we record
event feedback information,e, from the simulator and use it in
the decision process to help choose the control policy for the
next time step (see Section 3.2.1). We currently restrict ourself
to modeling reactions to unanticipated heavy impacts (e.g., as
in Figure 13) that are unlikely to be represented well in the
training motion capture set. Hence, our feedback information
consists of only a binary indicator variable recording whether
the body has collided with the environment, detected when a
relative velocity at a body contact exceeds a threshold of 1
m/s during simulation.

3.2.1 Decision Process

The decision process in the control loop is responsible for
(1) applying the current control policy to propose a next
intended kinematic poseqd to be corrected by simulation and
(2) determining which policy the current policy should switch
to after the simulation completes, utilizing the event feedback
information from the simulation. We switch policies by a
stochastic process in which the new policyυ f+1 is sampled
from simplep(υ f+1|υ f ,e) distributions that do not take pose or
velocity information into account. In practice, we assume that
p(υ f+1 = A|υ f = A,e= 0) = p(υ f+1 = A|υ f = P,e= 0) and
estimate the value ofp(υ f+1 = A|υ f ,e= 0) = 1− p(υ f+1 =
P|υ f ,e= 0) = 0.9 using cross validation. The behavior of the
tracker as a function ofp(υ f+1 =A|υ f =A,e= 0) is illustrated
in Table 1. The value ofp(υ f+1=A|υ f =A,e= 1)= p(υ f+1=
A|υ f =P,e=1) is set by hand as in our data impacts of desired
magnitude happen very infrequently and hence learning (even
using cross-validation) is inconclusive. Motivated by [63] we
let p(υ f+1 = A|υ f ,e= 1) = 0.

Passive motion (P). This policy applies no motor forces, as
if the figure was unconscious. As a result, noqd is generated
and no actuation takes place when the policy is in effect. Its
purpose is to account for unmodeled dynamics in the active
motion policy and it should typically be activated for short
periods of time or when the body is in the free fall.

Active motion (A). Our active motion-capture based policy
generates desired kinematic poses so that the proposed motion
would look similar to training motion capture. We take an
exemplar based approach resembling [20], [40], [63] and
extend it to work with dynamic poses. To that end, we first
form a database of observed input-output pairs (from training
motion capture data) between a dynamic pose at framef
and a kinematic pose at framef +1, {[q∗

f , q̇
∗
f ],q

∗
f+1}

n
f=1. For
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Fig. 4. Control Policies. Predictions made by the control
loop from a given initial dynamic pose (top and bottom
left) for a time duration of 2 seconds. The top row shows
poses generated by the active motion policy, the bottom
row shows the poses generated by the passive policy.

pose invariance to global position and heading, corresponding
degrees of freedom are removed fromq∗

f and q̇∗
f .

Given this database, that can span training data from
multiple subjects and activities, and a new query dynamic
pose [q, q̇], our objective is to determine the next intended
kinematic poseqd. We formulate this objective as in [40]
using ak nearest neighbors (k-NN) kernel regression method,
where a set of similar prototypes/exemplars to the query
point [q, q̇] is first found in the database and then theqd

is obtained by weighted averaging over their corresponding
outputs; the weights are set proportional to the similarityof
the prototype/exemplar to the query point. This inference can
be formally written as,

qd =
1

ZK
∑

[q∗f ,q̇
∗
f ]∈neighborhood[q,q̇]

K(df ([q∗
f , q̇

∗
f ], [q, q̇])) ·q

∗
f+1, (3)

whereZK is a normalizing constant,df ([q∗
f , q̇

∗
f ], [q, q̇]) is the

similarity measure andK is thekernelfunction that determines
the weight falloff as a function of distance from the query
point.

We use a similarity measure that is a linear combination of
positional and velocity information,

df ([q∗
f , q̇

∗
f ], [q, q̇]) = w ·dM(q,q∗

f )+ (1−w) ·dM(q̇, q̇∗
f ), (4)

wheredM(·) denotes a Mahalanobis distance betweenq and
q∗

f , and q̇ and q̇∗
f , respectively with covariance matrices

learned from the training data,{q∗
f }

n
f=1 and{q̇∗

f }
n
f=1; the value

of w= 0.9 accounts for the relative weighting of the two terms
and is determined empirically using cross-validation. Forthe
kernel function, we use a simple Gaussian,K =N (0,σ), with
empirically determined varianceσ2.

The method discussed above can be interpreted as a form
of a more traditional kinematic prior learned from a database
of motion-capture exemplars. While we opted for a simple
and robust approach with kernel regression, other regression
methods can be used in this context; for example, Gaussian
Processes Regression [35] or Conditional Mixture of Experts

[5], [45]. The former is closely related to kernel regression,
but in addition produces the measure of uncertainty for
the prediction; the latter allows for multi-modal predictions.
Because we are conditioning on both the kinematics and
velocity information, the multi-modality does not seem to
be as abundant as with pure kinematic models [5], [45].
Furthermore, as with traditional kinematic motion priors,it is
reasonable to assume that the underlying degrees of freedom
are much lower than those encoded by the full kinematic
state. With that in mind, low-dimensional motion priors (e.g.,
Latent Variable Gaussian Process Latent Variable Models [50],
[51], [52] or Mixture of Factor Analyzers [25]) are likely to
facilitate more efficient inference methods. The use of such
latent variable models in this context remains future work.

3.2.2 Motion Control

The motion controller conceptually approximates muscle ac-
tuation of the subject to move the body from the current pose
[q, q̇] towards the intended kinematic poseqd when the state
is updated by dynamics. Becauseqd is generated using a
statistical model, kernel regression, it is not guaranteedto be
free of self and world penetrations. Motion control, together
with physical simulation, is responsible for resolving these
penetrations and producing a new pose for the body model
that is close toqd and can be physically reached from the
current pose. We formulate motion control as a set of soft
Lagrange multiplier-based constraints [4] onq and q̇ that
implicitly yield actuation forces. Each constraint is defined as
an equality or inequality with a softness constant determining
what portion of the constraint force should actually be applied
to the constrained bodies. Magnitudes of actuation forces can
be bounded to account for biomechanical properties of the
human motion, like muscle power limits or joint resistance.

Unlike traditional constraint-based controllers [21] that di-
rectly constrain and track both linear and angular DOFs of the
figure, our objective is to constrain only the angular quantities
so that the trajectory traced by the root segment would result
from interactions with the environment2. However, control that
tracks joint angles alone is problematic. One of the prob-
lematic cases is illustrated in Figure 5 (right) and (bottom).
Consider the case where the desired kinematic poseqd is
infeasible (e.g., causing penetration with the environment).
Leaving the linear DOFs unconstrained, in this case, often
leads to unexpected toe contacts/impacts with an environment
during simulation which can affect the motion adversely. For
example, impacts at the end of the walking cycle (see the
impact of the right foot in the middle frame of Figure 5
(bottom)) will force the figure to step back instead of forward.

To address the above mentioned problems, we propose to
use a hybrid constraint-based controller (see Figure 6) that
can track both desired joint angle trajectories as well as
trajectories of selected points on surface geometry of the body
that we generally refer to as markers. We use this controllerfor

2. We constrain the orientation of the root segment in order to implement
simple balancing. Although this form of balancing is not physically correct,
as the figure’s orientation can change regardless of the support from the rest
of the body, this strategy allows us to make longer-time predictions required
by some of our experiments.
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Fig. 5. Locomotion. Comparisons of motions generated by a traditional DOF tracking controller (right) and our hybrid
controller (left) when the controllers follow the same trajectories specified by the motion capture data. Impacts between
the right foot and the ground plane (see the middle frame of the zoomed bottom animation) prevent the traditional
controller from performing the motion correctly, resulting in the undesired step backwards, making the figure stay to
the right of the camera view. Our hybrid controller on the other hand (see the zoomed top animation) is more robust
to such unexpected collisions with the environment, allowing the body to faithfully follow the desired motion.

tracking desired positions of toes (computed with respect to
the desired kinematic poseqd using forward kinematics) that
we adjust in order to avoid penetrations with the environment.
Consequently, our markers are attached to the locations of toes
and the controller’s tracking objectives are

ż j = −cα · (z j − z j
d) (5)

q̇k = −cβ · (qk−qk
d), (6)

wherez j are the locations of the tracked toe markersj attached
to the figure body,z j

d are their corresponding corrected desired
locations,k are the tracked angular DOFs andcα > 0,cβ > 0
are controller parameters3 determining how fast the controller
should approach the desired values.

Ideally, we would like to submit these objectives as con-
straints for the simulation step. However, in our constraint
model, these objectives can not be satisfied directly. The
marker tracking objectives prescribe desired values for the
marker velocitiesż j in the global frame and, consequently,
could be satisfied by changing the velocity of the root segment,
resulting in undesired motion. To avoid this problem, we add
an additional step that uses inverse dynamics to reformulate
the objectives. In this step we augment our objective set by

q̇root = (q̇root) f (7)

qi ≥ qi
min , qi ≤ qi

max, (8)

where root refers to the figure root segment’s linear and
angular DOFs,(q̇root) f are the root segment’s current DOF
values,i iterates over the remaining angular DOFs andqi

min
andqi

max are the corresponding joint angle limits, learned from
the training data. The objective (7) fixes the velocity of theroot
segment such that the actuation of the body due to the tracking
objectives (5), (6) can not be realized by directly actuating the
root. We use first-order inverse dynamics, implemented by the
physics engine, to solve for the angular velocitiesq̇d of the
figure consistent with the augmented objectives and follow
these velocities during the actual simulation by requesting

m = {q̇i = q̇i
d}. (9)

3. We manually setcα = 0.5 andcβ = 0.2 so that the controller can replay
training motions in simulation.

Fig. 6. Motion Controller. Input kinematic pose q de-
termines the positions z j of markers on the feet (1),
the desired kinematic pose qd their desired positions z j

d
(2). Desired positions are adjusted to prevent penetration
with the ground (3) and constraints on the marker world
space velocities ż j and relative joint DOF velocities q̇k

are formed. Finally, constraints are solved for desired
velocities q̇d using first-order inverse dynamics (4) and the
velocities are followed during simulation.

3.2.3 Dynamical Simulation

Dynamical simulation numerically integrates the dynamic pose
[q, q̇] forward in time for the time duration of one frame,∆t
seconds, following Newtonian equations of motion and a set
of active motion constraints4. Active constraints honored by
the simulator are the explicit motion control constraintsm
provided by motion controller, soft position constraints from
Eq. (8) implementing joint angle limits and implicit velocity
or acceleration constraints enforcing body non-penetration and
modeling friction. Because motion control constraintsm are
valid only with respect to a specific dynamic pose, the con-
straints have to be reformulated each time the state is internally
updated by the simulator. As a result, motion controller canbe
called back throughout the simulation process, which is illus-
trated by the corresponding arrows in Figure 3. For simulation,
we use Crisis physics engine [64]. The simulator’s collision
detection library is used to check for body penetrations.

4. Derivation of equations of motion for the articulated body and the general
discussion of constraint-based control is beyond the scopeof this paper and
we refer reader to [53] for details.
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3.3 Likelihood Model

The likelihood function measures how well a particular hy-
pothesis explains image observations. We first define likeli-
hoods for kinematic poses and then extend the approach to
handle dynamic poses by considering velocity information.

Kinematic Poses. For a kinematic poseq f , we employ a
relatively generic likelihood modelp(I f |q f ) from [1] that tries
to maximize the similarity between the projection of the model
and the observed silhouette extracted from the imageI f .

Dynamic Poses. For a dynamic pose[q f , q̇ f ], we need to
consider information extracted from both the current and the
next frame so that velocity information could be implicitly
measured and compared againstq̇ f . Towards this end, we
set up thecoupled observationy f = [I f , I f+1] and define the
likelihood of the dynamic posewith respect to the coupled
observation as a weighted product of two kinematic likelihoods

p(y f |[q f , q̇ f ]) ∝ p(I f |q f )p(I f+1|q̂ f+1), (10)

where q̂ f+1 = q f + ∆t · q̇ f is the estimate of the kinematic
state/pose at the next frame. Alternatively, one can formulate
a likelihood measure that explicitly computes the velocity
information [7] (e.g., using optical flow) and compares it to
the corresponding velocity components of the state vector.

The remaining portions of our statex f , such as the con-
trol policy, are inherently unobservable and are assumed
to have uniform probability with respect to the likelihood
function5, hence we define our likelihood functionp(y f |x f )
asp(y f |x f ) = p(y f |[q f , q̇ f ]).

3.4 Noise Model

The motion model outlined in Section 3.2 is inherently deter-
ministic. In practice, however, as with any Bayesian filtering
method, one requires noise (or diffusion process) to account
for disturbances and subtleties of a particular motion being
tracked. In kinematic trackers, such as [2], [3], [13], [23],
[26], [44], it is customary to perform deterministic prediction
first and then directly add noise to the predicted state6. Adding
noise to the state, in our case, would result in (to some extent)
the loss of physical realism, because the recovered motion
trajectory, in general, cannot be simulated by the physical
model exactly. Alternatively, to ensure the realism of recovered
motion, the noise can be added to the desired kinematic poses,
qd, before the motion control and dynamic simulation takes
place (see Algorithm 1, line 5). While, in principle, this isa
desired alternative, it assumes that (1) our physical simulation
is rich enough to generate the motion we are observing exactly
and (2) that the likelihood model is strong enough to ensure
that the physical state of the system (including contact state)
can be inferred accurately at all times.

5. The resulting dual-counting of observations, only makesthe unnormal-
ized likelihood more peaked, and can formally be handled as in [7].

6. Most often, the deterministic motion model is an identityfunction q f =
q f−1 and state diffusion is implemented by replacing the predicted q f with a
sample fromN (q f ,Σ), where the covarianceΣ controls the amount of noise
added.
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Fig. 7. Tracking errors for different noise distributions
(L1 walking). Effects of different ratios of noise added to
desired poses vs. to predicted poses on tracking errors.
All cases produce similar tracking results, except for the
case 100 % - 0 %, when all noise is added only to the
desired poses and the tracker can not fix global translation
errors until the end of the stride.

In practice, neither of the two assumptions holds exactly.
In particular, often, because of the noise in the image obser-
vations, the moment when the foot hits the ground cannot
be observed well using the implemented likelihood. As a
result, foot sometimes hits the ground too early (or too late)
requiring the model to either take a longer or shorter step to
compensate and keep up with subsequent image observations,
or to lag behind for the duration of the walk cycle (until
support transfers). Both result in sub-optimal performance.

As a practical compromise, we take a hybrid approach,
where we add a fractionΣd of required noiseΣ to the desired
pose (see Algorithm 1, line 5) and a fractionΣs to the predicted
state (see Algorithm 1, line 10)7. As is illustrated in Figure 7
(see experiments for description of dataset and error metric)
this strategy results in a plausible compromise between the
physical realism and the ability to subdue the confusion that
arises from lack of good image observations. It is worth noting
that even though the resulting motion cannot be guaranteed to
be physical simulation from our model, it isvery strongly
biased by the model towards physically plausible solutions,
because the amount of noise is relatively small with respect
to the deterministic prediction.

4 EXPERIMENTS

We evaluated our method both in terms of its ability to track
common human actions from monocular and multi-view video
(see Table 2) as well as to predict human motion alone.

4.1 Data Sets and Performance Metrics

Datasets. In our experiments, we make use of two publicly
available datasets [2] and [41], containing synchronized mo-
tion capture (MoCap) and video data from multiple cameras.
We also collected our own custom monocular sequences that
contain no associated MoCap. The use of the synchronized
data, in the former datasets, allows us to (1) perform baseline
experiments that quantitatively analyze performance, (2)ob-
tain data for training the motion and noise models and to (3)
get reasonable initial poses for the first frame of the sequence

7. We set the standard deviation inΣ to be proportional to the maximum
expected difference in state between the deterministic prediction and the true
observation as in [2], [13] and letΣ = ρΣd +(1−ρ)Σs for a factorρ .
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from which tracking is initiated. Each public dataset contains
disjoint training and testing data, that we use accordingly.

L1. The first public dataset, used in [2], contains a single
subject (L1) performing a walking motion with stopping,
imaged with 4 grayscale cameras.

S1 - S3. The second public dataset,HUMAN EVA -I [41], con-
tains three subjects (S1 to S3) performing a variety of motions
(e.g., walking, jogging, boxing) imaged with 7 cameras (we,
however, make use of the data from at most 3 color and 1
grayscale cameras for our experiments).

M . The custom sequences contain monocular footage of a
subject (M) exhibiting more complex dynamical interactions
with the environment like walking up the stairs and jumping
of a ledge. The footage was taken by a low-quality stock
digital camera for which no ground truth MoCap information
is available. The images were captured at 640×480 resolution
at 30 frames per second. Due to the low quality of the camera
some of the frames were dropped, resulting in a variable
frame rates as low as 15 frames per second. Rough camera
calibration was extracted directly from sequences. Geometry
of the environment (e.g., ground plane, stairs) was built by
hand based on the recovered calibration. For each sequence,
initial poses and parameters of the body model (limb lengths)
were tuned manually. In all cases, the MoCap for training L1
sequence was used to train motion priors for the M sequences.

Performance metrics. To quantitatively evaluate the per-
formance on standard datasets we make use of the metric
employed in [2] and [41], where pose error is computed as
an average distance between a set of 15 markers defined at
the key joints and end points of the limbs. Hence, in 3D
this error has an intuitive interpretation of the average joint
distance, in (mm), between the ground truth and recovered pose
(absolute error). In our monocular experiments and specific
motion model experiments, we use an adaptation of this error
that measures the average joint distance with respect to the
position of the pelvis (relative error) to avoid biases that may
arise due to depth ambiguities and to avoid penalizing of other
competing motion priors that do not model changes in 3D
position and orientation of the body. For tracking experiments,
we report the error of the expected pose.

Method comparison. For comparison with our Physics-based
method (Physics), we implemented two alternative standard
Bayesian filtering approaches, Particle Filter8 (PF) and An-
nealed Particle Filter8 with 5 levels of annealing (APF 5),
each with two priors: a smooth prior (Smooth) and a kine-
matic motion capture exemplar prior (Mocap). The kinematic
motion capture prior takes the form of

p(q f |q f−1, q̇ f−1) = N (qd,Σ)
= N (πA([q f−1, q̇ f−1]),Σ). (11)

For uniformity with the implementation of our motion con-
troller, the kinematic motion capture prior does not predict the

8. We make use of the public implementation by Balanet al.[2] available
from http://www.cs.brown.edu/people/alb/.

Subject Action Source # Cameras # Frames Section
L1 Walking [2] 4 200 4.3
S3 Jogging [41] 4 200 4.4
L1 Walking [2] 1 200 4.5
S3 Jogging [41] 1 200 4.6
M Stairs Custom 1 150 4.7
M Jumping Custom 1 35 4.8

TABLE 2
Sequences and data sets used in tracking experiments.

motion of the root; rather it relies on the sampling covariance
of the noise model for the positional degrees of freedom of the
root segment. To make the comparison as fair as possible we
always use the same number of particles, 250 for multi-view
sequences, 1000 for monocular sequences9, same likelihoods,
same noise model and same interpenetration and joint limit
constraints in all cases; joint limit constraints are learned from
training data.

4.2 Motion Prediction with Ground Interaction

We first evaluate the proposed motion model (see Section 3.2)
alone. The key aspect of our model is the ability to perform
accurate physically-plausible predictions of the future state
based on the current state estimates. We demonstrate this
ability through quantitative comparisons with predictions made
by the standard temporal prior models based on stationary
linear dynamics (described in Section 2.1) and exemplar-based
predictions.

Figure 9 (right) shows performance of thesmoothprior (No
Prediction, see Eq. (1)),constant velocityprior (see Eq. (2)),
kinematic motion captureprior (see Eq. (11)) and individual
predictions based on the two control policies implemented
within our physics-based prediction module. For all 5 methods
we use 200 frames of motion capture data from the L1
sequence to predict poses from 0.05 to 0.5 seconds ahead.
To make sure the experiment results are not biased by the
effects of the noise models, we only use deterministic priors
with Σ = 0. We then compare our predictions to the poses
observed by motion capture data at corresponding times and
report prediction errors.

For short temporal predictions all methods perform well;
however, once the predictions are made further into the future,
our activemotion control policy, filtering predictions from the
exemplar-based MoCap method, significantly outperforms the
competitors. Overall, the active control policy achieves 29 %
lower error over the constant velocity prior (averaged overthe
range of prediction times from 0.05 to 0.5 seconds).

Figure 9 (left) shows the effect of noise on the predictions.
For a fixed prediction time of 0.25 seconds, a zero mean
Gaussian noise is added to each of the initial ground truth
dynamic poses before the prediction is made. The performance
is then measured as a function of the noise variance. While
performance of the constant velocity prior and passive motion
prior degrade with noise, the performance of our active motion
prediction stays low and flat.

9. In APF, we use 250 particles for each annealing layer in multi-view
sequences and 1000 particles for each layer in monocular sequences.

http://www.cs.brown.edu/people/alb/
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Fig. 8. Prediction Error. Errors in predictions (0.5 seconds
ahead) are analyzed as a function of one walking cycle.
Vertical bars illustrate different phases of walking motion:
light blue – foot pushes on the ground, light orange –
change in the direction of the arm swing.
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Fig. 9. Average Prediction Error. Illustrated, on the right,
is the quantitative evaluation of 5 different dynamical
priors for human motion: smooth prior (No Prediction),
motion capture based prior without physics (Motion Cap-
ture), constant velocity prior and (separately) active and
passive physics-based priors implemented here. On the
left, performance in the presence of noise added to initial
ground truth poses is explored. For completeness, top
row shows the relative error and bottom absolute error
measure. See text for further details.

Notice that in both plots in Figure 9 (right) the constant
velocity prior performs similarly to the passive motion; in-
tuitively, this performance makes sense because the constant
velocity prior is an approximation to the passive motion
dynamics that does not account for environment interactions.
Because such interactions happen infrequently and we are
averaging over 200 frames, the differences between the two
methods are not readily observed, but are important at the
key instants when they occur (see Figure 8). For example,

Test: L1 Test: L1
Train: L1 Train: S1-S3

Our method 30.3 (mm) 47.2 (mm)
Our method ([58] likelihood) 33.9 (mm) 52.4 (mm)
Xu and Li [58] 49.0 (mm) 55.3 (mm)
PF (smooth prior, [58] likelihood) 120.7 (mm)
PF (smooth prior) 80.0 (mm)
APF 5 (smooth prior, [58] likelihood) 63.5 (mm)
APF 5 (smooth prior) 42.8 (mm)

TABLE 3
Comparison with other methods (multi-view L1 walk).

predictions of passive motion model tend to be more accurate
when foot strikes the ground. Consequently, when change in
the direction in the arm swing occurs, inertia tends to allow
the motion to continue in the initial direction, making passive
motion model predictions less accurate.

4.3 Tracking with Multiple Views (L1 walking)

As our first tracking experiment, we analyze the tracking of
the multi-view sequence of L1 (see supplemental video for
qualitative analysis). The quantitative results are illustrated in
Figure 11 (top left). Our method has 63 % lower error than PF
and 27 % lower error than APF with smooth prior; 59 % lower
error than PF and 18 % lower error than APF with kinematic
motion capture prior. In all cases, our method also resultedin
considerably lower variance.

We have also tested how performance of our method de-
grades with larger training sets that come from other subjects
performing similar (walking) motions (see Physics S1-S3 L1).
It can be seen that additional training data does not noticeably
degrade the performance of our method (only by 0.6 mm
on an average), which suggests that our approach is able to
scale to larger datasets with multiple subjects. We also test
whether or not our approach can generalize, by training on
data of subjects from HUMAN EVA -I dataset and running on
a different subject, L1, from the dataset of [2] (Physics S1-
S3). The results are encouraging in that we can still achieve
reasonable performance that has lower error than PF with
either of the two alternative priors, but performs marginally
worse than APF with smooth prior. Comparison with APF
using kinematic motion capture prior is not meaningful in this
case because it is trained using subject specific motion data
of L1. Our experiments tend to indicate that our approach can
generalize within observed classes of motions given sufficient
amount of training data (for generalizations to execution in
different environments see Sections 4.7 and 4.8).

We also compare performance of the Bayesian tracking
method with our physics-based prior to that of [58]. In [58]
a more informative kinematic prior model was proposed (as
compared to the smooth prior), that explicitly learns correla-
tions between parts of the body in coordinated motion (e.g.,
walking). This prior is then used in the context of a more
efficient Rao-Blackwellised Particle Filter (RBPF). In [58],
however, a weaker likelihood model was used (which we
employed in an earlier variant of this work [54]), so we report
performance with both types of likelihoods (see Table 3). Itis
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Mean (std.) in (mm)
Our method 71.5 (19.7)
APF 5 (250 particles/layer) 132.5 (35.5)
APF 5 (500 particles/layer) [24] 111.82 (47.91)
APF 5 GPLVM (500 particles/layer) [24] 99.05 (21.90)
MHT GCMFA [24] 70.13 (21.34)

TABLE 4
Comparison with other methods (multi-view S3 jog).

also worth mentioning that in [58] 1000 particles were used,
instead of 250 here; yet our method still performs favorably.
Furthermore, from the table one can see that while the models
that utilize smooth priors tend to be very sensitive to the
quality of the likelihoods (gaining over 30 % performance
increase with the better likelihoods utilized here), our model
is much less sensitive to those aspects.

4.4 Tracking with Multiple Views (S3 jogging)

To illustrate that our method is not limited to motions of
any particular type (e.g., walking), we conducted a similar
experiment to above but on the jogging sequence of subject S3
from HUMAN EVA -I dataset. All the parameters of the tracker
are set as above except that the prior was trained on jogging
sequences of the subject S3 (disjoint of the test set). Perfor-
mance on sample frames is illustrated in the supplemental
video and quantitatively analyzed in Figure 11 (bottom left).
The proposed model once again achieves lowest error against
all competing methods.

We also compare our performance on this sequence to other
methods published in literature (see Table 4). In particular,
to the results reported in [24], where a Multiple Hypothesis
Tracker with a kinematic Globally Coordinated Mixture of
Factor Analyzers (MHT GCMFA) prior was presented and
compared to an independent implementation of Annealed
Particle Filter with 5 layers of annealing with (1) smooth prior
(APF 5) and (2) kinematic Gaussian Processes Latent Variable
Model prior (APF 5 GPLVM). In this case, the comparison
may not be direct because we are not certain as to the exact
form of the likelihood used in [24]; in addition [24] uses 500
particles per layer of APF (as opposed to 250 in our implemen-
tation). The difference in the number of particles/samplesmay
explain slightly lower performance of our APF implementation
(132.5 versus 111.82 (mm)). Quantitatively, performance of
our method is on par with that of [24] and is more accurate
than that of APF 5 GPLVM, despite the fact that we are
using half as many samples/particles and a relatively simple
kinematic proposal process forqd. In addition, we expect our
method to produce more physically realistic motions.

4.5 Monocular Tracking (L1 walking)

The most significant benefit of our approach is that it can deal
with monocular observations. Physical constraints encoded
in our prior help to properly place hypotheses and avoid
overfitting of monocular image evidence that lacks 3D infor-
mation (see Figure 10 (Physics) and supplemental video); the
results from PF and APF on the other hand suffer from these

Fig. 10. Monocular Tracking (walking). Visualization of
performance on a monocular walking sequence of subject
L1. Illustrated is the performance of the proposed method
(Physics) versus the Annealed Particle Filter (APF 5) with
smooth and kinematic motion capture prior; in all cases
with 1000 particles. The top row shows projections (into
the view used for inference) of the resulting 3D poses
at 20-frame increments; bottom shows the corresponding
rendering of the model in 3D, from a different view, along
with the ground contacts. Our method, unlike APF with
either prior, does not suffer from out-of-plane rotations,
has consistent ground contact pattern and can estimate
correct heading of the subject that is consistent with the
direction of motion. APF, on the other hand, produces
poses that tend to drift along the ground plane and face
in an opposite direction (APF 5 Mocap). For quantitative
evaluation see Figure 11 (top right).

problems, resulting in physically implausible 3D hypotheses
(see Figure 10 (APF 5) bottom) and lead to more severe
problems with local optima (see Figure 10 (APF 5) top).
Figure 10 (Physics) bottom, illustrates the physical plausibility
of the recovered 3D poses using our approach. Quantitatively,
our model has 74 % lower error than PF and 76 % lower
error than APF with smooth prior; 76 % lower error than
both PF and APF with kinematic motion capture prior, with
considerably lower (roughly16) variance (see Figure 11 at top
right).
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Fig. 11. Quantitative Tracking Performance. Performance
of the proposed physics-based prior method (Physics)
with different testing and training datasets versus stan-
dard Particle Filter (PF) and Annealed Particle Filter (APF
5) with 5 layers of annealing. Multi-view tracking perfor-
mance with 4 cameras and 250particles is shown on the
left, monocular tracking performance with 1000 particles
on the right.

4.6 Monocular Tracking (S3 jogging)

Similar results can be seen for the jogging sequence of subject
S3 from HUMAN EVA -I dataset. The results are quantitatively
analyzed in Figure 11 (bottom right). See supplemental video
for the qualitative results. While it may seem that tracking
with single view performs better than with multiple views,
this is not the case, because in the monocular sequence we
report marker error with respect to the position of the pelvis
(thereby ignoring the global translation of the body).

To be fair, we would like to also acknowledge that the
lowest error of 18.9 (mm), with standard deviation of 7.5
(mm), on this sequence was reported by Urtasunet al. in
[49]. The method of [49], however, utilizes a very different
class of discriminative models. Discriminative models tend
to produce quantitatively accurate performance, but result
in poses that are extremely noisy over time (no temporal
continuity); these models are also difficult to generalize to new
motions and/or poses that, in part, result from environment
interactions (something we address with our model in the next
two experiments).

4.7 Monocular Tracking (M stairs)

A key benefit of the proposed model is its ability to generalize
to complex interactions with the environment. In Figure 12 and
supplemental video we illustrate performance of our tracker,
trained using level-ground walking of L1, on a new subject
walking up a set of stairs. Despite the fact that the prior
is trained with clearly very different motion from the one
observed, our method is able to successfully track the lower
body as it interacts with the stairs in order to support the
motion of the subject. To our knowledge, no other kinematic

Fig. 12. Monocular Tracking (stairs). Ability of the pro-
posed model to generalize to complex interactions with
the environment is tested. While the prior is trained only
using level-ground walking, the tracker still performs well
on this more challenging terrain. Annealed particle filter
with the kinematic motion capture prior (APF 5 Mocap)
fails to track this sequence completely. See text for addi-
tional details and discussion.

prior method is able to illustrate such generalization. Clearly,
the knowledge of the environment together with the ability to
reason about interactions of the feet with the stairs through
physics-based predictions are responsible for the resulting
performance.

4.8 Monocular Tracking (M jumping)

In the final experiment (Figure 13), we illustrate performance
of the tracker on the fast motion of a subject jumping off a
ledge. Because we know that this is mostly ballistic motion,we
tuned the parameters of the decision process to always select
passive motion control policy (for more efficient inference).
The physics-based model is able to track the person reasonably
well, even though the footage is of poor quality and the
motion is extremely fast, producing large changes in body pose
between frames and motion blur (see supplemental video). Of
particular interest is the natural way body crouches as it hits
the ground (unlike what happens with more traditional kine-
matic priors,e.g., Figure 13 bottom right). Consequently, the
pose changes cannot be predicted by simpler smooth (e.g., a
constant-velocity or no-motion) motion prior models, because
the noise required to account for the fast motion is simply too
large to allow efficient inference. Because this motion was not
part of the motion capture training set, comparison with the
motion capture based prior is not possible (or meaningful).
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Fig. 13. Monocular Tracking (jump). Same as Figure 12,
except no motion capture data is used for training and
the model relies on passive motion control policy for
predictions.

5 CONCLUSIONS

We have presented a method for incorporating full-body
physics-based constrained simulation, as a temporal prior, into
articulated Bayesian tracking. Consequently, we are able to
account for non-linear non-stationary dynamics of the human
body and interactions with the environment (e.g., ground
contact). To allow tractable inference, we also introduce two
controllers: a hybrid constraint-based controller, whichuses
motion-capture data to actuate the body, and a passive motion
controller. Using these tools, we illustrate that our approach
can better model the dynamical process underlying human
motion and achieve physically plausible tracking results using
multi-view and monocular imagery. We show that the resulting
tracking performance is more accurate than results obtained
using standard Bayesian filtering methods such as Particle
Filtering (PF) or Annealed Particle Filtering (APF) with kine-
matic priors. In order to promote use of physical models for
tracking, we have made the source code of our controllers
and the simulation-based prior available on our website. Inthe
future, we plan to explore richer physical models and control
policies, which may further loosen the current reliance of our
method on motion-capture training data.
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