Hierarchical Approach for Articulated 3D Pose-Estimation and Tracking
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. Introduction

Goals

1) Recover a 3D pose of a person from a single image
2) Assume that image features are imperfect

3) Have a fully probabilistic hierarchical model

Approach: Decompose hard problem into
simpler pieces

Il. Related Work

Discriminative approaches

Attempt to learn the mapping from image features
(silhouettes) to 3D body pose directly.
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Cons: Do not generalize well in
cases where image evidence is
poor.

Pros: Typically very fast and
accurate when test data is like
train data.

Generative approaches
Postulate hypotheses and test them against image

evidence.

Cons: Tend to be very slow.

Pros: Typically better handle poor
image evidence.
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1V. 2D Pose Inferencte

2D "Loose-Limbed” Body Model: Body is modeled using a graphical model

Advantages:

+ Allows 3D pose estimation from
single monocular image

* Makes use of temporal information
when available

+ Fully probabilistic framework

* Mediates the complexity of the 3D
pose estimation in the absence of
perfect silhouette features using an
intermediate 2D pose estimation
stage

+ Nodes correspond to limbs

+ Edges correspond to Kinematic and Occlusion constraints and are modeled
using potentials

Inference is carried out using a variant of Non-Parametric Belief Propagation
(PAMPAS) [Isard '03]

V. 2D to 3D Pose Inference
Conditional mapping from 2D to 3D pose is modeled using a Mixture of Experts (MoE) Model

o [Sminchisescu '05]
Expert: probability of the output 3D
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Sum over all experts*

3D Body Pose Gaiting Network: probability that input 2D

pose X is assigned to the k-th expert*.
VI. Tracking in 3D

HMM over 3D state:
Batch inference forward/backwards in time

Using Non-Parametric Belief Propagation (PAMPAS)
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VI I . Resu ItS Brown synchronized video and motion capture dataset
+ Ground truth is known

« First 50 frames were used for evaluation

Monocular 3D Pose Estimation

Distribution Most Likely Distribution Most Likely

Sample Sample

; ﬂ P

- P

" ‘ 5

®

Q

10

£ ﬂ

S Part e o

£ | Detectors 2D Pose Estimation 3D Pose Estimation

3D Tracking

VIIl. Conclusions

+ New hierarchical framework for 3D pose inference and tracking
from monocular video is proposed.

+ Complexity of the problem is mediated using an intermediate 2D
pose estimation stage

+ Results are very encouraging (quantitative evaluation in AMDO '06)
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