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Abstract

The task of scene graph generation entails identifying object entities and their
corresponding interaction predicates in a given image (or video). Due to the
combinatorially large solution space, existing approaches to scene graph generation
assume certain factorization of the joint distribution to make the estimation feasible
(e.g., assuming that objects are conditionally independent of predicate predictions).
However, this fixed factorization is not ideal under all scenarios (e.g., for images
where an object entailed in interaction is small and not discernible on its own).
In this work, we propose a novel framework for scene graph generation that
addresses this limitation, as well as introduces dynamic conditioning on the image,
using message passing in a Markov Random Field. This is implemented as an
iterative refinement procedure wherein each modification is conditioned on the
graph generated in the previous iteration. This conditioning across refinement
steps allows joint reasoning over entities and relations. This framework is realized
via a novel and end-to-end trainable transformer-based architecture. In addition,
the proposed framework can improve existing approach performance. Through
extensive experiments on Visual Genome [30] and Action Genome [25] benchmark
datasets we show improved performance on the scene graph generation task. The
code is available at github.com/ubc-vision/IterativeSG.

1 Introduction
Scene graphs allow for structured understanding of objects and their interactions within a scene. A
scene graph is a graph where nodes represent objects within the scene, each detailed by the class label
and spatial location, and the edges capture the relationships between object pairs. These relationships
are usually represented by a <subject, predicate, object> triple. Effectively generating such
graphs, from either images or videos, has emerged as a core problem in computer vision [14, 35, 39,
46, 50, 52, 54]. Scene graph representations can be leveraged to improve performance on a variety of
complex high-level tasks like VQA [24, 47], Image Captioning [17, 53], and Image Generation [26].

The task of scene graph generation involves estimating the conditional distribution of the relation-
ship triplets given an image. Naively modelling this distribution is often infeasible as the space of
possible relationship triplets is considerably larger than the space of possible subjects, objects, and
predicates. To circumvent this issue, existing methods factorize the aforementioned distribution
into easy-to-estimate conditionals. For example, two-stage approaches, like [11, 47, 55], follow the
graphical model image Ñ rsubject, objects Ñ predicate, wherein the subjects and objects are
independently obtained via a pre-trained detector like Faster-RCNN [41]. These are then consumed
by a downstream network to estimate predicates. Any such factorization induces conditional de-
pendencies (and independencies) that heavily influence model characteristics. For example, in the
aforesaid graphical model, errors made during the estimation of the subjects and objects are naturally
propagated towards the predicate distribution, which makes the estimation of predicates involving
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classes with poor detectors challenging. Furthermore, the assumed fixed factorization might not
always be optimal. Having information about predicates in an image can help narrow down the space
of possible subjects/objects, e.g., predicate wearing makes it likely that the subject is a person.

Additionally, due to the two-stage nature of most existing scene graph approaches (barring very
recent methods like [14, 31, 35]), the image feature representations obtained from a pre-trained
task-oblivious detector might not be optimally catered towards the scene graph generation problem.
Intuitively, one can imagine that the information required to accurately localize an object might not
necessarily be sufficient for predicate prediction, and by extension, accurate scene graph generation.
Morever, two-stage approaches often suffer with efficiency issues as the detected objects are required
to be paired up before predicate assignment. Doing so naively, by pairing all possible objects [50],
results in quadratic number of pairs that need to be considered. Traditional approaches deal with this
using heuristics, such as IoU-based threshold-based pairing [47, 55].

Figure 1: Iterative Refinement for Scene
Graph Generation. By unrolling the mes-
sage passing in a Markov Random Field (a),
our proposed approach essentially models
an iterative refinement process (b) wherein
each modification step is conditioned on the
previously generated graph estimate.

In this work, we aim to alleviate the previously men-
tioned issues arising from a fixed factorization and
potentially limited object-centric feature representa-
tions by proposing a general framework wherein the
subject, objects, and predicates can be inferred jointly
(i.e., depend on one another), while simultaneously
avoiding the complexity of exponential search space of
relational triplets. This is achieved by performing mes-
sage passing within a Markov Random Field (MRF)
defined by components of a relational triplet (Figure
1(a)). Unrolling this message passing is equivalent to
an iterative refinement procedure (Figure 1(b)), where
each message passing stage takes in the estimate from
the previous step. Our proposed framework models
this iterative refinement strategy by first producing a
scene graph estimate using a traditional factorization,
and then systematically improving it over multiple
refinement steps, wherein each refinement is condi-
tioned on the graph generated in the previous iteration.
This conditioning across refinement steps compensates for the conditional independence assumptions
and lets our framework jointly reason over the subjects (s), objects (o), and predicates (p).

Contributions. To realize the aforementioned iterative framework, we propose a novel and intuitive
transformer [48] based architecture. On a technical level, our model defines three separate multi-layer
multi-output synchronized decoders, wherein each decoder layer is tasked with modeling either the
subject, object, or predicate components of a relationship triplets. Therefore, the combined outputs
from each layer of the three decoders generates a scene graph estimate. The inputs to each decoder
layer are conditioned to enable joint reasoning across decoders and effective refinement of previous
layer estimates. This conditioning is achieved implicitly via a novel joint loss, and explicitly via cross-
decoder and layer-wise attention. Additionally, each decoder layer is also conditioned on the image
features, which are provided by a shared encoder. As our proposed model is end-to-end trainable, it
addresses the limitation of two-stage approaches, allowing image features to directly adopt to the
scene graph generation task. Finally, to tackle the long-tail nature of the scene graph predicate classes
[11], we employ a loss weighting strategy to enable flexible trade-off between dominant (head) and
underrepresented (tail) predicate classes in the long-tail distribution. In contrast to data sampling
strategies [11, 32], this has a benefit of not requiring additional fine-tuning of models with sampled
data post training. We illustrate that our proposed architecture achieves state-of-the-art performance
on two benchmark datasets – Visual Genome [30] and Action Genome [25]; and thoroughly analyze
effectiveness of the approach as a function of the refinement steps, design choices employed and as a
generic add-on to an existing, MOTIF [55], architecture.

2 Related Work
Scene Graph Generation. Scene graph generation has emerged as a popular research area in the
vision community [11, 28, 31, 35, 39, 40, 46, 47, 50, 52, 54, 55]. Existing scene graph generation
methods can be broadly categorized as either one-stage or two-stage approaches. The first step of
the predominant approach – the two-stage methods – involves pre-training a strong object detector
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for all object classes in the dataset, usually using detector like Faster-RCNN [41]. The graph
generation network is then built on top of the object information (bounding boxes and corresponding
features) obtained from the detector. This second step entails freezing the detector parameters
and solely training the graph generation network. The graph generation network is realized via
different architectures such as Bi-directional LSTMs [55], Tree-LSTMs [47], Graph Neural Networks
[52], and other message passing algorithms [40, 50]. The limitation of all two-stage approaches is
apparent – the graph generation network has no influence over the detector and object features. One
stage approaches overcome this obstacle by employing architectures that allow end-to-end training,
such as fully convolutional networks [35] and transformer based models [7, 14, 31, 43]. The joint
optimization enables interaction between the detection and the graph generation modules, leading
to better scene graphs. However, all the aforementioned methods operate under the assumption
of a fixed factorized model, inducing conditional independencies that might not be ideal under all
scenarios.

Long-Tail Recognition. The task of scene graph generation suffers from the challenge of long-
tail recognition due to the combinatorial nature of relational triplets (both object and predicate
distributions are skewed). Long-tail recognition, in general, is a well studied problem in literature.
Data sampling is a popular strategy [3, 20, 21, 27, 37, 42, 58] wherein the training data is modified to
either over-represent tail classes (oversampling) or under-represent the head classes (undersampling).
Specific to the task of scene graph generation, [11, 32] have explored the use of data sampling
strategies to improve performance on tail predicate classes. On the contrary, Loss re-weighting
strategies [1, 9, 13, 27, 34] assign higher weights or impose larger decision boundaries for tail
classes. [51] recently adopted this paradigm for the task of scene graph generation by proposing
a re-weighting strategy based on correlations between predicate classes. Conceptually similar to
[51], we propose a novel re-weighting strategy and illustrate its effectiveness both on its own, and in
combination with data resampling.

Transformer Models. In [48], authors introduced a new attention-based architecture called trans-
formers for the task of machine translation, doing away with recurrent or convolutional architectures.
Transformers have since widely been adopted for a variety of tasks, such as object detection [2, 38, 57],
image captioning [8, 23], and image generation [12]. More recently, scene graph generation methods
have also adopted transformer architectures [7, 14, 31, 43], owing to their end-to-end trainable nature
and parallelism. Perhaps conceptually closest, [14], which focuses on visual relation detection (VRD)
and not scene graph prediction, leverages the composite nature of relationships to simultaneously de-
code an entire relationship triplet alongside its constituent subject, object, and predicate components.
Unlike [14], we do not explicitly model subject-predicate-object "sum" composites, resulting in a
simpler architecture, and leverage iterative refinement procedure that relies on a different factorized
attention mechanism. In the latest, concurrent work, [31] generates a set of entities and predicates
separately, and then utilizes a graph assembly procedure to match the predicates to a pair of entities.
In contrast to our formulation, this precludes conditioning of entities on predicate estimates; therefore
relying on accuracy of less contextualized predictions for subsequent pairing.

3 Formulation
For a given image I, a scene graph G can be represented as a set of triplets G “ triuiďn “

tpsi,pi,oiquiďn, where ri denotes the i-th triplet psi,pi,oiq, and n denotes the total number of
triplets. The subject si denotes a tuple psi,c, si,bq, where si,c P Rη is the one-hot class label, and
si.b P R4 is the corresponding bounding box coordinates. η is the total number of possible entity
classes in the dataset. The object oi and predicate pi can similarly be represented as tuples poi,c,oi,bq

and ppi,c,pi,bq respectively. Note that, pi,b corresponds to the box formed by the centers’ of si,b and
oi,b as the diagonally opposite coordinates. Additionally, pi,c P Rυ represents the corresponding
one-hot predicate label between the pair psi,oiq, where υ is the total number of possible predicate
classes in the dataset. Then the task of scene graph generation can be thought of as modelling the
conditional distribution PrpG | Iq. This distribution can be expressed as a product of conditionals,

Pr pG | Iq “ Pr ptsiu | Iq ¨ Pr ptoiu | tsiu, Iq ¨ Pr ptpiu | tsiu, toiu, Iq (1)

where t.u denotes a set. For brevity, we omit explicitly mentioning the total number of set elements
n throughout the paper. Existing approaches model this product of conditionals by making some
underlying assumptions. For example, [11, 47, 55] assume conditional independence between si and
oi as they rely on heuristics to obtain the entity pairs. However, modelling the conditional in Equation
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Figure 2: Transformer Architecture for Iterative Refinement. For a given image, the model
extracts features via a convolutional backbone and a transformer encoder. The individual components
of a relationship triplet are generated using separate subject, object, and predicate multi-layer decoders.
The inputs to each layer of the decoder is appropriately conditioned. For example, for the predicate
decoder, the positional embeddings are conditioned on the outputs generated by the subject and object
decoders (blue Attn module) and the queries are conditioned on the previously generated graph
estimate (orange Attn module). The model is additionally implicitly conditioned and trained in an
end-to-end fashion using a joint matching loss.

1 (or any other equivalent factorization) in such a “one-shot” manner makes certain assumptions on
the flow of information, which, in this case, is from si Ñ oi Ñ pi. Therefore, any errors made
during the estimation of si are naturally propagated towards the estimation of oi and pi. Additionally,
the subject (or object) estimation procedure Pr ptsiu | Iq is completely oblivious to the estimated
predicate pi. Having access to such information can help the subject (or object) predictor update its
beliefs and significantly narrow down the space of feasible entity pairs.

Contrary to existing works, our proposed formulation moves away from the “one-shot” generation
ideology described in Equation 1. We instead argue for modelling the task of scene graph generation
as an iterative refinement procedure, wherein the scene graph estimate at step t, Gt, is dependent
on the previous estimates tGt1

ut1ăt. Formally, our aim is to model the conditional distribution
Pr

´

Gt | tGt1

ut1ăt, I
¯

. Assuming Markov property holds, this can be conveniently factorized as,

Pr
`

Gt | Gt´1, I
˘

“

Subject Predictor
hkkkkkkkkkkikkkkkkkkkkj

Pr
`

tstiu | Gt´1, I
˘

¨

Object Predictor
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

Pr
`

tot
iu | tstiu,G

t´1, I
˘

¨ Pr
`

tpt
iu | tstiu, tot

iu,G
t´1, I

˘

loooooooooooooooooomoooooooooooooooooon

Predicate Predictor

.
(2)

Note that even though we assume the flow of information to be from sti Ñ ot
i Ñ pt

i for Gt, condition-
ing on the previous graph estimate Gt´1 allows the subject, object, and predicate predictors to jointly
reason and update their beliefs, leading to better predictions. Additionally, the framework described
in Equation 2 is model agnostic and can be implemented using any of the existing architectures.

4 Transformer Based Iterative Generation
As described in Section 3, our proposed iterative scene graph generation formulation is agnostic to
the architectural choices used to realise the subject, object, and predicate predictors. In this section
we provide a realization of the proposed formulation in Equation 2 using Transformer networks [48].
The choice of using transformer networks is motivated by their natural tendency to model iterative
refinement behaviour under the Markov property, wherein each layer of the transformer decoder takes
as input the output of the previous layer. Our novel end-to-end trainable transformer based iterative
generation architecture builds on top of the DETR [2] framework, which is shown to be effective for
the task of object detection. Our proposed model architecture is shown in Figure 3.

Given an image, our proposed approach first obtains corresponding image features using a combina-
tion of a convolutional backbone and a multi-layer transformer encoder, akin to DETR [2]. These
image features are used as inputs to the subject, object, and predicate predictors, each implemented as

4



a multi-layer Transformer decoder. To generate a scene graph estimate pGt at step t in accordance with
Equation 2, the queries used in each predictor decoder are appropriately conditioned. For example, in
the case of the predicate decoder, its input queries are conditioned on the subject (tpstiu) and object
(tpot

iu) estimates at step t. Additionally, the input to each predictor decoder is infused with all decoder
estimates tppst´1

i , ppt´1
i , pot´1

i qu from the previous step t ´ 1 via a structured attentional mechanism.
The entire model is trained end-to-end, with a novel joint loss applied at each step t to ensure the
generation of a valid scene graph at every level. This section describes these components in detail.

4.1 Image Encoder
Similar to DETR [2], for each image I, our proposed architecture uses a deep convolutional network
(like ResNet [22]) to obtain image level spatial map Ī P Rcˆwˆh, where c is the number of channels,
and w, h correspond to the spatial dimensions. A multi-layer encoder fe then transforms Ī into a
position-aware flattened image feature representation Z P Rdˆwh, where d ă c.

4.2 Predictor Decoders
Our approach models each of the subject, object, and predicate predictors using a multi-layer
transformer decoder [2], which are denoted by fs, fo, and fp respectively. The t-th layer of each
decoder, denoted as f t

x;x P ts,o,pu, is tasked with generating the step t scene graph Gt. Therefore,
at each step t, the decoders output a set of n feature representations tqt

x,iu;x P ts,o,pu, which are
transformed into a set of triplet estimates tppsti, ppt

i, pot
iqu via fully-connected feed forward layers.

Specifically, for a decoder fx;x P ts,o,pu, an arbitrary layer t takes as input a set of queries tqt´1
x,i u

and a set of learnable positional encodings tpx,iu, where qt´1
x,i ;px,i P Rd. The output representations

tqt
x,iu are then obtained via a combination of self-attention between the input queries, and encoder-

decoder attention across the encoder output Z. These attention modules allow the decoder to jointly
reason across all queries, while simultaneously incorporating context from the input image.

At a given step t, naively using the inputs tqt´1
x,i u and tpx,iu to generate Gt forgoes leveraging the

compositional property of relations. As described Equation 2, for any arbitrary step t, our proposed
formulation entails two types of conditioning for better scene graph estimation. The first involves
conditioning decoders on the step t outputs, specifically the object decoder f t

o on the subject decoder
f t
s , and the predicate decoder f t

p on both f t
s and f t

o. The second requires all three decoder layers
at step t to be conditioned on the outputs generated at step t ´ 1. To effectively implement this
design, we modify the inputs to each decoder layer f t

x. Specifically, the positional encodings tpx,iu

are modified to condition them on step t outputs, and the queries qt´1
x,i are updated to incorporate

information from the previous step t ´ 1. Modifying the positional encoding and queries separately
allows the model to easily disentangle and differentiate between the two conditioning types.

Conditional Positional Encodings. At a particular step t, the conditional positional encodings for
the three decoders are obtained as,

tppt
s,iu “ tps,iu; tppt

o,iu “ tpo,iu ` FFN
`

MultiHead
`

tpo,iu, trqt
s,iu, tqt

s,iu
˘˘

tppt
p,iu “ tpp,iu ` FFN

`

MultiHead
`

tpp,iu, trqt
s,i ‘ rqt

o,iu, tqt
s,i ‘ qt

o,iu
˘˘ (3)

where MultiHead(Q, K, V) is the Multi-Head Attention module introduced in [48], FFN(.) is a
fully-connected feed forward network, and ‘ is the concatenation operation. Additionally, rqt

x,i “

qt
x,i ` pt

x,i;x P ts,o,pu is the position-aware query.

Conditional Queries. Similarly, for a step t, conditional queries for the subject decoder are defined,

tpqt´1
s,i u “ tqt´1

s,i u ` FFN
`

MultiHead
`

trqt´1
s,i u, trqt´1

s,i ‘ rqt´1
o,i ‘ rqt´1

p,i u, tqt´1
s,i ‘ qt´1

o,i ‘ qt´1
p,i u

˘˘

(4)

pqt´1
o,i and pqt´1

p,i are defined identically. For a decoder layer f t
x;x P ts,o,pu we use the conditioned

positional encodings tppt
x,iu and queries tpqt´1

x,i u as input.

4.3 End-To-End Learning
Our proposed transformer based refinement architecture can be trained in an end-to-end fashion. To
ensure that a valid scene graph is generated at every level, we propose a novel joint loss that is applied
at each step t. Therefore, the combined loss L can be expressed as L “

ř

t Lt “
ř

t Lt
s ` Lt

o ` Lt
p,

5



where Lt
x;x P ts,o,pu represents the loss applied to the t-th layer of the decoder fx. Our approach

generates a fixed-size set of n triplet estimates tprtiu “ tppsti, ppt
i, pot

iqu at each step t, where n is larger
than the number of ground truth relations for a given image. Therefore, in order to effectively optimize
the proposed model, we obtain an optimal bipartite matching between the predicted and ground truth
triplets. Note that, contrary to the matching algorithm in [2], our proposed matching is defined over
triplets rather than individual entities. Additionally, instead of independently computing the loss over
each decoder layer as in [2], our loss computes a joint matching across all refinement layers.

Let G “ triu “ tpsi,pi,oiqu denote the ground truth scene graph for an image I. Note that, as the
number of ground truth relations is less than n, we convert G to a n-sized set by padding it with H

(no relation). The goal then is to find a bipartite matching between the ground truth graph G and the
set of all graph estimates t pGtu that minimizes the joint matching cost. Specifically, assuming σ to be
a valid permutation of n elements,

pσ “ argmin
σ

ÿ

t

n
ÿ

i

Lrel

´

ri,pr
t
σpiq

¯

(5)

where the pair-wise relation matching cost Lrel is defined as,

Lrel

´

ri,pr
t
σpiq

¯

“ ´1tri‰Hu

»

—

—

—

–

pstσpiq,c
‚ si,c ´ Lbox

´

pstσpiq,b, si,b

¯

` pot
σpiq,c

‚ oi,c ´ Lbox

´

pot
σpiq,b,oi,b

¯

` ppt
σpiq,c

‚ pi,c ´ Lbox

´

ppt
σpiq,b,pi,b

¯

fi

ffi

ffi

ffi

fl

(6)

where ‚ is the vector dot product, and Lbox is a combination of the L-1 and generalized IoU losses.
Please refer to Section 3 for clarification on the notations. The optimal permutation pσ can then be
computed using the Hungarian algorithm. The loss Lt

s is then defined as,

Lt
s “

n
ÿ

i“1

”

´ log
´

pst
pσpiq,c

‚ si,c

¯

` 1tri‰HuLbox

´

pst
pσpiq,b, si,b

¯ı

(7)

Lt
o and Lt

p are defined identically. Note that as we use the same permutation pσ for all refinement
layers t, it induces strong implicit dependencies between the subject, object, and predicate decoders.
The potency of the aforementioned implicit conditioning is highlighted in the experiment section.

4.4 Loss Re-Weighting
Due to the inherent long-tail nature of the scene graph generation task, using an unbiased loss often
leads to the model prioritizing the most common (a.k.a., head) predicate classes like has and on,
which have abundant training examples. To afford our proposed model the flexibility to achieve the
trade-off between head/tail classes, we integrate a loss-reweighing scheme into the model training
procedure. Note that, contrary to existing methods that do this post-hoc via finetuning the final layer
of the trained network (see Section 2), we instead train the model with this weighting to allow the
internal feature representations to reflect the desired trade-off. Note, to the best of our knowledge, our
paper is the first to illustrate effectiveness of such a strategy for the task of scene graph generation. For
a particular predicate class c P r1, υs, we define the class weight wc as max

!

pα{fcq
β
, 1.0

)

, where
fc is the frequency of the predicate class c in the training set, and tα, βu are scaling parameters. Note
that this weighting scheme is similar to the data sampling strategy described in [19, 32]. However,
instead of modifying the training set, we scale each class weight by the factor wc when computing
the predicate classification loss Lt

p. Therefore, Lt
p can be defined similarly to Equation 7,

Lt
p “

n
ÿ

i“1

”

´wc log
´

ppt
pσpiq,c

‚ pi,c

¯

` 1tri‰HuLbox

´

ppt
pσpiq,b,pi,b

¯ı

. (8)

5 Experiments
We demonstrate the effectiveness of our proposed approach on two datasets,

Visual Genome [30]. This is a benchmark for scene graph generation. We use the common processed
subset from [50], which contains 108k images, with 150 object and 50 predicate categories.

Action Genome [25]. This dataset provides scene graph annotations over videos in the Charades
dataset [44] for the task of human-object interaction. It contains 9, 848 videos across 35 object
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Table 1: Scene Graph Generation on Visual Genome. Mean Recall (mR@K), Recall (R@K),
and Harmonic Recall (hR@K) shown for baselines and our approach. B=Backbone, D=Detector.
Baseline results are borrowed from [31]. M indicates the number of top-k links used by the baseline
[31]. Note that our approach implicitly assumes M “ 1. For the approaches that use the ResNet-101
backbone [22] (akin to our method), the best result is highlighted in red, second best in blue.

B D # Method mR@50/100 R@50/100 hR@50/100 Head Body Tail

X
10

1-
FP

N
Fa

st
er

R
C

N
N

1 RelDN [56] 6.0 { 7.3 31.4 { 35.9 10.1 { 12.1 - - -
2 MOTIF [55] 5.5 { 6.8 32.1 { 36.9 9.4 { 11.5 - - -
3 VCTree [47] 6.6 { 7.7 31.8 { 36.1 10.9 { 12.7 - - -
4 BGNN [32] 10.7 { 12.6 31.0 { 35.8 15.9 { 18.6 34.0 12.9 6.0

5 VCTree-TDE [46] 9.3 { 11.1 19.4 { 23.2 12.6 { 15.0 - - -
6 VCTree-DLFE [6] 11.8 { 13.8 22.7 { 26.3 15.5 { 18.1 - - -
7 VCTree-EBM [45] 9.7 { 11.6 20.5 { 24.7 13.2 { 15.8 - - -
8 VCTree-BPLSA [18] 13.5 { 15.7 21.7 { 25.5 16.6 { 19.4 - - -
9 DT2-ACBS [11] 22.0 { 24.4 15.0 { 16.3 17.8 { 19.5 - - -

R
es

N
et

-1
01

10 BGNN [32, 31] 8.6 { 10.3 28.2 { 33.8 13.2 { 15.8 29.1 12.6 2.2
11 RelDN [56, 31] 4.4 { 5.4 30.3 { 34.8 7.7 { 9.3 31.3 2.3 0.0

D
E

T
R

12 AS-Net [4] 6.1 { 7.2 18.7 { 21.1 9.2 { 10.7 19.6 7.7 2.7
13 HOTR [29] 9.4 { 12.0 23.5 { 27.7 13.4 { 16.7 26.1 16.2 3.4

Concurrent Work

14 SGTRM“1 [31] 12.0 { 14.6 25.1 { 26.6 16.2 { 18.8 27.1 17.2 6.9
15 SGTRM“3 [31] 12.0 { 15.2 24.6 { 28.4 16.1 { 19.8 28.2 18.6 7.1
16 SGTRM“3,BGNN [32] [31] 15.8 { 20.1 20.6 { 25.0 17.9 { 22.3 21.7 21.6 17.1

17 Ourspα“0.0,β“˚q 8.0 { 8.8 29.7 { 32.1 12.6 { 13.8 31.7 9.0 1.4
18 Ourspα“0.14,β“0.5q 14.4 { 16.4 27.9 { 30.4 19.0 { 21.3 30.0 17.3 11.2
19 Ourspα“0.07,β“0.75q 15.7 { 17.8 27.2 { 29.8 19.9 { 22.3 28.5 18.8 13.3
20 Ourspα“0.14,β“0.75q 15.8 { 18.2 26.1 { 28.7 19.7 { 22.3 28.2 19.4 13.8

21 Ourspα“0.14,β“0.75q,BGNN [32] 17.1 { 19.2 22.9 { 25.7 19.6 { 22.0 24.4 20.2 16.4
22 Ourspα“0.14,β“0.75q,M“3 19.5 { 23.4 30.8 { 35.6 23.9 { 28.2 32.9 28.1 15.8

(excluding class person) and 25 relation categories. As not all video frames are annotated, consistent
with prior work [16], we use the annotated frames provides by [25]. Additionally, as in [16], we
remove frames without any person or object annotations as they do not provide usable scene graphs.

Implementation Details (transformer-based approach). We use ResNet-101 [22] as the backbone
network for image feature extraction. Each of the subject, object, and predicate decoders have 6
layers, with a feature size of 256. The decoders use 300 queries. For training we use a batch size
of 12 and initial learning rate of 10´4, which is gradually decayed. Note that although our model
predicts individual relation triplets, a graph is obtained by applying a non-maximum suppression
(NMS) strategy [15, 41] to group the predicted subjects and objects into entity instances.

Implementation Details (MOTIF). For the re-implementation of the MOTIF [55] baseline and the
subsequent augmentation of our proposed framework, we follow the same training procedure as [55].
Specifically, we assume the Faster-RCNN detector [41] with the ResNeXt-101-FPN [49] backbone.
The detector is first pre-trained on the Visual Genome dataset [30]. As is the case with two-stage
approaches, when learning the scene graph generator, the detector parameters are freezed. The
specifics on how our approach is augmented to MOTIF is described in the supplementary (Sec. A).

Evaluation Metrics. To measure performance, we report results using standard scene graph eval-
uation metrics, namely Recall (R@K) [50] and Mean Recall (mR@K) [5, 47]. While recall is
class agnostic, mean recall averages the recalls computed for each predicate category independently.
Usually, higher R@K is indicative of better performance on dominant (head) classes, where as higher
mR@K suggests better tail class performance. Recent methods [11, 32] have argued for the use
of mean recall as it reduces influence of dominant relationships such as on and has on the metric.
However, even for the same model architecture, one can trade-off R@K for mR@K by using long tail
recognition techniques described in Section 2. This trade-off is seldom analyzed or reported, making
it difficult to compare performance across methods. Therefore, inspired by the generalized zero-shot

7



Table 2: Ablation of Model Components. Mean
Recall (mR@K) and Recall (R@K) reported on the
Visual Genome dataset. CAS=Conditioning Across
Steps (Eq. 4), CWS=Conditioning Within a Step (Eq.
3), JL=Joint Loss (Sec. 4.3).

# CAS CWS JL mR@20/50 R@20/50
1 ✓ ✓ ✓ 11.8 { 15.8 21.0 { 26.1

2 1.7 { 1.9 2.7 { 4.3
3 ✓ 11.2 { 14.7 20.1 { 25.4
4 ✓ ✓ 11.5 { 15.3 20.9 { 26.1
5 ✓ ✓ 11.7 { 15.4 20.9 { 25.9

Table 3: Augmentation to MOTIF. Mean
Recall (mR@K) and Recall (R@K) is re-
ported on the Visual Genome dataset for
the baseline and the variant with our it-
erative formulation. : denotes our re-
implementation of the method.

Model t mR@20/50 R@20/50

MOTIF: [55] 6.0 { 8.0 23.6 { 30.4

MOTIF:

+
Ours

1 6.0 { 8.1 23.7 { 30.6
2 6.2 { 8.4 23.9 { 30.7
3 6.4 { 8.5 24.0 { 30.8

Table 4: Ablation of Loss Re-weighting Parameters.
We vary α, β (Sec. 4.4) and report recall, mean recall,
and harmonic recall on the Visual Genome test set.

α β mR@20/50 R@20/50 hR@20/50
0.0 ˚ 5.8 { 8.0 24.2 { 29.7 9.4 { 12.6
0.07 0.75 11.2 { 15.7 21.8 { 27.2 14.8 { 19.9
0.14 0.75 11.8 { 15.8 21.0 { 26.1 15.1 { 19.7
0.21 0.75 11.3 { 15.5 20.0 { 24.8 14.4 { 19.1

0.14 0.5 10.3 { 14.4 22.6 { 27.9 14.2 { 19.0
0.14 0.625 11.0 { 15.1 21.4 { 26.4 14.5 { 19.2
0.14 0.75 11.8 { 15.8 21.0 { 26.1 15.1 { 19.7
0.14 0.875 11.2 { 15.9 19.3 { 24.5 14.2 { 19.3

Table 5: Ablation of Model Parameters.
1 = Our proposed transformer approach

with 6 decoder layers. 2 = transformer
with 6 decoder layers devoid of our pro-
posed refinement. 3 = transformer with 1
decoder layer devoid of our proposed refine-
ment.

# mR@20/50 R@20/50 Model
Size

1 11.8 { 15.8 21.0 { 26.1 1ˆ

2 1.7 { 1.9 2.7 { 4.3 0.9ˆ

3 9.9 { 13.1 17.5 { 21.8 1.1ˆ

learning harmonic average metric [10], we propose a new metric – harmonic recall (hR@K), defined
as the harmonic mean of mR@K and R@K. Such a metric encourages methods to have a healthy
balance between the head and tail class performance. Additionally, we report the performance of our
model for different values of the loss weighing parameters described in Section 4.4. Furthermore, we
also report the mR@100 on each long-tail category subset, namely head, body, and tail, as in [32].

5.1 Ablation Study

All the subsequent ablation studies are done on the Visual Genome dataset [30].

Model Components. We analyze the importance of each of our model components, namely the
conditioning within a particular step t (CWS; Equation 3), the conditioning across steps (CAS;
Equation 4), and the joint loss (JL; Section 4.3) in Table 2. For a fair comparison, all models are
trained using the same loss weighing parameters, α “ 0.14, β “ 0.75. It can be seen that our
proposed novel joint loss provides a significant improvement in performance ( 3 ) when compared
to the ablated model that uses separate losses (as in [2]; 2 ). This is largely due to the joint loss
being able to induce strong implicit dependencies between the three decoders. As a consequence,
even without CAS and CWS, the proposed joint loss by itself enables refinement. The two forms
of conditioning ( 4 - 5 ) provide a structured pathway to incorporating knowledge from previously
generated estimates or other triplet components in an explicit fashion, leading to improved scene
graphs. CAS ( 5 ) builds upon the joint loss, integrating information that the aforementioned implicit
conditioning is unable to capture. CWS ( 4 ) is complementary to the refinement process, and allows
for more consistent graph generation within a step. As these two types of conditionings capture
complementary information, using them together ( 1 ) further improves on performance.

Refinement Across Steps. To further analyze the effectiveness of our refinement procedure, we
contrast the quality of scene graphs generated at each refinement step for a particular trained model
(α “ 0.14, β “ 0.75). We provide a detailed analysis in the supplementary (Table A1). Visually,
Figure 3 highlights steady improvements in the graph quality over refinement steps. Owing to
our structured conditioning, the model is able to improve on both predicate detection and entity
localization over refinement iterations.
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Figure 3: Qualitative Refinement Analysis. Graph estimates for different refinement steps shown.
Colours red and green indicate incorrect and correct predictions respectively. Additional visualizations
are shown in the supplementary (Section C.3).

Loss Re-Weighting. As mentioned in Section 4.4, we employ a simple loss re-weighting scheme,
allowing for an easy trade-off between recall for mean recall. Some results with different weightings
are reported in Table 1 ( 17 – 20 ). To investigate this further, we train our proposed model with different
values for the parameters α and β, and report the performance in Table 4. We fix β in the top half of
the table (first 4 rows), and α in the bottom half (last 4 rows). It can be seen that increasing α and β
generally biases the model more towards the tail classes (higher mean recall), whereas lower values
tend to favour the head classes (higher recall). As a consequence, our proposed approach is flexibly
able to function in a wide range of recall and mean recall values. However, as is the case with every
long-tail recognition approach, choosing values that are too high (e.g. α “ 0.21, β “ 0.75) lead to
poor performance due to the model being extremely biased and therefore unable to learn accurate
feature representations on the popular classes.

Model Parameters. We additionally argue that the improvements obtained by our proposed re-
finement procedure are not a direct consequence of having an increased number of parameters. To
corroborate this, we contrast our proposed model with alternatives with similar number of parameters
but devoid of refinement in Table 5. 1 corresponds to our transformer-based approach with 6 decoder
layers that uses the proposed joint loss and both forms of conditioning. 2 is a similar model with 6
decoder layers but bereft of the aforementioned proposed implicit and explicit conditionings. 3 , on
the other hand, is a single decoder layer transformer model without refinement, wherein the number
of parameters are increased to be comparable to our proposed approach. The inferior performance
of 2 and 3 highlight that increasing model capacity either via making each layer larger or via
adding more layers (increasing model depth) does not emulate refinement. Our proposed refinement
procedure, realized by the joint loss and explicit conditionings, allows for better learning, and the
performance gains observed cannot be attributed to having additional parameters.

5.2 Comparison to Existing Methods

Visual Genome. We report the mean recall, recall, and harmonic recall values contrasting our
proposed model with existing scene graph methods, including the concurrent work in [31], in Table
1. Contrary to existing approaches, depending on the loss weighting parameters used, our proposed
approach is able to easily operate on a wide spectrum of recall and mean recall values ( 17 - 20 ). More
concretely, compared to the most competitive baseline in SGTR [31] ( 14 - 16 ) and other one stage
methods in AS-Net [4] ( 12 ) and HOTR [29] ( 13 ), our approach is able to achieve a considerably better
recall on the head classes ( 17 ; 3.5 mR@100 better on head classes compared to [31]). Additionally,
when comparing a variant of our approach that has a similar R@100 value to SGTR ( 15 and 20 ),
we do significantly better on mean recall (3.8 higher mR@50) highlighting the proficiency of our
method to generalize to tail classes wherein the training data is limited. Furthermore, our proposed
model in 20 achieves the best performance across all models (including two-stage methods that use a
superior backbone [49]) on hR@50/100, underlining the capability of our method to perform well on
both the head and tail classes simultaneously. SGTR [31] additionally reports numbers by utilizing a
data sampling approach BGNN [32] to bias the model towards the tail classes ( 16 ). We highlight that,
compared to 16 , our model in 20 performs similarly on mR@50 but much better R@50/100 (5.5
R@50 higher). The poorer performance on mR@100 is largely due to SGTR [31] selecting top-3
subjects and objects for each predicate, leading to more relationship triplets being generated. On
the contrary, our approach only uses 1 predicate per subject-object pair. For a fairer comparison, we
evaluate our model in 20 using a similar top-k strategy, wherein we select the top-3 predicates for
each subject-object pair. The resulting model ( 22 ) outperforms the closest baseline by a significant
margin (3.3 higher mR@100, 10.6 higher R@100 compared to 16 ). Additionally, we show that our
loss re-weighting strategy is complementary to existing data sampling approaches by fine-tuning our
trained model in 20 using BGNN [32] ( 21 ). For further analysis, see supplementary Section C.2.
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Table 6: Scene Graph Prediction on Action Genome. Mean Recall (mR@K), Recall (R@K),
and Harmonic Recall (hR@K) shown for baselines and variants of our approach with different loss
weighting parameters. B=Backbone, D=Detector. Baseline results are taken from [16].

B D # Method R@20 / 50 mR@20/ 50 hR@20/50

X
10

1-
FP

N
Fa

st
er

R
C

N
N

1 VRD [36] 10.3 { 10.9 -
2 Freq Prior [55] 24.0 { 24.9 - -
3 IMP [50] 23.9 { 25.5 - -
4 MSDN [33] 24.0 { 25.6 - -
5 Graph R-CNN [52] 24.1 { 25.8 - -
6 RelDN [56] 25.0 { 26.2 - -
7 SimpleBase [16] 27.9 { 30.4 8.3 { 9.1 12.8 { 14.0

R
-1

01
D

E
T

R 8 Ourstα“0,β“˚u 31.0 { 37.5 20.9 { 25.3 24.9 { 30.2
9 Ourstα“0.07,β“0.75u 30.1 { 36.5 36.9 { 42.8 33.1 { 39.4

10 Ourstα“0.14,β“0.75u 29.2 { 35.3 37.9 { 44.0 32.9 { 39.2

Action Genome. We additionally report recall, mean recall, and harmonic recall values on the Action
Genome dataset [25] in Table 6. Similar to the observations on Visual Genome, we observe 3.1 higher
R@20 and 12.6 higher mR@20 ( 8 ) when compared to the closest baseline in [16] ( 7 ) despite using
an inferior backbone [49]. Furthermore, by effectively biasing our model towards the tail classes, we
are able to achieve 29.6 better mR@20 while having better R@20/50 values ( 10 ) compared to 7 .

We provide per class relation recall and object AP for both datasets in the supplementary (Section C).

5.3 Generality of Proposed Formulation
Although our transformer model effectively generates better scene graphs, the proposed iterative
refinement formulation (Equation 2) can be applied to any existing method. To demonstrate this, we
augment this framework to the simple two-stage MOTIF [55] architecture. The details on how this is
achieved is deferred to the supplementary (Section A). We contrast the performance of the baseline
and our augmented approach on the Visual Genome dataset [30] in Table 3. It can be seen that with
each refinement step, the model is able to generate better scene graphs („6% higher on mR@20 and
mR@50 after 3 steps). Note that, owing to the two-stage nature of MOTIF [55], the image features
used by our refinement framework are fixed and oblivious to the task of scene graph generation (as
the detector parameters are frozen). Contrary to the proposed transformer model that can query the
image at each layer, the performance gains when using the augmented MOTIF variant are largely
limited due to the image features being the same across the refinement steps.

6 Conclusion, Limitations, and Societal Impact
In this work we propose a novel and general framework for iterative refinement that overcomes
limitations arising from a fixed factorization assumption in existing methods. We demonstrate its
effectiveness through a transformer based end-to-end trainable architecture.

Limitations. Limitations of the proposed approach include using a shared image encoder, which
improves efficiency, but may limit diversity of representations available for different decoder layers;
and limited ability to model small objects inherited from the DETR object detection design [31].

Societal Impact. While our model does not have any direct serious societal implications, its impact
could be consequential if it is used in specific critical applications (e.g., autonomous driving). In such
cases both the overall performance and biases in object / predicate predictions would require careful
analysis and further calibration. Our loss re-weighting strategy is a step in that direction.
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the Creative Commons Attribution 4.0 International License. Action Genome [25] is
licensed under the MIT license.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
We don’t introduce any new assets in the paper.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] Both Visual Genome [30] and Action Genome [25] are publicly
available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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The code for our approach is available at github.com/ubc-vision/IterativeSG.

A Augmenting Iterative Framework to MOTIF

As described in Section 3 of the main paper, our proposed iterative refinement formulation is model
agnostic and can be integrated to any existing architecture. We demonstrate this in Section 5.3
of the main paper by augmenting our proposed approach to an existing model in MOTIF [55],
showing improved scene graph generation performance. In this section we present the details of this
integration.

As is the case with most two-stage architectures, MOTIF [55] relies on a pre-trained detector (like
Faster R-CNN [41]) to generate bounding box proposals B “ tbiu and corresponding labels L “ tliu
for entities E “ teiu within a given image. For each of these bounding boxes, the model extracts
corresponding image features zi via a Region of Interest (ROI) Pooling [41] operation. Additionally,
as the task of scene graph prediction requires a pair of entities to associate a relation with, an IOU-
based thresholding is used to couple entities into candidate pairs tpei, ejqu. Subsequently, for each
of these entity pairs pei, ejq, features representing the union of their corresponding bounding boxes
pbi,bjq is extracted via a similar ROI pooling operation. We represent these union features as ui,j .

MOTIF [55] utilizes the set of features tziu and tui,ju, alongside the bounding box proposals tbiu

and entity label estimates tliu, to generate object/subject labels and the corresponding predicate
between them. MOTIF achieves this by instantiating entity fs,o and predicate fp networks, each
utilizing bidirectional LSTM. Note that, contrary to our transformer based formulation (Section 4 of
the main paper) that has separate decoders for the subject and object (namely fs and fo, MOTIF uses
a single network to predict both the subject and object labels.

Entity Network. To obtain subject/object labels, for each entity ei, MOTIF [55] uses a bidirectional
LSTM to obtain the set of contextual entity representations tcei u,

tcei u “ biLSTM ptzi, liuq (A1)

where cei is the concatenation of the final hidden states of the bidirectional LSTM. A decoder LSTM
then sequentially generates labels tplei u for each entity as follows,

hi “ LSTM
´

cei ,
plei´1

¯

plei “ argmax pWehiq

(A2)

where We is a learned parameter.

Predicate Network. Similar to the entity network, the predicate network also uses a bidirectional
LSTM to obtain contextual predicate representations tcpi u as follows,

tcpi u “ biLSTM
´

tcei ,
plei u

¯

. (A3)
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For each candidate pair pei, ejq, the predicate label tplei,ju is then obtained as follows,

gi,j “ pWhc
p
i q d

`

Wbc
p
j

˘

d ui,j

plei,j “ argmax pWpgi,jq
(A4)

where Wh,Wb,Wp are learned parameters, and d is the element-wise product.

We refer the reader to [55] for a more detailed explanation of the entity and predicate networks. Our
iterative refinement augmented variant of MOTIF defines T entity and predicate networks, denoted
by f t

s,o and f t
p at layer t. Following our formulation described in Section 3 of the main paper, we

condition the inputs to the entity f t
s,o and predicate f t

p networks appropriately. The two types of
conditionings, namely conditioning within a step (CWS) and conditioning across steps (CAS) are
implemented as follows,

Conditioning Within a Step. Contrary to the transformer based model where we need to explicitly
condition with a step (Equation 3 of the main paper), this is already implemented in the default MOTIF
[55] architecture. This is evident from Equation A3 wherein the contextual predicate representations
tcpi u are obtained by using the entity contextual representations tcei u. This implicitly defines the
following conditioning ei Ñ pi.

Conditioning Across Steps. In accordance with Equation 2 of the main paper, we want to condition
the predictions at layer t on the graph estimate at layer t ´ 1. This is achieved by modifying the
inputs tziu and tui,ju. Specifically, for a particular step t, the input to the entity network tztiu is
obtained as follows,

tpztiu “ tzt´1
i u ` FFN

`

MultiHead
`

tzt´1
i u, tht´1

i u, tht´1
i u

˘˘

tsztiu “ tpztiu ` FFN
`

MultiHead
`

tpztiu, tgt´1
i,j u, tgt´1

i,j u
˘˘

tztiu “ tsztiu ` FFN
`

MultiHead
`

tsztiu, tut´1
i,j u, tut´1

i,j u
˘˘

(A5)

Similarly, for a particular step t, the input to the predicate network tut
iu is obtained as follows,

tput
i,ju “ tut´1

i,j u ` FFN
`

MultiHead
`

tut´1
i,j u, tht´1

i u, tht´1
i u

˘˘

tsut
i,ju “ tput

i,ju ` FFN
`

MultiHead
`

tput
i,ju, tgt´1

i,j u, tgt´1
i,j u

˘˘

tut
i,ju “ tsut´1

i,j u ` FFN
`

MultiHead
`

tsut´1
i,j u, tzt´1

i u, tzt´1
i u

˘˘

(A6)

Finally, to allow each layer t to refine the estimates of the previous layer t ´ 1, the representations
ht
i and gt

i,j are modelled as residual connections. Specifically, we modify Equations A2 and A4 as
follows,

ht
i “ ht´1

i ` LSTM
´

ct,ei ,plt,ei´1

¯

gt
i,j “ gt´1

i,j `
`

Wt
hc

t,p
i

˘

d
`

Wt
bc

t,p
j

˘

d ut
i,j

(A7)

B Additional Implementation Details

Number of Epochs and Model Selection. The transformer models are trained for 50 epochs on
Visual Genome [30] and 18 epochs on Action Genome [25]. The best model is selected by checking
the validation set performance in each of the datasets.

Hardware. The training is done on 4 Tesla T4 for the transformer models. For the MOTIF
augmentation, the training for both the baseline and our variant is done on 4 NVidia A100 GPUs.

Generating Graph from Triplets. As our transformer model generates relation triplets, we obtain
a graph by applying a non-maximum suppression (NMS) strategy [15, 41] to group the predicted
subjects and objects into entity instances. This NMS is applied separately per class, and each
predicted subject/object is then assigned to a post-NMS bounding box by checking the IoU overlap.

Data Splits. For the Visual Genome dataset [30], we follow the widely popular data
splits provided by [55], which can be found at the official release repository of [46]:
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github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch. For the Action Genome dataset
[25], to facilitate fair comparison with the baselines, we contacted the authors of [16] and obtained
their data pre-processing code.

The code for our approach is available at github.com/ubc-vision/IterativeSG.

C Additional Results

C.1 Additional Ablations

Table A1: Refinement Across Steps. Results are shown for the model trained using α “ 0.14, β “

0.75 on the Visual Genome test set. To measure the scene graph generation performance, we report
recall, mean recall, and harmonic recall. To measure the detection performance, we report the box
AP, AP50, and AP75 to analyze the detection performance. Finally, we report the relative model size
compared to the final model at each refinement layer.

t mR@20/50 R@20/50 hR@20/50 AP AP50 AP75
Model
Size

1 9.4 { 13.3 18.4 { 23.3 12.4 { 16.9 11.8 24.2 9.7 0.61ˆ

2 10.7 { 14.8 19.8 { 24.8 13.9 { 18.5 13.5 26.3 11.8 0.69ˆ

3 11.1 { 14.8 20.2 { 25.2 14.3 { 18.6 14.0 26.8 12.5 0.76ˆ

4 11.7 { 15.7 20.8 { 26.0 15.0 { 19.6 14.5 27.4 13.0 0.84ˆ

5 11.8 { 15.6 21.0 { 26.1 15.1 { 19.5 14.6 27.6 13.1 0.92ˆ

6 11.8 { 15.8 21.0 { 26.1 15.1 { 19.7 14.6 27.6 13.2 1ˆ

Refinement Across Steps. To further analyze the effectiveness of our refinement procedure, we
contrast the quality of scene graphs generated at each refinement step for a particular trained model
(α “ 0.14, β “ 0.75) in Table A1. From the improvements in recall, mean recall, and harmonic
recall at each t, it can be reasoned that the quality of the generated graphs steadily improves with
each refinement step, wherein the biggest gains are observed in the initial stages. Furthermore, the
improvement in the AP numbers indicate that the detection performance improves simultaneously
alongside the graph generation performance, highlighting the ability of our approach to jointly reason
over subjects, objects, and predicates. Additionally, as each layer t generates a valid scene graph, an
added benefit of our proposed formulation is its ability to allow model compression without the need
for re-training. One can simply select the first t refinement layers (and discard the rest) depending on
the desired accuracy-memory trade-off. For example, from Table A1, selecting the first 4 layers (and
discarding the last 2) gives a model that is 0.84 the size at the expense of a 0.1 drop in hR@50 and
hR@100.

Table A2: Number of Queries Ablation. We vary the number of queries used by our transformer
decoders and report recall, mean recall, and harmonic recall on the Visual Genome test set. This
ablation assume α “ 0.14, β “ 0.75.

# Queries mR@20/50 R@20/50 hR@20/50
150 11.7 { 15.0 21.0 { 25.6 15.0 { 18.9
300 11.8 { 15.8 21.0 { 26.1 15.1 { 19.7
450 11.6 { 15.7 20.7 { 26.2 14.9 { 19.6

Number of Queries. We additionally ablate the number of queries used by the decoders of our
transformer model. We report performance on recall, mean recall, and harmonic recall on the Visual
Genome [55] dataset in Table A2, assuming α “ 0.14, β “ 0.75 for all models. It can be seen that
setting the number of queries to be too low or too high is detrimental to performance.

Zero Shot Recall. Introduced in [36], zero shot recall (zsR@K) measures recall@K for <subject,
object, predicate> that are absent from the training set. Therefore, this measure allows analysis
of a model performance on unseen relationships. We report zsR@50/100 for certain baselines
(including concurrent work in [31]) and our approach in Table A3. It can be seen that our approach in
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Table A3: Zero Shot Recall. We report zero shot recall for baselines and our approach. The baseline
numbers are borrowed from [31].

# Model zR@50/100

1 BGNN [32] 0.4 { 0.9
2 DT2-ACBS [11] 0.3 { 0.5
3 VCTree-TDE [46] 2.6 { 3.2
4 SGTRM“3 [31] 2.4 { 5.8

5 Ourspα“0.14,β“0.75q 2.8 { 3.7
6 Ourspα“0.14,β“0.75q,M“3 3.9 { 5.6

5 provides the best zsR@50 (0.2 higher when compared to 3 ), which is a stricter metric. Although
SGTR [31] ( 4 ) has a higher performance on zsR@100, as described in Section 5.2 of the main
paper, it selects top-3 subjects and objects for each predicate, leading to more relationship triplets
being generated. Therefore, for a fairer comparison, we evaluate our model in 5 using a similar
top-k strategy, wherein we select the top-3 predicates for each subject-object pair. This is done by
getting the 3 most likely predicate classes from the distribution generated by the predicate decoder.
The resulting model ( 6 ) provides a much greater margin on zsR@50 (1.5 higher than SGTR [31])
while being comparable on zsR@100 (0.2 lower).

Per Class Recall. We show the per-class predicate recalls on Visual Genome [30] in Figure A1.
Additionally, we contrast the per class recalls between steps t “ 1 (which corresponds to the model
with no refinement) and t “ 6. It can be seen that with more refinement steps, the model is able
to perform considerably better across most classes. A similar observation can be made for Action
Genome [25], as shown in Figure A2.

Per Class AP. We show the per-class object APs on Visual Genome [30] in Figure A3. Additionally,
we contrast the per class APs between steps t “ 1 (which corresponds to the model with no
refinement) and t “ 6. It can be seen that with more refinement steps, the model is able to perform
considerably better across object classes. Note that, for brevity, we only show the top 50 object
classes, selected according to the difference between class AP at step t “ 1 and step t “ 6. Per-class
object APs for the Action Genome [25] dataset is shown in Figure A4.

C.2 Complementarity to Data Sampling Approaches

In Section 5.2 of the main paper, we briefly highlight that our proposed loss weighting strategy is
complementary to existing data sampling approaches by fine tuning our model in 20 (Table 1 of the
main paper) using BGNN [32]. This fine-tuning is done only on the final predicate softmax layer, and
all other parameters are freezed. For ease of readability, we copy relevant results from Table 1 of
the main paper into Table A4. We show our approach fine-tuned using BGNN [32] in 6 (Table A4)
provides a considerable improvement over our approach without BGNN ( 4 ; 1.3 mR@50 higher with
similar hR@50/100 numbers). In comparison to the baseline SGTR [31] with BGNN ( 3 ), our model
in 6 provides better mR@50 (1.3 higher), R@50/100 (2.3/0.7 higher), and hR 50 (1.6 higher). As
described in Section 5.2, the poorer performance on mR@100 and hR@100 is largely due to SGTR
[31] selecting top-3 subjects and objects for each predicate, leading to more relationship triplets being
generated. Therefore, for a fairer comparison, we evaluate our model in 6 using a similar top-k
strategy, wherein we select the top-3 predicates for each subject-object pair. The resulting model
in 7 outperforms the baseline in 3 by a significant margin on all metrics, leading to improved
recall on head, body, and tail classes. Therefore, our proposed loss weighting scheme can be used in
addition to existing data sampling strategies, making it more flexible.

C.3 Qualitative Results

We provide additional qualitative results for our transformer model at different steps in Figures
A5-A14. These highlight steady improvements in the graph quality over refinement steps.
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Table A4: Complementarity to Data Sampling Approaches. Mean Recall (mR@K), Recall (R@K),
and Harmonic Recall (hR@K) shown for the baseline and our approach. B=Backbone, D=Detector.
Baseline results are borrowed from [31]. M indicates the number of top-k links used by the baseline
[31].

B D # Method mR@50/100 R@50/100 hR@50/100 Head Body Tail

R
es

N
et

-1
01

D
E

T
R

1 SGTRM“1 [31] 12.0 { 14.6 25.1 { 26.6 16.2 { 18.8 27.1 17.2 6.9

2 SGTRM“3 [31] 12.0 { 15.2 24.6 { 28.4 16.1 { 19.8 28.2 18.6 7.1

3 SGTRM“3,BGNN [32] [31] 15.8 { 20.1 20.6 { 25.0 17.9 { 22.3 21.7 21.6 17.1

4 Ourspα“0.14,β“0.75q 15.8 { 18.2 26.1 { 28.7 19.7 { 22.3 28.2 19.4 13.8

5 Ourspα“0.14,β“0.75q,M“3 19.5 { 23.4 30.8 { 35.6 23.9 { 28.2 32.9 28.1 15.8

6 Ourspα“0.14,β“0.75q,BGNN [32] 17.1 { 19.2 22.9 { 25.7 19.6 { 22.0 24.4 20.2 16.4

7 Ourspα“0.14,β“0.75q,BGNN [32],M“3 20.2 { 24.1 29.0 { 34.2 23.8 { 28.3 27.7 30.1 18.5
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Figure A1: Per Class Recall on Visual Genome. Plot shows the recall for the individual predicate
classes in Visual Genome [30] for our model trained with α “ 0.14, β “ 0.75. The y-axis is sorted
in increasing order of predicate frequency in the training set, with the more popular (head) classes at
the bottom, and the less popular (tail) classes at the top. We additionally contrast the per class recalls
between steps t “ 1 (indicating no refinement; in red) and t “ 6 (in blue). The number next to each
bar indicates the difference between recall at t “ 6 and t “ 1 for a particular predicate class.
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Figure A2: Per Class Recall on Action Genome. Plot shows the recall for the individual predicate
classes in Action Genome [25] for our model trained with α “ 0.14, β “ 0.75. The y-axis is sorted
in increasing order of predicate frequency in the training set, with the more popular (head) classes at
the bottom, and the less popular (tail) classes at the top. We additionally contrast the per class recalls
between steps t “ 1 (indicating no refinement; in red) and t “ 6 (in blue). The number next to each
bar indicates the difference between recall at t “ 6 and t “ 1 for a particular predicate class.
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Figure A3: Per Class AP on Visual Genome. Plot shows the AP for the top 50 individual
object classes in Visual Genome [30] (out of 150 total object classes) for our model trained with
α “ 0.14, β “ 0.75. We contrast the per class APs between steps t “ 1 (indicating no refinement; in
red) and t “ 6 (in blue). The number next to each bar indicates the difference between AP values at
t “ 6 and t “ 1 for a particular object class. The y-axis is sorted by this difference value.

8



Figure A4: Per Class AP on Action Genome. Plot shows the AP for the individual object classes in
Action Genome [25] for our model trained with α “ 0.14, β “ 0.75. We contrast the per class APs
between steps t “ 1 (indicating no refinement; in red) and t “ 6 (in blue). The number next to each
bar indicates the difference between AP values at t “ 6 and t “ 1 for a particular object class. The
y-axis is sorted by this difference value.
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Figure A5: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A6: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A7: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A8: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A9: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A10: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A11: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A12: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A13: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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Figure A14: Qualitative Results. Graph estimates for different refinement steps (t “ 0, 3, and6 are
shown. Colors red and green indicate incorrect and correct predictions respectively. For the incorrect
predictions at t “ 6, we additionally mention the correct predicate label in parenthesis next to it, and
also show direction of the relation.
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