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Abstract

Methods for object detection and segmentation rely on

large scale instance-level annotations for training, which

are difficult and time-consuming to collect. Efforts to allevi-

ate this look at varying degrees and quality of supervision.

Weakly-supervised approaches draw on image-level labels to

build detectors/segmentors, while zero/few-shot methods as-

sume abundant instance-level data for a set of base classes,

and none to a few examples for novel classes. This taxonomy

has largely siloed algorithmic designs. In this work, we aim

to bridge this divide by proposing an intuitive and unified

semi-supervised model that is applicable to a range of super-

vision: from zero to a few instance-level samples per novel

class. For base classes, our model learns a mapping from

weakly-supervised to fully-supervised detectors/segmentors.

By learning and leveraging visual and lingual similarities be-

tween the novel and base classes, we transfer those mappings

to obtain detectors/segmentors for novel classes; refining

them with a few novel class instance-level annotated sam-

ples, if available. The overall model is end-to-end trainable

and highly flexible1. Through extensive experiments on MS-

COCO [32] and Pascal VOC [14] benchmark datasets we

show improved performance in a variety of settings.

1. Introduction
Over the past decade CNNs have emerged as the dominant

building blocks for various computer vision understanding

tasks, including object classification [21, 45, 52], detection

[33, 42, 43], and segmentation [8, 20]. Architectures based

on Faster R-CNN [43], Mask R-CNN [20] and YOLO [42]

have achieved impressive performance on a variety of core vi-

sion tasks. However, traditional CNN-based approaches rely

on lots of supervised data for which the annotation efforts

can be time-consuming and expensive [22, 29]. While image-

level class labels are easy to obtain, more structured labels

such as bounding boxes or segmentations are difficult and

1Code is available at https://github.com/ubc-vision/UniT
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Figure 1: Semi-supervised Any-shot Detection and Seg-

mentation. The data used in our setting is categorized in

two ways: (1) image-level classification data for all ob-

ject classes, and (2) abundant instance data for base object

classes and limited (possibly zero) instance data for novel

object classes, with the aim to obtain a model that learns to

detect/segment both base and novel objects at test time.

expensive2. Further, in certain domains (e.g., medical imag-

ing) more detailed labels may require subject expertise. The

growing need for efficient learning has motivated develop-

ment of various approaches and research sub-communities.

On one end of the spectrum, zero-shot learning methods

require no visual data and use auxiliary information, such

as attributes or class names, to form detectors for unseen

classes from related seen category detectors [3, 16, 40, 65].

Weakly-supervised learning methods [2, 5, 12, 29, 34, 61]

aim to utilize readily available coarse image-level labels for

more granular downstream tasks, such as object detection

[3, 40] and segmentation [29, 71]. Most recently, few-shot

learning [1, 41, 49, 60] has emerged as a learning-to-learn

paradigm which either learns from few labels directly or

by simulation of few-shot learning paradigm through meta-

learning [15, 47, 57]. An interesting class of semi-supervised

methods [17, 22, 26, 56, 58, 68] have emerged which aim

2Segmentation annotations in PASCAL VOC take 239.7 seconds/image,

on average, as compared to 20 seconds/image for image-level labels [4].
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to transfer knowledge from abundant base classes to data-

starved novel classes, especially for granular instance-level

visual understanding tasks. However, to date, there isn’t

a single, unified framework that can effectively leverage

various forms and amounts of training data (zero-shot to

fully supervised).

We make two fundamental observations that motivate

our work. First, image-level supervision is abundant, while

instance-level structured labels, such as bounding boxes and

segmentation masks, are expensive and scarce. This is re-

flected in the scales of widely used datasets where classifi-

cation tasks have > 5K classes [28, 52] while the popular

object detection/segmentation datasets, like MSCOCO [32],

have annotations for only 80 classes. A similar observation

was initially made by Hoffman et al. [22] and other semi-

supervised [26, 56, 58] approaches. Second, the assumption

of no instance-level supervision for target classes (as is the

case for semi-supervised [22, 26, 56, 58] and zero-shot meth-

ods [3, 16, 40, 65]) is artificial. In practice, it is often easy

to collect few instance-level annotations and, in general, a

good object detection/segmentation model should be robust

and work with any amount of available instance-level su-

pervision. Our motivation is to bridge weakly-supervised,

zero- and few-shot learning paradigms to build an expres-

sive, simple, and interpretable model that can operate across

types (weak/strong) and amounts of instance-level supervi-

sion (from 0 to 90+ instance-level samples per class).

We develop a unified semi-supervised framework (UniT)

for object detection and segmentation that scales with dif-

ferent levels of instance-level supervision (see Figure 1).

The data used in training our model is categorized in two

ways, (1) image-level classification data for all the object

classes, and (2) abundant detection data for a set of base

object classes and limited (possibly zero) detection data for

a set of novel object classes, with the aim to obtain a model

that learns to detect both base and novel objects at test time.

Our algorithm, illustrated in Figure 2, jointly learns weak-

detectors for all the object classes, from image-level clas-

sification data, and supervised regressors/segmentors on

top of those for base classes (based on instance-level an-

notations in a supervised manner). The classifiers, regres-

sors and segmentors of the novel classes are expressed as a

weighted linear combination of its base class counterparts.

The weights of the combination are determined by a multi-

modal similarity measure: lingual and visual. The key in-

sight of our approach is to utilize the multi-modal similarity

measure between the novel and base classes to enable effec-

tive knowledge transfer and adaptation. The adopted novel

classifier/regressors/segmentors can further be refined based

on instance-level supervision, if any available. We experi-

ment with the widely-used detection/segmentation datasets

- Pascal VOC [13] and MSCOCO [32], and compare our

method with state-of-the-art few-shot, weakly-supervised,

and semi-supervised object detection/segmentation methods.

Contributions: Our contributions can be summarized as fol-

lows: (1) We study the problem of semi-supervised object de-

tection and segmentation in light of image-level supervision

and limited instance-level annotations, ranging from no data

(zero-shot) to a few (few-shot); (2) We propose a general,

unified, interpretable, and flexible end-to-end framework

that, by leveraging a learned multi-modal (lingual + visual)

similarity metric, can adopt classifiers/detectors/segmentors

for novel classes by expressing them as linear combinations

of their base class counterparts. (3) In the context of our

model, we contrast the relative importance of weak image-

level supervision with strong instance-level supervision, and

highlight the importance of the former under a small fixed

annotation budget (4) We illustrate the flexibility and effec-

tiveness of our model by applying it to a variety of tasks (ob-

ject detection and segmentation) and datasets (Pascal VOC

[13], MSCOCO [32]); showing state-of-the-art performance.

We get up to 23% relative improvement in mAP over the

closest semi-supervised methods [17], and up to 16% gain

over the best performing few-shot method [62] under a fixed

annotation budget. We conduct comprehensive comparisons

across settings, tasks, types and levels of supervision.

2. Related Work
Few-shot object detection: Object detection with lim-

ited data was initially explored in a transfer learning set-

ting by Chen et al. [7]. In the context of meta-learning

[1, 15, 41, 49, 60], Kang et al. [24] developed a few-shot

model where the learning procedure is divided into two

phases: first the model is trained on a set of base classes

with abundant data using episodic tasks, then, in the second

phase, a few examples of novel classes and base classes are

used for fine tuning the model. Following this formulation,

[63, 67] employed better performing architecture - Faster

R-CNN [43], instead of a one-stage YOLOv2 [42]. Yan et

al. [67] extended the problem formulation to account for seg-

mentation in addition to detection. In contrast to the above

approaches, Wang et al. [62] showed that meta-learning is

not a crucial ingredient to Few-shot object detection, and

simple fine-tuning produces better detectors. Similar to the

above works, we also adopt the two-phase learning proce-

dure. However, we fundamentally differ in assuming that

easily attainable extra supervision, in the form of image-level

data, over all the classes is available. Unlike [63], we learn a

semantic mapping between weakly-supervised detectors and

detectors obtained using a large number of examples.

Weakly-supervised object detection: Weak supervision

in object detection takes the form of image-level labels,

usually coupled with bounding box proposals [59, 73],

thereby representing each image as a bag of instances

[2, 5, 9, 12, 18, 34, 44, 50, 54, 55, 61, 70]. Bilen et al. [5] pro-

posed an end-to-end architecture which softly labeled object
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proposals and uses a detection stream, in addition to classifi-

cation stream, to classify them. Further extensions followed,

Diba et al. [12] incorporated better proposals into a cascaded

deep network; Tang et al. [55] proposed an Online Instance

Classifier Refinement (OICR) algorithm which iteratively

refines predictions. More recently, further improvements

were made by combining weakly-supervised learning with

strongly-supervised detectors, by treating predicted locations

from the weakly-supervised detector as pseudo-labels for a

strongly-supervised variant [2, 61]. In this work, we choose

to adopt and build on top of single-stage OICR [55], hence

enabling end-to-end training. However, our approach is not

limited to the choice of weakly-supervised architecture.

Semi-supervised object detection: Approaches under

semi-supervised setup assume abundant detection data for

base classes and no detection data for novel classes, in ad-

dition to weak supervision for all the classes. The methods

in this category first learn weak classifiers for all classes

using abundant weak supervision, then fine-tune base classi-

fiers into detectors using abundant detection data, and finally

transfer this transformation to obtain detectors for novel

classes using an external (or learned) similarity measure be-

tween base and novel classes. LSDA [22], being the first,

formed similarity based on L2-normalized weak classifier

weights. Tang et al. [56] extended this approach to include

semantic and visual similarity explicitly. DOCK [26] ex-

panded the types of similarities to include spatial and at-

tribute cues using external knowledge sources. Other works

leverage semantic hierarchies of classes, such as Yang et

al. [68] proposes a class split based on granularity of classes,

and transfers knowledge from coarse to fine grained classes.

Uijlings et al. [58] uses a proposal generator trained on

base classes, and transfers the proposals from base to novel

classes by computing their similarity on a tree based on Ima-

genet semantic hierarchy [45]. Similar to the above methods

we also use visual and lingual similarities between base and

novel classes, but consider a more general problem setting

where we have varying degrees of detection supervision for

novel classes ranging from zero to a few k-samples per class.

Unique, and closest to our setup, is NOTE-RCNN [17].

In [17], few-k detection samples for novel classes are used

as seed annotations, based on which training-mining [55, 58]

is employed. Specifically, they initialize detectors for novel

classes by training them with few seed annotations, and

iteratively refine them by retraining with mined bounding

boxes for novel classes. They transfer knowledge indirectly

in the form of losses that act as regularizers. Our approach,

on the other hand, takes on a simpler and more intuitive

direction where we first transfer the mappings from base to

novel classes, and use few seed annotations (if available) to

fine-tune the detectors. Despite being simpler, our approach

is more accurate, and works in the k = 0 regime. Further,

unlike all the above semi-supervised approaches , we transfer

across tasks, including regression and segmentation.

Zero-shot object detection: Zero-shot approaches rely on

auxiliary semantic information to connect base and novel

classes; e.g., text description of object labels or their at-

tributes [3, 16, 40, 65]. A common strategy is to represent all

classes as prototypes in the semantic embedding space and

to learn a mapping from visual features to this embedding

space using base class data; classification is then obtained

using nearest distance to novel prototypes. This approach

was expended to detection in [10, 27, 30, 46, 69, 72]. Bansal

et al. [3], similarly, proposed method to deal with situations

where objects from novel/unseen classes are present in the

background regions. We too explore the setting where we

are not provided with any instance data for novel classes, but

in addition assume weak-supervision for novel object classes

in the form of readily available [28] image-level annotations.

3. Problem Formulation
Here we formally introduce the semi-supervised any-shot

object detection / segmentation setup. We start by assum-

ing image-level supervision for all the classes denoted by

Dclass = {(xi,ai)}, where each image xi is annotated with

a label ai 2 {0, 1}|C|, where a
j
i = 1 if image xi contains at

least one j-th object, indicating its presence; ai = {aji}
|C|
j=1

with |C| being number of object classes.

We further extend the above image-level data with object-

instance annotations by following the few-shot object detec-

tion formulation [24, 63, 67]. We split the classes into two

disjoint sets: base classes Cbase and novel classes Cnovel;
Cbase \ Cnovel = ;. For base classes, we have abundant

instance data Dbase = {(xi, ci,yi)}, where xi is an input

image, ci = {ci,j} are class labels, yi = {bboxi,j} or

yi = {si,j} are corresponding bounding boxes and/or masks

for each instance j in image i. For novel classes, we have

limited instance data Dnovel = {(xi, ci,yi)}i=1,...,k, where

data for k-shot detection / segmentation only has k bounding

boxes / masks for each novel class in Cnovel. Note, these

annotations are assumed only for images in the train data.

Also, for semi-supervised zero-shot, k = 0 and Dnovel = ;.

4. Approach
We propose a single unified framework that leverages the

weak image-level supervision for object detection / segmen-

tation in any-shot setting. That is, our proposed approach

can seamlessly incorporate arbitrary levels of instance-level

supervision without the need to alter the architecture.

Our proposed framework builds upon the Faster R-CNN

[43] / Mask R-CNN [20] architecture. Faster R-CNN [43]

utilizes a two-stage pipeline in order to perform object detec-

tion. The first stage uses a region proposal network (RPN) to

generate class-agnostic object region proposals {rboxi,j}
for image i. The second stage is a detection network (Fast

R-CNN [19]) that performs RoI pooling, forming feature

vector zi,j = RoIAlign(xi, rboxi,j) for proposal j in im-
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