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Abstract

Methods for object detection and segmentation rely on

large scale instance-level annotations for training, which

are difficult and time-consuming to collect. Efforts to allevi-

ate this look at varying degrees and quality of supervision.

Weakly-supervised approaches draw on image-level labels to

build detectors/segmentors, while zero/few-shot methods as-

sume abundant instance-level data for a set of base classes,

and none to a few examples for novel classes. This taxonomy

has largely siloed algorithmic designs. In this work, we aim

to bridge this divide by proposing an intuitive and unified

semi-supervised model that is applicable to a range of super-

vision: from zero to a few instance-level samples per novel

class. For base classes, our model learns a mapping from

weakly-supervised to fully-supervised detectors/segmentors.

By learning and leveraging visual and lingual similarities be-

tween the novel and base classes, we transfer those mappings

to obtain detectors/segmentors for novel classes; refining

them with a few novel class instance-level annotated sam-

ples, if available. The overall model is end-to-end trainable

and highly flexible1. Through extensive experiments on MS-

COCO [32] and Pascal VOC [14] benchmark datasets we

show improved performance in a variety of settings.

1. Introduction
Over the past decade CNNs have emerged as the dominant

building blocks for various computer vision understanding

tasks, including object classification [21, 45, 52], detection

[33, 42, 43], and segmentation [8, 20]. Architectures based

on Faster R-CNN [43], Mask R-CNN [20] and YOLO [42]

have achieved impressive performance on a variety of core vi-

sion tasks. However, traditional CNN-based approaches rely

on lots of supervised data for which the annotation efforts

can be time-consuming and expensive [22, 29]. While image-

level class labels are easy to obtain, more structured labels

such as bounding boxes or segmentations are difficult and

1Code is available at https://github.com/ubc-vision/UniT
∗Denotes equal contribution
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Figure 1: Semi-supervised Any-shot Detection and Seg-

mentation. The data used in our setting is categorized in

two ways: (1) image-level classification data for all ob-

ject classes, and (2) abundant instance data for base object

classes and limited (possibly zero) instance data for novel

object classes, with the aim to obtain a model that learns to

detect/segment both base and novel objects at test time.

expensive2. Further, in certain domains (e.g., medical imag-

ing) more detailed labels may require subject expertise. The

growing need for efficient learning has motivated develop-

ment of various approaches and research sub-communities.

On one end of the spectrum, zero-shot learning methods

require no visual data and use auxiliary information, such

as attributes or class names, to form detectors for unseen

classes from related seen category detectors [3, 16, 40, 65].

Weakly-supervised learning methods [2, 5, 12, 29, 34, 61]

aim to utilize readily available coarse image-level labels for

more granular downstream tasks, such as object detection

[3, 40] and segmentation [29, 71]. Most recently, few-shot

learning [1, 41, 49, 60] has emerged as a learning-to-learn

paradigm which either learns from few labels directly or

by simulation of few-shot learning paradigm through meta-

learning [15, 47, 57]. An interesting class of semi-supervised

methods [17, 22, 26, 56, 58, 68] have emerged which aim

2Segmentation annotations in PASCAL VOC take 239.7 seconds/image,

on average, as compared to 20 seconds/image for image-level labels [4].
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to transfer knowledge from abundant base classes to data-

starved novel classes, especially for granular instance-level

visual understanding tasks. However, to date, there isn’t

a single, unified framework that can effectively leverage

various forms and amounts of training data (zero-shot to

fully supervised).

We make two fundamental observations that motivate

our work. First, image-level supervision is abundant, while

instance-level structured labels, such as bounding boxes and

segmentation masks, are expensive and scarce. This is re-

flected in the scales of widely used datasets where classifi-

cation tasks have > 5K classes [28, 52] while the popular

object detection/segmentation datasets, like MSCOCO [32],

have annotations for only 80 classes. A similar observation

was initially made by Hoffman et al. [22] and other semi-

supervised [26, 56, 58] approaches. Second, the assumption

of no instance-level supervision for target classes (as is the

case for semi-supervised [22, 26, 56, 58] and zero-shot meth-

ods [3, 16, 40, 65]) is artificial. In practice, it is often easy

to collect few instance-level annotations and, in general, a

good object detection/segmentation model should be robust

and work with any amount of available instance-level su-

pervision. Our motivation is to bridge weakly-supervised,

zero- and few-shot learning paradigms to build an expres-

sive, simple, and interpretable model that can operate across

types (weak/strong) and amounts of instance-level supervi-

sion (from 0 to 90+ instance-level samples per class).

We develop a unified semi-supervised framework (UniT)

for object detection and segmentation that scales with dif-

ferent levels of instance-level supervision (see Figure 1).

The data used in training our model is categorized in two

ways, (1) image-level classification data for all the object

classes, and (2) abundant detection data for a set of base

object classes and limited (possibly zero) detection data for

a set of novel object classes, with the aim to obtain a model

that learns to detect both base and novel objects at test time.

Our algorithm, illustrated in Figure 2, jointly learns weak-

detectors for all the object classes, from image-level clas-

sification data, and supervised regressors/segmentors on

top of those for base classes (based on instance-level an-

notations in a supervised manner). The classifiers, regres-

sors and segmentors of the novel classes are expressed as a

weighted linear combination of its base class counterparts.

The weights of the combination are determined by a multi-

modal similarity measure: lingual and visual. The key in-

sight of our approach is to utilize the multi-modal similarity

measure between the novel and base classes to enable effec-

tive knowledge transfer and adaptation. The adopted novel

classifier/regressors/segmentors can further be refined based

on instance-level supervision, if any available. We experi-

ment with the widely-used detection/segmentation datasets

- Pascal VOC [13] and MSCOCO [32], and compare our

method with state-of-the-art few-shot, weakly-supervised,

and semi-supervised object detection/segmentation methods.

Contributions: Our contributions can be summarized as fol-

lows: (1) We study the problem of semi-supervised object de-

tection and segmentation in light of image-level supervision

and limited instance-level annotations, ranging from no data

(zero-shot) to a few (few-shot); (2) We propose a general,

unified, interpretable, and flexible end-to-end framework

that, by leveraging a learned multi-modal (lingual + visual)

similarity metric, can adopt classifiers/detectors/segmentors

for novel classes by expressing them as linear combinations

of their base class counterparts. (3) In the context of our

model, we contrast the relative importance of weak image-

level supervision with strong instance-level supervision, and

highlight the importance of the former under a small fixed

annotation budget (4) We illustrate the flexibility and effec-

tiveness of our model by applying it to a variety of tasks (ob-

ject detection and segmentation) and datasets (Pascal VOC

[13], MSCOCO [32]); showing state-of-the-art performance.

We get up to 23% relative improvement in mAP over the

closest semi-supervised methods [17], and up to 16% gain

over the best performing few-shot method [62] under a fixed

annotation budget. We conduct comprehensive comparisons

across settings, tasks, types and levels of supervision.

2. Related Work
Few-shot object detection: Object detection with lim-

ited data was initially explored in a transfer learning set-

ting by Chen et al. [7]. In the context of meta-learning

[1, 15, 41, 49, 60], Kang et al. [24] developed a few-shot

model where the learning procedure is divided into two

phases: first the model is trained on a set of base classes

with abundant data using episodic tasks, then, in the second

phase, a few examples of novel classes and base classes are

used for fine tuning the model. Following this formulation,

[63, 67] employed better performing architecture - Faster

R-CNN [43], instead of a one-stage YOLOv2 [42]. Yan et

al. [67] extended the problem formulation to account for seg-

mentation in addition to detection. In contrast to the above

approaches, Wang et al. [62] showed that meta-learning is

not a crucial ingredient to Few-shot object detection, and

simple fine-tuning produces better detectors. Similar to the

above works, we also adopt the two-phase learning proce-

dure. However, we fundamentally differ in assuming that

easily attainable extra supervision, in the form of image-level

data, over all the classes is available. Unlike [63], we learn a

semantic mapping between weakly-supervised detectors and

detectors obtained using a large number of examples.

Weakly-supervised object detection: Weak supervision

in object detection takes the form of image-level labels,

usually coupled with bounding box proposals [59, 73],

thereby representing each image as a bag of instances

[2, 5, 9, 12, 18, 34, 44, 50, 54, 55, 61, 70]. Bilen et al. [5] pro-

posed an end-to-end architecture which softly labeled object
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proposals and uses a detection stream, in addition to classifi-

cation stream, to classify them. Further extensions followed,

Diba et al. [12] incorporated better proposals into a cascaded

deep network; Tang et al. [55] proposed an Online Instance

Classifier Refinement (OICR) algorithm which iteratively

refines predictions. More recently, further improvements

were made by combining weakly-supervised learning with

strongly-supervised detectors, by treating predicted locations

from the weakly-supervised detector as pseudo-labels for a

strongly-supervised variant [2, 61]. In this work, we choose

to adopt and build on top of single-stage OICR [55], hence

enabling end-to-end training. However, our approach is not

limited to the choice of weakly-supervised architecture.

Semi-supervised object detection: Approaches under

semi-supervised setup assume abundant detection data for

base classes and no detection data for novel classes, in ad-

dition to weak supervision for all the classes. The methods

in this category first learn weak classifiers for all classes

using abundant weak supervision, then fine-tune base classi-

fiers into detectors using abundant detection data, and finally

transfer this transformation to obtain detectors for novel

classes using an external (or learned) similarity measure be-

tween base and novel classes. LSDA [22], being the first,

formed similarity based on L2-normalized weak classifier

weights. Tang et al. [56] extended this approach to include

semantic and visual similarity explicitly. DOCK [26] ex-

panded the types of similarities to include spatial and at-

tribute cues using external knowledge sources. Other works

leverage semantic hierarchies of classes, such as Yang et

al. [68] proposes a class split based on granularity of classes,

and transfers knowledge from coarse to fine grained classes.

Uijlings et al. [58] uses a proposal generator trained on

base classes, and transfers the proposals from base to novel

classes by computing their similarity on a tree based on Ima-

genet semantic hierarchy [45]. Similar to the above methods

we also use visual and lingual similarities between base and

novel classes, but consider a more general problem setting

where we have varying degrees of detection supervision for

novel classes ranging from zero to a few k-samples per class.

Unique, and closest to our setup, is NOTE-RCNN [17].

In [17], few-k detection samples for novel classes are used

as seed annotations, based on which training-mining [55, 58]

is employed. Specifically, they initialize detectors for novel

classes by training them with few seed annotations, and

iteratively refine them by retraining with mined bounding

boxes for novel classes. They transfer knowledge indirectly

in the form of losses that act as regularizers. Our approach,

on the other hand, takes on a simpler and more intuitive

direction where we first transfer the mappings from base to

novel classes, and use few seed annotations (if available) to

fine-tune the detectors. Despite being simpler, our approach

is more accurate, and works in the k = 0 regime. Further,

unlike all the above semi-supervised approaches , we transfer

across tasks, including regression and segmentation.

Zero-shot object detection: Zero-shot approaches rely on

auxiliary semantic information to connect base and novel

classes; e.g., text description of object labels or their at-

tributes [3, 16, 40, 65]. A common strategy is to represent all

classes as prototypes in the semantic embedding space and

to learn a mapping from visual features to this embedding

space using base class data; classification is then obtained

using nearest distance to novel prototypes. This approach

was expended to detection in [10, 27, 30, 46, 69, 72]. Bansal

et al. [3], similarly, proposed method to deal with situations

where objects from novel/unseen classes are present in the

background regions. We too explore the setting where we

are not provided with any instance data for novel classes, but

in addition assume weak-supervision for novel object classes

in the form of readily available [28] image-level annotations.

3. Problem Formulation
Here we formally introduce the semi-supervised any-shot

object detection / segmentation setup. We start by assum-

ing image-level supervision for all the classes denoted by

Dclass = {(xi,ai)}, where each image xi is annotated with

a label ai 2 {0, 1}|C|, where a
j
i = 1 if image xi contains at

least one j-th object, indicating its presence; ai = {aji}
|C|
j=1

with |C| being number of object classes.

We further extend the above image-level data with object-

instance annotations by following the few-shot object detec-

tion formulation [24, 63, 67]. We split the classes into two

disjoint sets: base classes Cbase and novel classes Cnovel;
Cbase \ Cnovel = ;. For base classes, we have abundant

instance data Dbase = {(xi, ci,yi)}, where xi is an input

image, ci = {ci,j} are class labels, yi = {bboxi,j} or

yi = {si,j} are corresponding bounding boxes and/or masks

for each instance j in image i. For novel classes, we have

limited instance data Dnovel = {(xi, ci,yi)}i=1,...,k, where

data for k-shot detection / segmentation only has k bounding

boxes / masks for each novel class in Cnovel. Note, these

annotations are assumed only for images in the train data.

Also, for semi-supervised zero-shot, k = 0 and Dnovel = ;.

4. Approach
We propose a single unified framework that leverages the

weak image-level supervision for object detection / segmen-

tation in any-shot setting. That is, our proposed approach

can seamlessly incorporate arbitrary levels of instance-level

supervision without the need to alter the architecture.

Our proposed framework builds upon the Faster R-CNN

[43] / Mask R-CNN [20] architecture. Faster R-CNN [43]

utilizes a two-stage pipeline in order to perform object detec-

tion. The first stage uses a region proposal network (RPN) to

generate class-agnostic object region proposals {rboxi,j}
for image i. The second stage is a detection network (Fast

R-CNN [19]) that performs RoI pooling, forming feature

vector zi,j = RoIAlign(xi, rboxi,j) for proposal j in im-
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Figure 2: Overall Architecture. We form detectors/segmentors for base classes as a refinement on top of weak detectors.

The detectors/segmentors for novel classes utilize a similarity weighed transfer (pink boxes) from the base class refinements.

In a k-shot setting, (few) novel class instance annotations are incorporated through direct adaptation of the resulting novel

detectors/segmentors through fine-tuning. All detectors are built on top of Faster/Mask RCNN architecture which comprises of

classification and regression heads with shared backbone (in cyan) and simultaneously trained region proposal network (RPN).

age i, and learns to classify this RoI feature vector z (we

drop proposal and image indexing for brevity for remain-

der of the section) into one of the object classes and refine

the bounding box proposals using a class-aware regressors.

Conceptually, an R-CNN object detector can be thought of

as a combination of a classifier and regressor (see Figure

2). Mask R-CNN [20] is a simple extension to the Faster

R-CNN framework, wherein an additional head is utilized in

the second stage to predict the instance segmentation masks.

Figure 2 details the proposed architecture. The model con-

sists of two branches: i) the weakly-supervised branch that

trains detectors ĉ = softmax(fWweak(z)) using image-

level supervision Dclass, and ii) a supervised branch that

uses detection data Dbase/Dnovel to learn a refinement map-

ping from the weak detector to category-aware classifiers,

regressors, and segmentors fW∗(z); ⇤ 2 {cls, reg, seg},

which are used in the second stage of Faster / Mask R-CNN.

Note that weak detectors simply output the proposal box of

the pooled feature vector as the final location ŷ = rbox;

while refined detectors are able to regress a better box. Here

fW(·) is a learned neural network function parametrized by

W. We jointly train both branches and the RPN, and learning

is divided into two stages: base-training and fine-tuning3.

Base-training: During base-training, instances from Dbase

are used to obtain a detector / segmentation network for

the base classes Cbase. Specifically, for each b 2 Cbase,

category-aware classifiers and regressors for the base classes

are formulated as additive refinements to their corresponding

weak counterparts. For region classifiers this takes the form

of: ĉ = argmax
Cbase

h

softmax

⇣

fWcls
base

(z)
⌘i

, where

fWcls
base

(z) = fWweak
base

(z) + f∆Wcls
base

(z), (1)

where f∆Wcls
base

(z) is a zero-initialized residual to the logits

3We use the nomenclature introduced in [24].

of the weakly supervised detector. The regressed object

location is similarly defined as:

ŷ = rbox+ fWreg

base
(z). (2)

Finally, as there is no estimate for the segmentation masks

in the first stage of Mask R-CNN [20], ŷ = fWseg

base
(z) is a

residual over rbox learned directly from base annotations.

Novel fine-tuning (k > 0): In the fine-tuning phase, the

detectors / segmentors of the base classes are used to transfer

information to the classes in Cnovel. The network is also

fine-tuned on Dnovel, which, for a value of k, contains k

bounding boxes / masks for novel and base classes. Here

we consider the case of k > 0; we later address k = 0 case,

which does not require fine-tuning. The key insight of our ap-

proach is to use additional visual and lingual similarities be-

tween the novel and base classes to enable effective transfer

of the network onto the novel classes under varying degrees

of supervision. Contrary to existing work [22, 56, 26] that

only consider information from base category-aware classi-

fiers, our approach additionally learns a mapping from base

category-aware regressors and segmentors to obtain more

accurate novel counterparts. For a specific proposal rbox

with features z, let S(z) 2 R
|Cnovel|⇥|Cbase| denote similar-

ity between base classes and novel classes. The dependence

on z stems from visual component of the similarity and is

discussed in Section 4.2. Given this, for each proposal z, the

category-aware classifier for the novel classes is obtained as

follows: ĉ = argmax
Cnovel

h

softmax

⇣

fWcls
novel

(z)
⌘i

, where

fWcls
novel

(z) can be written as,

fWweak
novel

(z)
| {z }

weak-detectors

+S(z)T f∆Wcls
base

(z)
| {z }

instance-level transfer
from base classes

+ f∆Wcls
novel

(z)
| {z }

instance-level
direct adaptation

(3)

where S(z) = softmax(Slin � Svis(z)), which is com-

puted along the columns in S(z), and � denotes broadcast
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of vector similarity Svis(z) 2 R
|Cbase| followed by element-

wise product with lingual similarity Slin 2 R
|Cnovel|⇥|Cbase|.

The interpretation of Eq.(3) is actually rather simple – we

first refine the weak detectors for novel classes by similar-

ity weighted additive refinements from base classes (e.g.,

novel class motorbike may relay on base class bicycle

for refinement; illustrations in supp. Sec. H.), denoted by

“instance-level transfer from base classes”. We then further

directly adapt the resulting detector with few instances of

the novel class (last term). Similarly, for each z, the novel

class object regressor can be obtained as,

ŷ = rbox+ fWreg

novel
(z)

= rbox+ ST (z)fWreg

base
(z)

| {z }

instance-level transfer
from base classes

+ f∆W
reg

novel
(z)

| {z }

instance-level
direct adaptation

(4)

Finally, the segmentation head fWseg

novel
(z) can be obtained

as follows (additional details in appendix Section A),

ŷ = fWseg

novel
(z) = ST (z)fWseg

base
(z)

| {z }

instance-level transfer
from base classes

+ f∆W
seg

novel
(z)

| {z }

instance-level
direct adaptation

(5)

Semi-supervised zero-shot (k=0): As we mentioned pre-

viously, our model is also readily applicable when Cnovel =
;. This is a special case of the formulation above, where

fine-tuning is not necessary or possible, and we only rely

on base training and apply novel class evaluation procedure.

The predictions for novel classes can be done as in Eq.(3),

Eq.(4), and Eq.(5), but omitting the “instance-level direct

adaptation” term in all three cases.

4.1. Weakly-Supervised Detector

As mentioned earlier, our approach leverages detectors

trained on image level annotations to learn a mapping to

supervised detectors/segmentors. We highlight that our ap-

proach is agnostic to the method used to train the weakly-

supervised detector, and most of the existing approaches

[2, 5, 54, 55] can be integrated into our framework. We, how-

ever, use the Online Instance Classifier Refinement (OICR)

architecture proposed by Tang et al. [55] due to its simple

architecture. OICR has R “refinement” modules fWweak
r

(z)
that progressively improve the detection quality. These in-

dividual “refinement” modules are combined to obtain the

final prediction as follows,

â = softmax [fWweak(z)] = softmax

"

1

R

X

r

fWweak
r

(z)

#

(6)

We use the same loss formulation Lweak(a, â) described

in [55], which compares predicted (â) and ground truth (a)

class labels, to train the OICR module (see Sect. 4.3). For

additional details, we refer the reader to [55].

4.2. Similarity Matrices

As described in Eq.(3), (4), (5), the key contribution of

our approach is the ability to semantically decompose the

classifiers, detectors and segmentors of novel classes into

their base classes’ counterparts. To this end, we define a

proposal-aware similarity S(z) 2 R
|Cnovel|⇥|Cbase|, where

each element captures the semantic similarity of novel class

n to base class b. We assume S(z) can be decomposed into

two components: lingual Slin and visual Svis(z) similarity.

Lingual Similarity: This term captures linguistic similarity

between novel and base class labels. The intuition lies in the

observation that semantically similar classes often have cor-

related occurrences in textual data. For a novel class n and a

base class b, Slin
n,b = g>

n gb; gn and gb are 300-dimensional

GloVe [38] vector embeddings for n and b respectively4.

Visual Similarity: Complementary to the lingual com-

ponent, this proposal-aware similarity models the visual

likeness of a proposal z to base class objects. For each z,

we use the normalized predictions â of the weak detector

fWweak(z) (Eq. (6)) as a proxy for the likelihood of z be-

longing to a base class b. Specifically, let âb be the score

corresponding to the base class b. For a novel class n and a

base class b, the visual similarity Svis
n,b(z) is then defined as,

Svis
n,b(z) =

âb
P

i2base âi
(7)

Note, computing this visual similarity does not require learn-

ing additional parameters. Rather, it is just a convenient by-

product of training our model. As a result, this similarity can

be efficiently computed. Our visual similarity formulation,

in its essence, is similar to the one used in [56]. However,

[56] use image-level scores aggregated over a validation set,

lacking ability to adapt to a specific proposal. Additionally,

our framework is extremely flexible and can easily utilize

any additional information, akin to [26], to obtain a more

accurate semantic decomposition S(z). However, as comput-

ing these might require additional datasets and pre-trained

models, we refrain from incorporating them into our model.

4.3. Training

We now describe the optimization objective used to train

our proposed approach in an end-to-end fashion. During

base training, the objective can be written as,

Lt = Lrcnn + αLweak (8)

where Lrcnn is the Faster/Mask R-CNN [20, 43] objective,

and Lweak is the OICR [55] objective; α = 1 is the weight-

ing hyperparameter. In fine-tuning, we refine the model only

using Lrcnn. Note, our approach affords the flexibility to

either use pretrained proposals or jointly train a RPN during

4For class names that contain multiple words, we average individual

GloVe word embeddings.
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the base-training phase using instance-level base class anno-

tations. Fine-tuning only effects last term of Eq.(3), (4), and

(5), while everything else is optimized using base training

objective. Further details are in suppl. Sec. B.

5. Experiments

We evaluate our approach against related methods in the

semi-supervised and few-shot domain. Comparison against

work in the weakly-supervised literature is provided in sup-

plementary Sec. E. Note, for base classes, across all experi-

ments, the same images are used for both image and instance

level annotations. This does not induce any additional cost

as instance-level labels implicitly give image-level labels.

5.1. Semi-supervised Object Detection

Datasets. We evaluate the performance of our framework on

MSCOCO [32] 2015 and 2017 datasets. Similar to [17, 26],

we divide the 80 object categories into 20 base and 60 novel

classes, where the base classes are identical to the 20 VOC

[14] categories. For our model and the baselines, we assume

image-level supervision for all 80 classes, whereas instance-

level supervision is only available for 20 base classes. For

few-shot experiments (k > 0) we additionally assume k

instance-level annotations for the novel classes.

Semi-supervised zero-shot (k=0). Table 1 compares the

performance of our proposed approach against the most

relevant semi-supervised zero-shot (k = 0) methods [22, 23,

26, 56] on novel classes. As an upper-bound, we also show

the performance of a fully-supervised model. To ensure

fair comparison, we follow the experimental setting in the

strongest baseline DOCK [26], and borrow performance for

[22, 23, 56] from their paper. All models are trained using

the same backbone: VGG-CNN-F [6] which is pretrained on

the ImageNet dataset [11]. Similar to [26], we use the MCG

[39] proposals instead of training the RPN. The models are

evaluated using mAP at IoU threshold 0.5 denoted as AP50.

UniT beats the closest baseline, DOCK [26], by a sig-

nificant margin (⇠16% on AP50), despite DOCK using

more sophisticated similarity measures for knowledge trans-

fer, which require additional data from VOC [14], Visual

Genome [25], and SUN [66] datasets. As DOCK only trans-

fers knowledge from base class classifiers, this performance

gap can be attributed to UniT additionally effectively trans-

ferring knowledge from base class regressors onto novel

class regressors (Eq. 4). Note, our work is complimentary

to DOCK. Their richer similarity measures can be easily

integrated into our framework by modifying S(z) (Sec. 4.2).

Semi-supervised few-shot (k > 0). Table 2 compares the

performance of our method with NOTE-RCNN [17], which

is the only relevant baseline under this setting, on novel

classes. We follow the experimental setting described in

[17], and our model is trained using the same backbone

as NOTE-RCNN: Inception-Resnet-V2 [53] pretrained on

the ImageNet classification dataset [11], where the RPN is

Method AP50 APS APM APL

LSDA [22] 4.6 1.2 5.1 7.8

LSDA+Semantic [56] 4.7 1.1 5.1 8.0

LSDA+MIL [23] 5.9 1.5 8.3 10.7

DOCK [26] 14.4 2.0 12.8 24.9

UniT (Ours) 16.7 3.2 16.6 27.3

Full Supervision [26] 25.2 5.8 26.0 41.6

Table 1: Comparison to semi-supervised zero-shot. All

models are trained on VGG-CNN-F [6] backbone.

Method / Shots (k) 12 33 55 76 96

NOTE-RCNN [17] 14.1 14.2 17.1 19.8 19.9

UniT (Ours) 14.7 17.4 19.3 20.9 22.1

Table 2: Comparison to semi-supervised few-shot. All

models are trained on Inception-ResNet-v2 [53] backbone.

Mean Average Precision (mAP) on novel classes averaged

over IoU thresholds in [0.5 : 0.05 : 0.95] is reported.

learned from the instance-level base data. Similar to [17],

we assume k instance-level annotations for the novel classes,

where k 2 {12, 33, 55, 76, 96}. To ensure fair comparison,

the performance of NOTE-RCNN [17] is taken from their

published work5. We report mAP on novel classes averaged

over IoU thresholds in [0.5 : 0.05 : 0.95].
UniT outperforms NOTE-RCNN [17] on all values of

k, providing an improvement of up to ⇠23%. Contrary to

NOTE-RCNN that only trains novel regressors on the k shots,

UniT benefits from effectively mapping information from

base regressors to novel regressors. In addition, UniT also

has the advantage of allowing end-to-end training while si-

multaneously being simple and interpretable. NOTE-RCNN,

on the other hand, employs a complex multi-step bounding

box mining framework that takes longer to train on novel

classes. Note that, in principle, one could incorporate the

box mining mechanism into our framework as well.

5.2. Few-shot Object Detection and Segmentation

Datasets. We evaluate our models on VOC 2007 [14], VOC

2012 [13], and MSCOCO [32], as used in previous few-shot

object detection and segmentation works [24, 62, 63, 67].

For both detection and segmentation, we consistently follow

the data splits introduced and used in [24, 67]. In case of

VOC, we use VOC 07 test set (5k images) for evaluation and

VOC 07+12 trainval sets (16.5k images) for training. The

20 object classes are divided into 3 different class split sets,

each with 15 base and 5 novel classes. For novel classes,

images provided by Kang et al. [24] are used for k-shot fine-

tuning.We report mean Average Precision (mAP) on novel

classes and use a standard IoU threshold of 0.5 [14]. For

MSCOCO [32], consistent with [24], we use 5k images from

the validation set for evaluation and the remaining 115k

trainval images for training. We assign 20 object classes

from VOC as the novel classes and remaining 60 as the base

5[17] report results as a plot instead of listing the raw values. As the

authors were unreachable, Table 2 lists our best interpretation of the plot.
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Novel Set 1 Novel Set 2 Novel Set 3

Method / Shots 0 1 2 3 5 10 0 1 2 3 5 10 0 1 2 3 5 10

Joint FRCN [67] - 2.7 3.1 4.3 11.8 29.0 - 1.9 2.6 8.1 9.9 12.6 - 5.2 7.5 6.4 6.4 6.4

Transfer FRCN [62] - 15.2 20.3 29.0 40.1 45.5 - 13.4 20.6 28.6 32.4 38.8 - 19.6 20.8 28.7 42.2 42.1

Few-Shot

Kang et al. [24] - 14.8 15.5 26.7 33.9 47.2 - 15.7 15.3 22.7 30.1 39.2 - 19.2 21.7 25.7 40.6 41.3

Wang et al. [63] - 18.9 20.6 30.2 36.8 49.6 - 21.8 23.1 27.8 31.7 43.0 - 20.6 23.9 29.4 43.9 44.1

Yan et al. [67] - 19.9 25.5 35.0 45.7 51.5 - 10.4 19.4 29.6 34.8 45.4 - 14.3 18.2 27.5 41.2 48.1

Wang et al. [62] - 39.8 36.1 44.7 55.7 56.0 - 23.5 26.9 34.1 35.1 39.1 - 30.8 34.8 42.8 49.5 49.8

Semi+Any Shot UniT (Ours) 75.6 75.7 75.8 75.9 76.1 76.7 56.9 57.2 57.4 57.9 58.2 63.0 67.5 67.6 68.1 68.2 68.6 70.0

Fully-supervised FRCN 84.71 82.89 82.57

Table 3: Few-shot object detection on VOC. FRCN = Faster R-CNN with ResNet-101 backbone. Mean AP50 reported on

novel classes; performance on base classes is reported in supplementary Section I.

#Shots AP AP50 AP75 APS APM APL

k = 0 UniT (Ours) 18.9 36.1 17.5 8.7 20.4 27.6

k = 10

Transfer: FRCN [67] 6.5 13.4 5.9 1.8 5.3 11.3

Kang et al. [24] 5.6 12.3 4.6 0.9 3.5 10.5

Wang et al. [63] 7.1 14.6 6.1 1.0 4.1 12.2

Yan et al. [67] 8.7 19.1 6.6 2.3 7.7 14.0

Wang et al. [62] 10.0 - 9.3 - - -

UniT (Ours) 21.7 40.8 20.6 9.1 23.8 31.3

Table 4: Few-shot object detection on COCO. FRCN us-

ing ResNet-50 backbone. Full table in suppl. Section C.

classes. We report the standard evaluation metric on COCO

[43]. In line with the baselines, for both VOC and MSCOCO,

the RPN is trained jointly using base class annotations.

PASCAL VOC Detection. Table 3 summarizes the results

on VOC for three different novel class splits with different

k-shot settings. Following [62, 67], UniT assumes Faster

R-CNN [43] with an ImageNet [45] pretrained ResNet-101

[21] backbone. UniT outperforms the related state-of-the-

art methods on all values of k, including the scenario with

no novel class instance-level supervision (k = 0), show-

ing the effectiveness of transfer from base to novel classes.

As UniT uses additional weak image-level data for novel

classes, this is not an equivalent comparison (see Sec. 5.3 for

comparisons under similar annotation budget). However, we

highlight that such data is readily available, cheaper to obtain

[4], and provides significant performance improvements.

MS-COCO Detection. Table 4 describes the results on

COCO dataset. Similar to [67, 62], we use ImageNet [11]

pretrained ResNet-50 [21] as the backbone. We observe

similar trends as above. In addition, our performance consis-

tently increases with the value of k even on larger datasets,

showing that UniT is effective and can easily scale to differ-

ent amounts of instance-level supervision. The full table is in

suppl. Sec. C. Figure 3 shows qualitative results, indicating

our method is able to correctly detect novel classes.

MS-COCO Segmentation. Table 5 summarizes the re-

sults. Similar to [67], we choose an ImageNet[11] pretrained

ResNet-50 [21] backbone. UniT consistently improves over

[67], demonstrating that our approach is not limited to bound-

ing boxes, and is able to generalize over the type of down-

#Shots Method AP AP50 AP75 APS APM APL

k = 0 UniT (Ours)
Box 20.2 36.8 19.5 8.5 20.9 28.9

Mask 17.6 32.7 17.0 5.6 17.6 27.7

k = 10
Yan et al. [67]

Box 5.6 14.2 3.0 2.0 6.6 8.8

Mask 4.4 10.6 3.3 0.5 3.6 7.2

UniT (Ours)
Box 22.8 41.6 21.9 9.4 24.4 32.3

Mask 20.5 38.6 19.7 6.0 20.5 31.8

Table 5: Few-shot instance segmentation on COCO. Com-

plete table is in supplementary Section D.

stream structured label by effectively transferring informa-

tion from base segmentations to novel segmentations. The

full table is provided in supplementary Section D. Figure 3

shows some qualitative results on k = 0 for novel classes.

Ablation. A complete ablation study on MSCOCO [32]

is provided in supplementary Section G. We report perfor-

mance on the novel split used by [67], starting with only

weak detectors and progressively adding the terms in Eq.(1),

(3), (4), and (5). Weighting with visual and lingual similarity

results in +1.4 AP50 improvement (Eq. (3)), transfer from

base regressors (Eq. (4)) provides an additional +7 AP50

imrovement. Finally, transfer from base class segmentations

(Eq. (5)) leads to an added gain of +7.5 on mask AP50.

5.3. Limited Annotation Budget
Compared to approaches in the few-shot detection (and

segmentation) domain like [24, 62, 63, 67], UniT assumes

additional image-level annotations for novel classes. We

argue this is a reasonable assumption considering that such

annotations are readily available in abundance for thousands

of object classes (⇠22K in ImageNet [11] and ⇠20K in

Open Image v4 dataset [28]). Experiments in Section 5.2

further highlight the performance improvements possible

by using such inexpensive data. However, this raises an

interesting question as to what form of supervision is more

valuable, if one is to collect it. To experiment with this, we

conceptually impose an annotation budget that limits the

number of novel class image-level annotations our approach

can use. For object detection on VOC [13], we assume 7
image-level annotations can be generated in the same time

as 1 instance-level annotation. This conversion factor of 7 is
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Figure 3: Qualitative Visualizations. Semi-supervised

zero-shot (k = 0) detection (top) and instance segmenta-

tion (bottom) performance on novel classes in MS-COCO

(color = category). See suppl. Section J for more examples.

motivated by the timings reported in [4] and is a conservative

estimate (details in suppl. Sec. F)6. For each value of k in

a few-shot setup, we train a variant of UniT, referred to as

UniTbudget=k, that only assumes 7 ⇥ k image-level anno-

tations for novel classes. We then compare the zero-shot

performance of UniTbudget=k against the corresponding k-

shot object detection benchmarks7 reported in [62]. Note,

UniTbudget=k assumes abundant image-level annotations for

base classes. However, as the same images are used for both

instance and image level annotations, this does not impose

any additional annotation cost when compared to baselines.

This setting enables apples-to-apples comparisons with the

baselines, while simultaneously contrasting the relative im-

portance of image-level and instance-level annotations.

Please refer to Section 5.2 for details on the dataset and

setup. Table 6 summarizes the results on VOC for three

novel class splits assuming different k-shot settings. Follow-

ing [62], all models use ResNet-101 [21] as the backbone.

For each split and k-shot, 10 repeated runs of UniTbudget=k

are averaged, each trained by selecting a different set of

7⇥k weakly-labelled novel class images. For a fixed budget,

equivalent to 10 instance-level annotations, we further ana-

lyze the relative importance of the two types of annotations

by varying the proportions of image and instance-level anno-

tations used. This is summarized in Table 7 for the first novel

split. Even under equal budget constraints, UniTbudget=k

outperforms the state-of-the-art [62] on multiple splits. This

highlights three key observations: i) image-level supervision,

which is cheaper to obtain [4], provides a greater ‘bang-for-

the-buck’ compared to instance-level supervision, ii) our

structured transfer from base classes is effective even under

limited novel class supervision, and iii) from Table 7, in a

low-shot and fixed budget setting, it is more beneficial to just

use weak supervision, instead of some combination of both.

Furthermore, as our approach is agnostic to the type of weak

6This factor is expected to be higher in practice, as we don’t consider

situations where boxes/masks are rejected and need to be redrawn [36].
7These benchmarks use multiple random splits as opposed to curated

splits used in [24] and Table 3. As per [62], this helps reduce variance.

#Shots Method Split 1 Split 2 Split 3

1

Kang et al. [24] 14.2± 1.7 12.3± 1.9 12.5± 1.6
Wang et al. [62] 25.3± 2.2 18.3± 2.4 17.9± 2.0

UniTbudget=1 (Ours) 28.3± 2.0 17.0± 1.9 26.2± 2.5

5

Kang et al. [24] 36.5± 1.4 31.4± 1.5 33.8± 1.4
Wang et al. [62] 47.9± 1.2 34.1± 1.4 40.8± 1.4

UniTbudget=5 (Ours) 50.9± 1.4 36.2± 1.7 47.4± 1.2

10
Wang et al. [62] 52.8± 1.0 39.5± 1.1 45.6± 1.1

UniTbudget=10 (Ours) 59.0± 1.5 40.8± 1.3 52.9± 1.1

Table 6: Limited annotation budget. Averaged AP50 for

10 random runs with 95% confidence interval estimate [62].

Method
Weak

Anno.(%)

Instance

Anno.(%)
AP50

Wang et al. [62] + 10-Shots 0 100 52.8± 1.0
UniTbudget=1 + 9-Shots 10 90 49.2± 0.6
UniTbudget=5 + 5-Shots 50 50 54.0± 0.8
UniTbudget=10 + 0-Shots 100 0 59.0± 1.5

Table 7: Using different annotation proportions. For the

same budget, we vary the amount of image/instance level an-

notation. Averaged AP50 for 10 random runs with 95% con-

fidence interval estimate of the mean values [62] is shown.

detector used, employing better weak detectors like [54, 2]

could further improve the performance of UniTbudget=k.

6. Discussion and Conclusion
We propose an intuitive semi-supervised model that is

applicable to a wide range of supervision: from zero to a few

instance-level samples per novel class. For base classes, our

model learns a mapping from weakly-supervised to fully-

supervised detectors/segmentors. By leveraging similarities

between the novel and base classes, we transfer those map-

pings to obtain detectors/segmentors for novel classes; re-

fining them with a few novel class instance-level annotated

samples, if available. This versatile paradigm works signifi-

cantly better than traditional semi-supervised and few-shot

detection and segmentation methods.
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