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Abstract

The detection and pose estimation of people in images and video is made
challenging by the variability of human appearance, the complexity of
natural scenes, and the high dimensionality of articulated body mod-
els. To cope with these problems we represent the 3D human body as a
graphical model in which the relationships between the body parts are
represented by conditional probability distributions. We formulate the
pose estimation problem as one of probabilistic inference over a graphi-
cal model where the random variables correspond to the individual limb
parameters (position and orientation). Because the limbs are described
by 6-dimensional vectors encoding pose in 3-space, discretization is im-
practical and the random variables in our model must be continuous-
valued. To approximate belief propagation in such a graph we exploit a
recently introduced generalization of the particle filter. This framework
facilitates the automatic initialization of the body-model from low level
cues and is robust to occlusion of body parts and scene clutter.

1 Introduction

Recent approaches to person detection and tracking exploit articulated body models
in which the body is viewed as a kinematic tree in 2D [14], 2.5D [16, 23], or 3D
[2, 5, 6, 19, 21] leading to a parametric state-space representation of roughly 25–35 dimen-
sions. The high dimensionality of the resulting state-space has motivated the development
of specialized stochastic search algorithms that either exploit the highly redundant dynam-
ics of typical human motions [19], or use hierarchical sampling schemes to exploit the
tree-structured nature of the model [5, 15]. These schemes have been effective for tracking
people wearing increasingly complex clothing in the increasingly complex cluttered back-
grounds [21]. There are however a number of important shortcomings of these approaches.



Hierarchical body models lead to “top-down” search algorithms that make it difficult to in-
corporate “bottom-up” information about salient body parts available from special-purpose
detectors (e.g. face or limb detectors). As a result, few, if any, of the above methods deal
with the problem of automatic initialization of the body model. Furthermore, the difficulty
of incorporating bottom-up information means that the algorithms are brittle; that is, when
they lose track of the body, they have no way to recover. Finally, the fully coupled kine-
matic model results in a computationally challenging search problem because the search
space cannot be naturally decomposed.

To address these problems, we propose a “loose-limbed” body model in which the limbs
are not rigidly connected but are rather “attracted” to each other (hence the title “Attrac-
tive People”). Instead of representing the body as a single 33-dimensional kinematic tree,
each limb is treated quasi-independently with soft constraints between the position and
orientation of adjacent parts. The model resembles a Push Puppet toy which has elastic
connections between the limbs (Figure 1a).

This type of model is not new for finding or tracking articulated objects and dates back at
least to Fischler and Elschlager’s pictorial structures [9]. Variations on this type of model
have been recently applied by Burl et al. [1], Felzenszwalb and Huttenlocher [8], Coughlan
and Ferreira [3] and Ioffe and Forsyth [11, 17]. The main benefits are that it supports
inference algorithms where the computational cost is linear rather than exponential in the
number of body parts, it allows elegant treatment of occlusion, and it permits automatic
initialization based on individually unreliable low-level body-part detectors [25].

The work described here, like the previous work above, exploits this notion of flexible
“spring”-like constraints [8] defined over individually modeled body parts [11, 17, 23],
though we extend the approach to locate the parts in 3-space rather than the 2-dimensional
image plane. The body is treated as a graphical model [13], where each node in the graph
corresponds to an independently parameterized body part. The spatial constraints between
body parts are defined as directed edges in the graph. Each edge has an associated condi-
tional distribution that models the probabilistic relationship between the parts. Each node
in the graph also has a corresponding image likelihood function that models the probability
of observing various image measurements conditioned on the position and orientation of
the part. Person detection (or tracking) then exploits belief propagation [24] to estimate
the belief distribution over the parameters which takes into account the constraints and the
observations.

This graphical inference problem is carried out using a recently proposed method that al-
lows the parameters of the individual parts to be modeled using continuous-valued random
variables rather than the discrete variables used in previous approaches. This is vital in
our problem setting, since the discretization used in [8] is impractical once the body is
modeled in 3-space. Similar versions of the algorithm were independently introduced by
Sudderth et al. [22] under the name of Non-parametric Belief Propagation (NBP) and by
Isard [12] as the PAMPAS algorithm. We adopt the framework of Isard while making use
of the Gibbs sampler introduced by Sudderth et al. The algorithm extends the flexibility of
particle filters to the problem of belief propagation and, in our context, allows the model
to cope with general constraints between limbs, permits realistic appearance models, and
provides resilience to clutter.

We develop the loosely-limbed model in detail, formulate the constraints between limbs
using mixture models, and outline the inference method. Using images from calibrated
cameras we illustrate the inference of 3D human pose with belief propagation. We simulate
noisy, bottom-up, feature detectors for the limbs and show how the inference method can
resolve ambiguities and cope with clutter. While our focus here is on static detection and
pose estimation, the body model can be extended in time to include temporal constraints
on the limb motion; we save tracking for future work.
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Figure 1: (a) Toy Push Puppet with elastic joints. (b) Graphical model for a person. Nodes represent
limbs and arrows represent conditional dependencies between limbs. (c) Parameterization of part i.

2 A self-assembling body model

The body is represented by a graphical model in which each graph node corresponds to a
body part (upper leg, torso, etc.). Each part has an associated configuration vector defining
the part’s position and orientation in 3-space. Placing each part in a global coordinate frame
enables the part detectors to operate independently while the full body is assembled by in-
ference over the graphical model. Edges in the graphical model correspond to spatial and
angular relationships between adjacent body parts, as illustrated in Figure 1b. As is stan-
dard for graphical models we assume the variables in a node are conditionally independent
of those in non-neighboring nodes given the values of the node’s neighbors1.

Each part/limb is modeled by a tapered cylinder having 5 fixed (person specific) and 6 esti-
mated parameters. The fixed parameters Φi = (li, w
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to the part length, width at the proximal and distal ends and the offset of the proximal and
distal joints along the axis of the limb as shown in Figure 1c. The estimated parameters
X

T
i = (xT

i ,Θ
T
i ) represent the configuration of the part i in a global coordinate frame

where xi ∈ R
3 and Θi ∈ SO(3) are the 3D position of the proximal joint and the angular

orientation of the part respectively. The rotations are represented by unit quaternions.

Each directed edge between parts i and j has an associated conditional distribution
ψij(Xi,Xj) that encodes the compatibility between pairs of part configurations; that is,
it models the probability of configuration Xj of part j conditioned on the Xi of part i.
For notational convenience we define an ordering on body parts going from the torso out
towards the extremities and refer to conditionals that go along this ordering as “forward”
conditionals. Conversely, the conditionals that go from the extremities towards the torso
are referred to as “backward” conditionals. These intuitively correspond to kinematic and
inverse-kinematic constraints respectively.

Conditional distributions were constructed by hand to capture the physical constraints of
the joints and limbs of the human body. Range of motion information for the various joints
is approximated by the model. In general, these conditionals can, and should, be learned
from motion capture data.

Because we have chosen the local coordinate frame to be centered at the proximal joint of

1Self-occlusion and self-intersection violate this assumption. These can be modeled by adding
additional edges in the graph between the possibly occluding or inter-penetrating parts. In the limit
this would lead to quadratic as opposed to linear computation time in the number of parts.
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Figure 2: (a) For the forwards conditional the location of part i tightly constrains the proximal joint
of part j (green dots) while the position of the distal joint (red dots) lies along an arc around the
principal axis of rotation, approximated by a Gaussian mixture. (b) For the backwards conditional
part i constrains the distal joint of part j (red dots), so the proximal joint position (green dots) lies in
a non-Gaussian volume again approximated using a mixture distribution.

a part, the forward and backward conditionals are not symmetric. In both directions the
probability of Xj , conditioned on Xi, is non-Gaussian and it is approximated by a mixture
of Mij Gaussians (typically 5-7 in the experiments here): ψij(Xi,Xj) =

λ0N(Xj ;µij ,Λij) + (1 − λ0)
∑Mij

m=1
δijmN(Xj ;Fijm(Xi), Gijm(Xi)) (1)

where λ0 is a fixed outlier probability, µij and Λij are the mean and covariance of the
Gaussian outlier process, and Fijm(.) and Gijm(.) are functions computing the mean and
covariance matrix respectively of the m-th Gaussian mixture component. These functions
allow the mean and variance of the mixture components to be function of the limb pose Xi.
δijm is the relative weight of an individual component and

∑Mij

m=1
δijm = 1.

Figure 2a and b illustrate the forward and backward conditionals respectively. For the
forward case, we examine the distribution of calf configurations conditioned on the thigh.
To illustrate the conditional distribution we sample from it and plot the endpoints of the
sampled limb configurations. In the forward direction the conditional distribution over xj

(the position of the proximal joint of part j) is well approximated by a Gaussian so each
mixture component has the same mean and covariance for xj . This can be seen in the tight
clustering of the green dots which lie almost on top of each other. The probability of the
lower leg angle is restricted to a range of legal motions conditioned on the upper leg. This
distribution over rotations is modeled by giving each mixture component a different mean
rotation, Θj , spaced evenly around the principal axis of the joint. This angular uncertainty
is illustrated by the red dots.

For the backward conditional we show the distribution over torso configurations condi-
tioned on the thigh. In this direction the conditional predicting xj (e.g. torso position) is
more complicated. The location of xi restricts xj to lie near a hemisphere, and the ori-
entation Θi and principal axis of rotation further restrict xj to a strip on that hemisphere
which can be seen in Figure 2b (green dots). Thus each mixture component in (1) is spaced
evenly in Θj and xj to represent this range of uncertainty. The combined uncertainty in
torso location and orientation can be seen in the distribution of the red dots representing
the distal torso joint.



Image Likelihoods

The inference algorithm outlined in the next section combines the body model described
above with a probabilistic image likelihood model. In particular, we define φi(Xi) to be the
likelihood of observing the image measurements conditioned on the pose of limb i. Ideally
this model would be robust to partial occlusions, the variability of image statistics across
different input sequences, and variability among subjects. To that end, we combine a vari-
ety of cues including multi-scale edge and ridge filters as well as background subtraction
information. Following related work [18], the likelihoods are estimated independently for
each image view by projecting the 3D model of a limb into the corresponding image pro-
jection plane. These likelihoods are then combined across views, assuming independence,
and are weighted by the observability of the limb in a given view (more weight is given to
views in which the limb lies parallel to the image projection plane). For more information
on the formulation of the image likelihoods see [20].

3 Non-parametric Belief Propagation

Having defined the model it remains to specify an algorithm which will perform inference
and estimate a belief distribution for each of the body parts. If it were feasible to discretize
the Xi we could apply traditional belief propagation or a specialized inference algorithm
as set out in [8]. However, the 6-dimensional configuration vector compels the use of
continuous-valued random variables, and so we adopt the algorithm introduced in [12, 22]
for just such types of model. It is a generalization of particle filtering [7] which allows
inference over arbitrary graphs rather than just a chain. This generalization is achieved by
treating the particle set which is propagated in a standard particle filter as an approximation
to the “message” used in the belief propagation algorithm, and replacing the conditional
distribution from the previous time step by a product of incoming message sets.

A message mij from node i→ j is written

mij(Xj) =

∫
ψij(Xi,Xj)φi(Xi)

∏
k∈Ai\j

mkj(Xi)dXi, (2)

where Ai is the set of neighbors of node i and φi(Xi) is the local likelihood associated
with node i. The message mij(Xj) can be approximated by importance sampling N ′ =
(N−1)/Mij times from a proposal function f(Xi), and then doing importance correction.
(See [22] for an alternative algorithm that uses more general potential functions than the
conditional distributions used here.) As discussed in [12] the samples may be stratified into
groups with different proposal functions f(·), so some samples come from the product of all
incoming messages Ai into the node, some from Ai\j (i.e. Ai excluding j) and some from
a static importance function Q(Xi) — we use a limb proposal distribution based on local
image measurements. For reasons of space we present only a simplified algorithm to update
message mij in Figure 3 which does not include the stratification but the full algorithm can
be found in [12]. We use the Gibbs sampler described in [22] to form message products of
D > 2 messages.

The algorithm must sample, evaluate, and take products over Gaussian distributions defined
∈ SO(3) and represented in terms of unit quaternions. We adopt the approximation given
in [4] for dealing with rotational distributions by treating the quaternions locally linearly in
R

4 — this approximation is only valid for kernels with small rotational covariance and can
in principle suffer from singularities if product distributions are widely distributed about
the sphere, but we have not encountered problems in practice.



1. Draw N ′ = (N − 1)/Mij samples from the proposal function:

s̃n′

ij ∼ f(Xi), n
′ ∈ [1, N ′].

2. Compute importance corrections for n′ ∈ [1, N ′]:

ηn′

ij =
φi(s̃

n′

ij )
∏

k∈Ai\j mki(s̃
n′

ij )

f(s̃n′

ij )
.

3. Store normalized weights and mixture components for n′ ∈ [1, N ′],m ∈ [1,Mij ]:

(a) n = (n′ − 1)Mij +m

(b) µn
ij = Fijm(s̃n′

ij )

(c) Λn
ij = Gijm(s̃n′

ij )

(d) πn
ij = (1 − λ0)

ηn′

ij δijm∑
N′

k=1
ηk

ij

.

4. Assign outlier component: πN
ij = λ0, µN

ij = µ0

ij ,Λ
N
ij = Λ0

ij

Figure 3: The simplified PAMPAS non-parametric belief propagation algorithm.

4 Experiments

We illustrate the approach by recovering 3D body pose given weak bottom-up informa-
tion and clutter. The development of bottom-up part detectors is beyond the scope of this
paper. Here we exploit a realistic simulation of such detectors in which: 1) the limbs are
only detected 50% of the time — the remaining samples are clutter; 2) the limb detectors
are non-specific in that they cannot distinguish the left and right sides of the body or the
upper from lower limbs (they do, however, distinguish between legs and arms) — the re-
sult is that only a small fraction of bottom-up samples fall in the right place with the right
interpretation; 3) the detectors are noisy and do not detect the limb position and orienta-
tion accurately; 4) no correct initialization samples are generated for the torso, simulating
detector failure or occlusion.

Figure 4 shows results for two time instants in a video sequence taken from three calibrated
cameras. After 10 iterations of belief propagation, the algorithm has discarded the samples
which originated in clutter and has correctly assigned the limbs. The figure shows the
initialization and the final distribution over limb poses which is computed by sampling
from the belief distribution. Note that the torso is well localized even though there was no
bottom-up detector for it.

5 Conclusion

We present a new body model and inference method that supports the goals of automati-
cally locating and tracking an articulated body in three dimensions. We show that a “loose-
limbed” model with continuous-valued parameters can effectively represent a person’s lo-
cation and pose, and that inference over such a model can be tractably performed using
belief propagation over particle sets. Moreover, we demonstrate robust location of the per-
son starting from imperfect initialization using a simulated body-part detector. The detector
is assumed to generate both false positive initializations and false negatives; i.e. failures to
detect some body parts altogether.

It is straightforward to extend the graphical model across time to implement a person
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Figure 4: Inferring attractive people: Two experiments are shown; (a) and (b) show results
for two different time instants in a walking cycle. Each experiment used three calibrated
camera views. Left: Initialization samples drawn noisy simulated part detectors. Part de-
tectors are assumed to have high failure rate, generating 50% of the samples far away from
any true body part. They are also non-specific; e.g. the left thigh samples (in green) are
equally distributed over left and right thigh and calf. The torso is assumed to be unde-
tectable. Right: Belief after 10 iterations of PAMPAS. We use 100 particles to model the
messages between the nodes, and show 20 samples from the belief distribution, as well as
the average of the top 10 percent of the belief samples as the ”best” pose estimate. For
brevity, (b) only shows the best pose from a single view.

tracker. There are several advantages of this approach compared with traditional particle
filtering: the complexity of the search task is linear rather than exponential in the number
of body parts; bottom-up initialization information can be incorporated in every frame; and
forward-backward smoothing, either over a time-window or an entire sequence, is straight-
forward.

In future work we intend to build automatic body-part detectors. Constructing reliable
detectors using only low-level information (static appearance) is a challenging problem
but we have the advantage of being robust to imperfect detection as noted above. We
also intend to learn the conditional distributions between parts from a database of motion
capture data. Together these advances should allow reliable use of the presented body
model in the person tracking framework.
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