
Goals
1) Recover a 3D pose of a person from a single image
2) Assume that image features are imperfect
3) Have a fully probabilistic hierarchical model

Hierarchical Approach for Articulated 3D Pose-Estimation and Tracking
Leonid Sigal and Michael J. Black

I. Introduction
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• New hierarchical framework for 3D pose inference and tracking 
from monocular video is proposed.

• Complexity of the problem is mediated using an intermediate 2D
pose estimation stage

• Results are very encouraging (quantitative evaluation in AMDO ’06)

VII. Results

VIII. Conclusions

IV. 2D Pose Inference
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Discriminative approaches
Attempt to learn the mapping from image features 
(silhouettes) to 3D body pose directly.

V. 2D to 3D Pose Inference

Brown synchronized video and motion capture dataset
• Ground truth is known 
• First 50 frames were used for evaluation

III. Hierarchical Inference

Image Part 
Detectors

MAP

Cons: Do not generalize well in 
cases where image evidence is 
poor.

Pros: Typically very fast and 
accurate when test data is like 
train data.

Cons: Tend to be very slow.Pros: Typically better handle poor 
image evidence.

Generative approaches
Postulate hypotheses and test them against image       
evidence.

II. Related Work
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VI. Tracking in 3D
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Advantages: 

• Allows 3D pose estimation from 
single monocular image

• Makes use of temporal information 
when available

• Fully probabilistic framework

• Mediates the complexity of the 3D 
pose estimation in the absence of 
perfect silhouette features using an 
intermediate 2D pose estimation 
stage

2D “Loose-Limbed” Body Model: Body is modeled using a graphical model

• Nodes correspond to limbs 
• Edges correspond to Kinematic and Occlusion constraints and are modeled 

using potentials

Inference is carried out using a variant of Non-Parametric Belief Propagation 
(PAMPAS)  [Isard ’03]

Conditional mapping from 2D to 3D pose is modeled using a Mixture of Experts (MoE) Model 

Gaiting Network: probability that input 2D 
pose X is assigned to the k-th expert*.

Expert: probability of the output 3D
pose Y according to the k-th expert*

*use linear regression as our 
expert model

Sum over all experts*

2D Body Pose

3D Body Pose

HMM over 3D state: 
• Batch inference forward/backwards in time 
• Using Non-Parametric Belief Propagation (PAMPAS)

Approach: Decompose hard problem into 
simpler pieces
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