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ABSTRACT

We present an approach for generating pictorial storylines
from large collections of online photo streams shared by vis-
itors to theme parks (e.g. Disneyland), along with pub-
licly available information such as visitor’s maps. The story
graph visualizes various events and activities recurring across
visitors’ photo sets, in the form of hierarchically branching
narrative structure associated with attractions and districts
in theme parks. We first estimate story elements of each
photo stream, including the detection of faces and support-
ing objects, and attraction-based localization. We then cre-
ate spatio-temporal story graphs via an inference of sparse
time-varying directed graphs. Through quantitative eval-
uation and crowdsourcing-based user studies via Amazon
Mechanical Turk, we show that the story graphs serve as a
more convenient mid-level data structure to perform photo-
based recommendation tasks than other alternatives. We
also present storybook-like demo examples regarding explo-
ration, recommendation, and temporal analysis, which may
be most beneficial uses of the story graphs to visitors.

Categories and Subject Descriptors

1.4.9 [Image processing and computer vision|: Appli-
cations
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1. INTRODUCTION

Current technical advances, including widespread avail-
ability of mobile photo taking devices and ubiquitous net-
work connectivity, are changing the way we tell our sto-
ries. Personal storytelling is becoming more data-driven and
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viston-oriented; people can simply capture their memorable
moments by a stream of images, and then spontaneously
reuse them to deliver their own stories. In addition, with
the emergence of social networking, the sharing of such vi-
sual stories is becoming effortless. For example, even in a
single day, tens of thousands of people visit Disneyland, and
much of them take and are willing to share large streams of
photos that record their experiences with families or friends.
Each photo stream tells a slightly different story from its
own point of view, but by aggregating them, it is likely that
common storylines of Disneyland experience emerge. The
storylines can summarize a variety of visitors’ activity pat-
terns such as popular paths in the theme parks and temporal
changes of the flow in and out of the attractions.

In this paper, the term story refers to personal or collective
narrative, instead of a fictional story as is the case in novels,
games, or films. The personal narrative describes accounts
of specific events that have been personally experienced [9],
whereas the collective narrative is regarded as a collection
of personal narratives from different people that share the
similar experiences. We consider a photo stream of each vis-
itor as a visual instantiation of his or her personal narrative,
and the aggregation of photo streams as that of collective
narrative, assuming that photographers take pictures when
they encounter scenes or events that they want to remember
or tell a story about. We define a photo stream as a set of
images that are taken in sequence by a single photographer
within a fixed period of time (e.g. one day).

Fig.1 summarizes the problem statement. Our goal is
to develop an approach for creating and exploring spatio-
temporal storylines from large collections of photo streams
contributed by visitors to Disneyland, along with its public
information like visitor’s map. We also use meta-data of im-
ages such as timestamps and GPS information if available,
although they are often noisy and missing (e.g. only 19% of
photo streams in our dataset has GPS information). Tak-
ing advantage of computer vision techniques, we represent
the visual contents of images in the form of story elements
(e.g. human faces, supporting objects, and locations), and
automatically extract shared key moments and put them
together to create a story graph, which is a structural sum-
mary of branching narratives that visualize various events
and/or activities recurring across the input photo sets. To
show the usefulness of story graphs, we leverage them to per-
form photo-based exploration, recommendation, and tempo-
ral analysis tasks. For example, once we have story graphs
summarizing people’s experiences on their Disneyland trips,
we can recommend pieces of those experiences to new visi-
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Figure 1: (a) Given large sets of online photo streams shared by visitors to a theme park (e.g. Disneyland),
and its public information (e.g. visitor’s map), we create story graphs as a structural summary visualizing

various events or activities recurring across the visitors’ photo sets.

The story graphs are hierarchically

created to enable users to explore the stories between attractions in (b), and sub-stories inside the individual
attractions in (c)—(d). In (c), we show the connectivity between story subgraphs at the Enchanted Tiki Room,
and their details are given in (d). The photos in (c) are the first images of story subgraphs in (d).

tors, suggesting attractions, touring plans, or best ways to
experience a given attraction at a particular time of the day.

As a problem domain, we focus on theme parks, more
specifically Disneyland, for the following reasons. First, we
can easily obtain abundant visual data, because visiting a
theme park is a special leisure activity where much of vis-
itors are willing to take and share the pictures of their ex-
periences'. Second, stories play an important role in theme
parks for the purpose of user modeling, personalization, and
recommendation. Theme parks provide different sets of at-
tractions and entertainment, only parts of which are experi-
enced by individual visitors. Thus a large diversity of possi-
ble stories exist according to who visits when. Families with
children may prefer to play with the characters their kids
like. Such storylines may differ from those of young adults
who may enjoy more adventurous rides (e.g. roller coasters).
Finally, our story extraction and exploration in theme parks
can be easily extended to other leisure and entertainment
domains, such as city tours [15] and museum tours [30], as
long as they have sufficient sets of photo streams. Similar
to theme parks, cities also consist of multiple attractions
that are more sparsely distributed and events, attendance
of which differs by preference, time and visitor types.

Our story graphs can be used as mid-level data structure
for a variety of applications, including virtual exploration,
path planning, travel recommendations, and temporal min-
ing tasks, among many others. Usually theme park opera-
tors, including Disney, do not disclose any statistics on the
use of attractions. Thus, our story graphs can indirectly hint
the visitors’ behavior patterns. Compared to guided routes
and lists of events by travel agencies, our visual exploration
using story graphs directly builds upon consumer-generated
pictures, and thus reflects candid and spontaneous peer cos-
tumers’ experiences in the original visual forms. It could
be more synergetic to integrate our results with the official
Apps of theme parks (e.g. My Disney Ezperience mobile app
of Disneyland). Not only for visitors, our story graphs can
benefit theme park operators by providing an automatic tool
for monitoring the popularities of attractions. We also focus
on revealing in-depth branching stories at each attraction,
which are not easily mined from other sensor modalities.
For example, although a GPS tracker can more accurately

'For example, Disneyland is reported as the most geo-tagged
location in the world on Instagram in 2014, as shown in
http://time.com /3618002 /most-instagram-places-2014/.

localize the visitors’ paths, it cannot correctly discover the
visitors’ activities that occur inside individual attractions.

To conclude, we summarize the contributions of this pa-
per as follows. First, to the best of our knowledge, our
work is the first approach for creating spatio-temporal story
graphs from large sets of online photo streams, especially in
the domain of theme parks where the discovery of under-
lying stories is of a particular importance for user model-
ing, personalization and recommendation. Through quanti-
tative evaluation and crowdsourcing-based user studies with
Amazon Mechanical Turk, we show that the story graphs
serve as a convenient and mid-level data structure to which
many applications are supported by simple algorithms ap-
plied, including photo-based exploration, recommendation,
and temporal analysis. Second, we develop a scalable algo-
rithm for creating semantic story graphs, consisting of two
components: story element estimation and graph inference.
The story element estimation includes the detection of faces
and supporting objects, and attraction-based localization.
The graph inference algorithm builds a time-varying sparse
story graph directly from estimated story elements of photo
streams, while addressing several key challenges of large-
scale nature of our problems, including global optimality,
easy parallelization, and linear computation time.

2. RELATED WORK

We discuss some representative previous studies from four
lines of research that are closely related to our work.

Story extraction from Web data. In recent web min-
ing research, much work has been done to build and visual-
ize storylines from online text corpora such as news articles
and scientific papers [1, 5, 22, 26]. The work of [5, 22] ad-
dresses the problem of extracting diverse story threads from
large document collections. In [1], a probabilistic model
is presented to group incoming news articles into tempo-
rary but tightly-focused storylines, to identify prevalent top-
ics/keywords and evolving structure of stories. In [26], the
NIFTY is developed for real-time tracking of memes (e.g.
short textual phrases that travel and mutate on the Web)
from blog posts and news articles. From this line of research,
our work differs that we leverage image collections instead
of text data, to discover and explore the storylines of user
data.

Story extraction from visual data. The story has
been used as an important concept to build interactive video



summarization or editing [7, 29], in which the objective is
to summarize input video clips in a concise form (e.g. static
images, shorter videos, or language sentences) while preserv-
ing key moments of the videos and allowing users to intu-
itively explore or edit them. In this category of work, input
videos usually contain a small number of specified actors in
fixed scenes. In contrast, our main technical challenge is the
extraction of shared moments from photo streams that are
independently taken by multiple visitors at different time.

The story extraction has been also investigated in the im-
age domain as well. In [19], storyline-based summarization
is discussed for a small private photo album. However, it is
tested with only a small set of about 200 images from a sin-
gle user’s photo collection. This work is also related to our
previous work [12] that leverages a large set of Flickr images
to create photo storylines. However, [12] exploits only tem-
poral information between images, whereas we additionally
consider spatial information that synergetically interplays
with time. Thus, our approach also involves an image local-
ization task. Second, the algorithm of [12] defines the nodes
of graphs using low-level image features only, whereas we
here leverage high-level semantic story elements, including
the detection output of faces and supporting objects.

Data mining for tourism. As massive amounts of travel
data are available and the location-based systems prolifer-
ate, the data mining techniques begin offering significant
benefits on tourism analytics in various ways. Some no-
table examples include customized tour recommendations
in urban areas [6], discovery of international human mobil-
ity [25], recommendation of travel packages with considera-
tion of both tourists’ interests and travel costs [4], to name
a few. Geo-referenced Flickr pictures are also leveraged for
this purpose. In [14], representative and diverse travel routes
are discovered from the histories of tourists’ geotagged pho-
tos for landmarks. In [31], a diversity ranking method for
such trajectory patterns is proposed. Our main novelty is
that we take advantage of computer vision techniques to un-
derstand image contents, and thus we can possibly use all
the images no matter whether GPS information is available
or not. In addition, our idea of story-based summarization
and exploration is unique in this line of work.

Exploration of large collections of tourists’ images.
With recent popularity of online image sharing, there has
been a significant amount of effort for intuitively exploring
large collections of unstructured tourists’ photos. The work
of [10] organizes the Flickr images of landmarks by analyz-
ing the associated location information, tags, and contents.
One of early pioneering work is Photo Tourism [24], which
calibrates geo-tagged photos of tourist landmarks in a 3-
D space, and enables users to interactively browse them.
This work has been extended later in many different di-
rections. In [23], tourists’ paths around the landmarks are
discovered for better navigation of the 3-D scene. In [21],
a semantic navigation is established between regions of 3D
landmark models and their corresponding reference texts of
Wikipedia. In [15], online geo-tagged images are leveraged
to create tours of the world’s tourist sites on Google Maps.
Compared to this line of research, our work differs in that
we aim to build storylines, which illustrate a series of spatio-
temporal events or episodes without requiring availability of
accurate geometric information as input. Therefore, our sys-
tem can bypass the time-consuming step of reconstructing
3-D models.

| [ CA | FL [ PA [ TK [ HK [ HI [ N/A |
#PS | 6,402 | 11,437 | 1,707 | 1,849 | 856 | 120 | 5,400
#IM | 568.8 | 1,037.2 | 197.8 | 196.3 | 80.1 | 19.7 | 413.6

Table 1: The number of photo streams and images
(x10%) of the Disneyland dataset according to the
park locations. Total numbers of images and photo
streams are (2,513,367, 27,780), respectively. (CA:
California, FL: Florida, PA: Paris, TK: Tokyo, HK:
Hong Kong, HI: Hawaii, N/A: unknown or noisy).

Districts | Attractions | Dining | Entertainment
(DCA) 8 37 29 (1) 4
(DP) 8 63 22 (1) 8

Table 2: The attraction statistics of Disney Califor-
nia Adventure (DCA) and Disneyland Park (DP). The
numbers in parentheses are about character dining.

3. PROBLEM FORMULATION
3.1 The Input Data

The input of our approach is two-fold: a set of visitors’
photo streams and side information of the parks.

Photo streams. We download 3,602,727 unique images
from Flickr by querying multiple Disneyland related key-
words. Then, using the timestamp and user information
associated with each image, we obtain 27,780 photo streams
that contain more than 30 images. The input set of photo
streams is denoted by P = {P',--- PN}, where N is the
number of photo streams. We sort the pictures of each photo
stream by timestamps. Next we classify the photo streams
according to the park locations where they are recorded:
{California, Orlando, Tokyo, Paris, Hong Kong, Hawaii,
N/A}. The N/A label is tagged for the photo streams that
are not taken in any Disney parks or whose locations are
unknown. We use GPS information when available; in our
sets, 5,257 (19%) of photo streams include GPS informa-
tion. Next we exploit the location keywords (e.g. Califor-
nia, Florida) in the text data (e.g. tags and titles) associ-
ated with images. Table 1 summarizes the statistics of our
Disneyland dataset.

We apply our algorithm to the set of each park separately.
To make our discussion easier and more coherent, we hence-
forth focus on the two parks at California: Disney California
Adventure Park and Disneyland Park.

Side information about attractions. Disneyland parks
consist of multiple districts, each of which includes a sets
of attractions, dining, and other entertainment (e.g. pa-
rades and stage shows). Table 2 summarizes the statistics
obtained from Disney’s official maps. For simplicity, we
hereafter use the term attractions to indicate attractions,
dining, and entertainment events without distinction. We
denote the set of attractions by L. For dining, we con-
sider a character dining as a separate attraction, and all
the others as a single restaurant attraction. The character
dining (e.g. Ariel’s Grotto) is a restaurant where visitors
can take pictures with characters (e.g. Ariel the little mer-
maid). For each attraction, we download at maximum 1,000
top-ranked images from Google and Flickr by querying the
attraction name. We use the attraction images as training
data for various tasks of story element estimation, such as
image localization and supporting object detection, which
will be presented in Section 4. We also obtain the GPS
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Figure 2: Examples of images and GPS coordinates
for four attractions in the Fantasyland district of
Disneyland park. The attractions are identified by
Disney’s official map, and images are retrieved by
Google and Flickr image search. The GPS coordi-
nates are obtained from Google Maps.

coordinates of attractions from Google Maps, except for en-
tertainment events that do not happen in a specific location
(e.g. Mickey’s Soundsational Parade). Fig.2 shows sampled
training images and GPS coordinates of four attractions in
the Fantasyland district. Indeed, each attraction builds on a
unique theme, whose visual contents are clearly discrimina-
tive with other attractions. Thus, Google and Flickr images
found by attraction names yield an excellent repository that
captures various canonical views of the attractions.

3.2 The Storylines

The output of our algorithm is two-fold. First, we extract
story elements from all images of the photo streams using
computer vision techniques. Along with two low-level image
features denoted by v (section 4.1), we define four types
of story elements as story-related, high-level descriptors of
images in the context of theme parks: {faces, time, location,
supporting objects}, which are represented by four vectors:
{f,t,c,0}. We will explain each of them in section 4.2—4.4.

Based on the estimated story elements over photo streams,
the second output is the story graph G = (O, ). The ver-
tices O correspond to dominant image clusters of the photo
streams, and the edge set £ links the vertices that sequen-
tially recur in many photo streams. More rigorous definition
will be shown in Section 5.

4. STORY ELEMENT ESTIMATION

We discuss our low-level image description and story ele-
ment estimation for the input photo streams P.

4.1 Image Features

For low-level image description, we use dense feature ex-
traction with vector quantization, which is one of standard
methods in recent computer vision research. We densely ex-
tract HSV color SIFT [17] and histogram of oriented edge
(HOG) features [3] on a regular grid of each image at steps

of 4 and 8 pixels, respectively. We form 300 visual words
for each feature type by applying K-means to randomly se-
lected descriptors. Finally, the nearest word is assigned to
every node of the grid. As image or region descriptors, we
build L; normalized spatial pyramid histograms to count the
frequency of each visual word at three levels [16]. We de-
fine the image descriptor v by concatenating the two spatial
pyramid histograms of color SIFT and HOG features.

4.2 Face and Time Descriptors

Since much of visitors’ images contain faces as foregrounds,
we define a high-level image descriptor that encodes pres-
ence/absence of faces and their spatial layout in the image.
For example, we may cluster the images that have similar
face sizes and positions (e.g. clustering family photos), or
bypass the localization step for the images that are fully oc-
cupied by faces. For face detection, we use the Fraunhofer
engine [20], which returns bounding boxes containing faces
with confidence scores. Based on the detection, we compute
the following three types of face features. (i) Histogram of
face areas: we first make 10 bins in the range of [0, v'h X w],
where h and w are image height and width respectively, and
count the frequencies of squared areas of detected faces for
each bin. (ii) Histogram of face locations: we split the image
into 9 evenly split tiles (i.e. 3 per dimension), and count the
detected face centers in each spatial bin. (iii) Histogram of
pairwise face distances: We compute pairwise distances be-
tween centroids of all detected faces and make a histogram
of 10 bins in the range of [0, diagonal length]. As a final
face descriptor vector f € R?°, we concatenate all the three
histogram after L; normalization.

The timestamps of images can be trivially obtained from
meta-data provided by Flickr. We use month and hour
information to define time features because the events in
theme parks are seasonally and daily periodic. We define
the month feature t,,(i) € R'? of image I in which each
bin ¢ has a value of Gaussian weighting t,, (i) = g(¢ — m) x
exp(—(i —m)?/om), where m is the month of image I and
om = 1.5. Its basic idea is that if an image is taken in May,
the feature values for nearby months like April and June (i.e.
tm(4) or t,,(6)) are non-zeros as well. The same Gaussian
weighting is used for the hour feature with o}, = 2. Finally,
the two features are L;-normalized and concatenated into
the time descriptor t.

4.3 Localization of Photo Streams

It is important to find out which attraction each image
is likely to be taken, because visitors’ activities and stories
can be modularized according to attractions. Thus, we per-
form the attraction-based localization, whose objective is
to determine the likelihood of each image over attractions.
Mathematically, we assign a probability vector ¢; € RY to
each image of photo stream P"™ = {[1,...,Iyn}, where N"
is the number of images in P™ and L is the number of at-
tractions (i.e. L = |L£]). For notational simplicity, we let
c=|ci,...,cnn] € REXN™

We run localization of each photo stream separately be-
cause all photo streams are taken by different users indepen-
dently of one another. We use a Conditional Random Field
(CRF) model to infer the conditional distribution over the
attraction labels of each photo stream P"™. The strength of
CREF is the flexibility to easily incorporate various pieces of
evidence related to localization as energy terms in a single
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(b) Appearance and text potentials (c) GPS potentials

Figure 3: An example of attraction-based localiza-
tion. (a) An input photo stream with meta-data
of timestamps, GPS coordinates, and text tags. (b)
The appearance potential of each image is computed
by visual similarity with attraction images. The text
potential is defined by the tf-idf measure between
tags of the image and attraction names. (c) GPS
potential is obtained from a normal distribution on
the distances between the image and attractions.

unified model. Since each photo stream is a time-ordered se-
quence of images, it can be modeled by a linear-chain CRF.
The conditional probability of the attraction labels ¢ given
a photo stream P is defined by

log P(c|P") = > (wlei, 1) + mles, 1) + Ao, 1)) (1)

=1

+ ¢(co) Z é(ci, cip1, Ai) —log Z(P™)

where Z(P"™) is the partition function. In the following, we
discuss each term of Eq.(1) in detail.

Appearance potential. The 1(c},I;) represents the
likelihood that image I; is visually associated with attraction
I. (See Fig.3(b)). Intuitively, ¢ (c}, I;) has a high value if I;
is visually similar to the images of attraction [. Since the
training images of attractions are available, the estimation
of 1(ct, I;) can be accomplished by any image classifier or
their combination. In this paper, the potential is computed
by summing the normalized scores of two classifiers, a KNN
classifier and a linear SVM [28]. For SVM classifiers, we
learn multiple classifiers per attraction because the training
images of each attraction may contain multiple views; we
first split the attraction image set into k different groups us-
ing K-means clustering with £ = min(2.5y/n, 200), and learn
a separate classifier per cluster.

GPS potential. For the 19% of photo streams where
GPS information is available, we define the GPS potentials
as a normal distribution: W(Cli,fi) = N(mé;xi,a) where z!
and z; are the GPS coordinates of attraction [ and image I;,
respectively. (See Fig.3(c)). We set the standard deviation
o = 0.07 km. That is, if a attraction [ is 30(= 0.21 km)
distant away from I;, [ is very unlikely to be assigned to
I;. This GPS term is ignored for the photo streams without
GPS information.

Text potential. We also take advantage of text infor-
mation when available, as shown in Fig.3(b). We use the tf-
idf measure (Term Frequency Inverse Document Frequency).

Parade Stage show
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Figure 4: Examples of detected regions of interest
encoding supporting objects of different meanings.

Let us denote the text associated with image I; by D;, which
is a list of words of the title and tags. For each term ¢ € D;,
we compute the tf measure tf, ;, which is the number of oc-
currences of ¢ in D;, and the idf measure idfq = log(N/df,)
where df, is the number of images containing ¢, and N is
the total number of images. Then, for each attraction I, we
generate a word list using its name, denoted by q'. The
potential A(c}, I;) of image I; to attraction [ is computed by

Aeis 1) = Y g X idfy. (2)

qeq!

Edge potential. The ¢(c}, ™, A;) is defined by the like-
lihood that a pair of consecutive images I; and ;41 are as-
sociated with attraction [ and m respectively, given A; that
denotes the elapsed time between I; and I;+1. The edge
potential depends on both spatial connectivity between at-
tractions and visitors’ walking speed in the park. We define
the edge potential as follows. We first build a connectivity
graph between attractions G. = (£, &.) based on the official
park map and the GPS coordinates. Each attraction in £
is linked to its k closest attractions, and the edge weight is
given by the walking time between a attraction pair, which
is computed by dividing the distance by the human walking
speed s,. we set s, = lkm/h. Inspired by a human mo-
bility study [8], we assume that a visitor stays in the same
location with a probability a or moves to one of neighbor
attractions with 1 — «. « is sampled from a truncated ex-
ponential distribution: a o exp(—AA;). With probability
1 — « of moving to another attraction, we use the Gaussian
model for a transition likelihood from attraction [ to m:

plch, " Ay) =

U\}% exp(—A7/20°) where o = 5,A;. (3)
where o is proportional to A;; with a longer A,;, farther
attractions can be reached.

Inference. Since our model for the localization is a linear-
chain CRF, exact inference is possible. We use the Viterbi
algorithm to obtain the most probable attraction assignment
of the photo stream ¢* = [c],...,c};]. We also compute the
posterior marginals of location labels ¢ using the forwards-
backwards algorithm.

4.4 Detection of Supporting Objects

We detect the regions of interest (ROI) that may include
important supporting objects of images for the following two
reasons. First, it can be used as another high-level image
descriptor, as shown in Fig.4, because supporting objects il-
lustrate the main theme of the images, such as rides, meals,
or interaction with characters. Second, it can be exploited
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Figure 5: A small piece of story graph between and
inside four attractions of Bug’s Land district of Dis-
ney California Adventure Park. Each image repre-
sents the central image of each vertex.

for user interaction; we allow users to choose ROIs to re-
trieve the images that share the similar supporting objects,
as another control for story exploration. We will introduce
examples in Section 7.

For ROI detection, we first learn a set of ROI classifiers
of each attraction as follows. We first sample 10 rectangu-
lar windows per training image of each attraction using the
objectness metric [2], and build a similarity graph between
the windows of all training images, using histogram intersec-
tion on the color SIFT and HOG features v of the windows.
By applying the diversity ranking and clustering algorithm
of [13] to the similarity graph, we discover k representative
and discriminative exemplar windows, and cluster windows
by associating each window with its closest exemplar. We
set k = min(2.5y/n, 200), where n is the size of graph. For
each exemplar, we learn KNN and linear SVM classifiers as
done for the appearance potential of localization in section
4.3. For a positive training set, we use the exemplar and its
10 nearest neighbors. For a negative training set, we ran-
domly sample 200 windows from the other attractions. As
a result, we have k number of classifiers per attraction. We
repat this ROI classifier learning for all attractions.

Next we leverage the learned classifiers to detect the ROIs
for the images of photo streams. As a pre-processing step,
we first sample 100 windows per image using the object-
ness metric. Our assumption here is that at least some of
candidate windows correspond to good potential supporting
objects. We then remove the windows if they largely overlap
with face detection (i.e. if more than 50% of the window
area overlaps with any face region), due to redundancy with
face detection. Then, if the image is localized as attraction
[, we apply a set of learned classifiers for attraction [, and
choose one single best window per image as the ROL

5. STORY GRAPH RECONSTRUCTION

In this section, we discuss how to create a story graph
G = (0,€) from the results of story element estimation.
We build story graphs hierarchically. As shown in Fig.5,
the upper-level story graph is defined between attractions,
each of which subsumes small story subgraphs that repre-

sent sequences of activities inside attraction. That is, in the
storyline graph G = (O, &), the vertex set can be decom-
posed into the ones per attraction (i.e. O = J,c, 04, and
the edge set £ consists of two groups: &€ = &1 U &1 where
&1 defines the edges inside each attraction, and &; includes
edges between attractions.

5.1 Vertices of Story Graphs

Since many input images are redundant, it is inefficient
to build a story graph over individual images. Hence, the
vertices O are preferentially defined as image clusters. The
vertex set O for attraction [ is obtained as follows. We first
represent each image by concatenating the set of vectors
{v,f,0,t}, each of which represents the low-level image fea-
ture, the face descriptor, the ROI descriptor, and the time
descriptor, respectively. We include the ROI descriptor o to
encourage clustering the images that share similar support-
ing objects. In order to define the vertex set O' for each
attraction, we first build a similarity matrix between the
images localized at attraction [, by applying the histogram
intersection to the above descriptors. We then discover k ex-
emplars and clusters using the same diversity ranking and
clustering algorithm of [13] with k = min(2/n,200). Then,
the k clusters constitues the vertex set O' for attraction k.
We repeat this process for each attraction I € £. We denote
the number of vertices by M (i.e. M = |0| =3, ., |OY).

As a result of clustering for the vertex definition, each
image is now associated with a vertex membership vector
x € RM, which has only a single nonzero element x, = 1
if the image is a member of vertex v € O. Therefore, each
photo stream P™ = {I1,...,Inn} can be represented by the
membership vectors P" = {x1,...,xnn}.

5.2 Edges of Story Graphs

The edge set £ C V x V, whose adjacency matrix is
denoted by A € RM*M includes directed edges between
the vertices that sequentially co-occur across many photo
streams. In order for the story graphs to be practical, we
enforce the edge set £ to satisfy the following two proper-
ties. (i) € should be sparse. If there are too many edges
in the graph, the narrative structure is unnecessarily com-
plex. Thus, we retain only a small number of strong story
branches per node. (i.e. A has only a few nonzero ele-
ments). (ii) € should be time-varying; £ smoothly changes
over time in a day ¢ € [0,7]. It means that the preferred
transitions between attractions can change over time in the
theme parks. For example, in many visitors’ photo streams,
the images of attraction Mad Tea Party are likely to be
followed by dining images around lunch time, by fireworks
images at night, or by nearby attraction images like Pizie
Hollow in other time. Hence, we infer individual A’ every
30 minutes while changing ¢ from 8AM to 12AM to densely
capture such time-varying popular story transitions.

In our previous work [12], we formulate a maximum likeli-
hood estimation for inferring { A’} given input photo streams
P ={P',---,P"}, and develop an optimization algorithm
that has several appealing properties for large-scale prob-
lems, including global optimality, easy parallelization, and
linear computation time. We here skip the details of opti-
mization, which can be found in [12]. Instead we denote edge
reconstruction procedure by {A*}/_; = GraphInf(P,T).

Although we use the similar algorithm for creating edges
of graphs with our previous work [12], the story graphs of



Method Top-1 Attr. | Top-5 Attr. | Top-1 Dist.
(A+T+E+G) 8.34% 20.56% 28.03%
(A+T+E) 5.18% 16.16% 22.87%
(A+T) 4.88% 14.52% 20.12%
(8) 5.02% 15.88% 21.31%
(T) 3.12% 9.17% 17.83%
(VKNN) 5.16% 16.85% 22.12%
(VSVM) 4.63% 15.80% 20.63%
(Rand) 0.93% 4.63% 5.56%

Table 3: Results of image localization. We report
top-1/5 attraction accuracies, and top-1 district ac-
curacies. We test our CRF-based approach with dif-
ferent combinations of terms: (T), (4), (G), and (E)
indicate appearance, GPS, text, and edge potential.

this work are different from those of [12] in two respects.
First, the graphs of [12] are built based on only temporal
information between images, whereas here we consider both
time and spatial information. Second, the vertices of the
graphs of [12] are based on low-level image features only
(e.g. SIFT and HOG features), whereas we define vertices
over story elements of high-level semantic image descrip-
tion, including face and object detection. In section 6.2, we
empirically compare these two story graphs for the image
recommendation tasks.

6. EXPERIMENTS

We evaluate the accuracy of our story element estimation
for image localization (Section 6.1). Then, we quantitatively
compare the performance of image recommendataion using
our story graphs with other candidate methods (Section 6.2).

6.1 Results of Image Localization

We evaluate the performance of our approach for estimat-
ing the locations of images, which may be considered as the
most important story elements. The task here is to find out
the attraction that a given image is likely to be taken. We
select 108 attractions and restaurants as the classes for lo-
calization. We obtain groundtruth by letting human experts
to annotate 3,000 images of photo streams. We randomly
sample 2,000 images out of them and perform a localization
experiment, which is repeated ten times.

For baselines, we implement two vision-based methods,
which are solely based on the visual contents of images. We
use the training images of each landmark to learn linear-
SVM and KNN classifiers, which are denoted by (VSVM) and
(VKNN), respectively. In addition, in order to quantize the
contribution of terms of our CRF-based localization frame-
work in Eq.(1), we also measure the variation of localization
accuracies by changing the combination of the four terms;
we use (T), (4), (G), and (E) to indicate appearance, GPS,
text, and edge potential, respectively.

Table 3 summarizes the results of our experiments. We
also report chance performance (Rand) to show the diffi-
culty of the localization task. Our CRF-based approach
outperforms the vision-based methods; the accuracy of our
full model (A+T+E+G) is higher than the best vision-based
method (VKNN) by 61.6% and 26.7% in terms of the top-1
attraction and those district metric, respectively. We also
make three observations from the results. First, the visual
content of images is a strong clue for localization. Second,
text associated with Flickr images is noisy, and hence pro-
vides little to enhance localization accuracy. Third, the edge

potential improves the localization accuracy by enforcing
temporal constraints between consecutive images.

We note that the task is very difficult, with chance perfor-
mance of under 1%. In many cases, even human experts feel
difficulty in localizing images as content may match mul-
tiple locations (e.g. Mickey can be observed virtually at
any location). We believe overall accuracy can be improved
significantly by pre-filtering the images, however, in this ex-
periment, our focus is on assessing the contributions of in-
dividual terms toward our CRF localization objective, not
absolute performance. Hence, the tendency is important in-
stead of absolute numbers in this experiment.

6.2 Results on Image Prediction

We evaluate the ability of our story graphs to perform
photo recommendation, which is one of key practical ap-
plications of story graphs. We carry out the following two
image sequence prediction tasks: (I) predicting next likely
images given a short image sequence, and (II) filling in a
missing part of a novel photo stream. The first task simu-
lates the scenario where a visitor takes a small number of
pictures during his trip, and the task suggests up the most
likely next pictures of attractions by analyzing the photo
sets of other users who had similar experience. The sec-
ond task can show the pictures of alternative paths taken
by other visitors. It helps the visitor compare similarity and
differences of her trip with others. Fig.6 shows examples of
the two prediction tasks.

We use the similar experimental protocol of [12]. We first
randomly select 80% of photo streams as a training set and
the others as a test set. We reduce each test photo stream
into uniformly sampled 100 images, since consecutive images
can be often very similar. For task (I), we randomly divide a
test photo stream into two disjoint parts. Then, the goal is,
given the last 10 images of the first part and next 10 query
time points t; = {tq1,...,tq10}, to retrieve the 10 images
that are likely to appear at tq from the training set. The
actual images at t, are used as groundtruth. For task (II),
we randomly crop out 10 images in the middle of each test
photo stream. Then, the goal is to predict the likely images
for the missing part given the time points t,; and five images
before and after the missing slots. Since training and test
sets are disjoint, each algorithm can only retrieve similar
(but not identical) images from training data at best.

As a result of inference of story graphs, we obtain a set of
{A'}, which can be regarded as a state transition matrix be-
tween vertices of the graph at different time t. We adopt the
state space model (SSM) to perform all prediction tasks [18].
For example, we can predict next k likely story vertices using
the forward algorithm, and infer the best k paths between
any two vertices using the top-k Viterbi algorithm.

We compare our approach with the method of [12] and
the four baselines used in [12]. The first baseline (Page) is
a Page-Rank based image retrieval, which is one of most
successful methods to retrieve a small number of canonical
images. The second baseline (HMM) is based on the HMM,
which has been popularly used for modeling tourists’ se-
quential photo sets. The third (Clust) is a clustering-based
summarization on the timeline [11], in which images on the
timeline are grouped into 10 clusters using K-means at every
30 minutes. The forth baseline is the method of [12], denoted
by (Temp), whose key differences from our approach are (i)
use of low-level features only (vs. story elements in our
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Figure 6: Examples of the two predlctlon tasks: task (I) (i.e. predicting likely next zmages) in (a), and task
(ITI) (i.e. filling in missing parts) in (b). The first row shows a question (i.e. given images and five slots to

be predicted). In each set, we show hidden groundtruth and predicted images by different algorithms.
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AMT preference tests, we show the first row and a pair of predictions by our algorithm and one baseline in
a random order. A turker is asked to select the more likely one to occur in the empty slots.
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Figure 7: Results of our method and four base-
lines for the two prediction tasks. The PNSR val-
ues are as follows: [(Ours) , (Temp), (HMM), (Page),
(Clust)] = [9.65,9.51,9.39,9.37,9.24] for task (I), and
[9.69,9.58,9.38,9.39,9.29] for task (II).

approach) for the node definition, and (ii) temporal infor-
mation only (vs. spatio-temporal information) for the edge
definition. We measure the performance in two different
ways: quantitative similarity measures and crowdsourcing-
based user studies via Amazon Mechanical Turk (AMT).

Quantitative results. We evaluate the prediction accu-
racy by measuring the similarity between predicted images
and groundtruth images of test photo streams. For a similar-
ity metric, we resize the images into 32x32 tiny images [27]
to focus on holistic views instead of minor details, and com-
pute peak signal-to-noise ratio (PSNR) between them. A
higher value indicates that the two images are more similar.

Fig.7 shows comparison results between our method and
four baselines for task (I) and (II). Our algorithm signifi-
cantly outperforms all the competitors. That is, predicted
images by our method are more similar to groundtruths than
those by other baselines. For example, our PSNR perfor-
mance gains (in dB) over the best baseline (Temp) are 0.131
and 0.106 for the two prediction tasks, respectively. All the
numbers can be found in the caption of Fig.7.

User studies via AMT. Actual users’ satisfaction is the
most important measure of recommendation. Thus, we here
evaluate the performance of image recommendation using
user studies via Amazon Mechanical Turk (AMT). We use
the same experimental setup with the previous tests, except
that the number of images to be estimated is reduced to
five for easy evaluation by human subjects. We show given
images and five empty slots as a question (e.g. the first row
of Fig.6), and then show a pair of image sequences predicted
by our algorithm and one of baselines in a random order,
while algorithm names are hidden. A turker is asked to
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Figure 8: Results of pairwise preference tests via
AMT between our method and baselines. The
number should be higher than 50% to validate the
superiority of our method. The average prefer-
ences of our method over (Temp), (HMM), (Page), and
(Clust) are [61.2,65.1,73.9,68.1] for task (I), and
[58.8,63.5,66.4,76.2] for task (II).

choose one of them that is more likely to come at the empty
slots. We obtain such pairwise comparison for each test set
from at least five different turkers. In the second row of
Fig.6, we show the groundtruth (i.e. hidden actual images),
and predicted images by our algorithm and three baselines.

Fig.8 shows the quantitative results of pairwise AMT pref-
erence tests between our method and four baselines. The
number indicates the mean percentage of responses that
choose our prediction as a more likely one than that of each
baseline. Hence, numbers should be higher than 50% to
validate the superiority of our algorithm. Our algorithm
significantly outperforms all the baselines; for example, our
algorithm (Ours) gains 65.1% and 63.5% of votes over the
baseline (HMM) in the two tasks.

7. APPLICATIONS

Once we build a story graph as a data-driven summary
of visitors’ activities in the parks, we can leverage it to-
ward several interesting applications. We present prelim-
inary storybook-like demos regarding exploration, recom-
mendation, and temporal analysis, all of which may be ben-
eficial uses of the story graphs to visitors.

Exploration. The first intuitive application is spatio-
temporal exploration of the parks. As shown in Fig.9, we
can hierarchically explore the stories between or inside at-
tractions, with a single click of controls. In Fig.9.(a), the
map on the left shows the current attraction and next avail-
able ones that are popularly visited after the current attrac-
tion. A user can proceed to a nearby attraction by clicking
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Figure 9: An example of story exploration. (a) The map on the left shows the current attraction and nearby
available attractions that are popularly visited from the current location. The right panel illustrates the first
images of story subgraphs for the current attraction. The detailed view of each story subgraph is presented
in (c). (b) We allows a user to click a region of interest to retrieve its closest neighbors using a simple KNN
search. We also show the next most popular transitions from the retrieved images.

one of the blue controls. On the right panel, we show a
part of story subgraphs at the current attraction (i.e. the
Main Street USA). Here each photo shows the first image
of each story subgraph, whose detailed view is presented in
Fig.9.(c). Every story subgraph illustrates a popular coher-
ent story thread, for example, from top to bottom, Fig.9.(c)
shows Walt Disney Statue, Sleeping Beauty Castle, trans-
portation at the main street, character experiences, and pa-
rades. Fig.9.(b) shows an example of image retrieval using
regions of interest (ROI). By clicking an ROI, we retrieve the
closest neighbors using a simple KNN search. For retrieved
images, we also show next most popular transitions.

Recommendation. Fig.10 shows an example of predict-
ing the location of a novel image and suggesting next en-
gaging paths. Since we organize images according to at-
tractions in our story graph, we can easily localize the new
images using a simple KNN search, as shown in Fig.10.(a).
Based on the retrieved images, we suggest several attrac-
tions from which the exploration begins. The query image
includes Mickey’s Fun Wheel, which is viewable from most
attractions in the Paradise Pier district. As done in the
exploration example of Fig.9, a visitor is allowed to choose
one of nearest attractions for further exploration, or have
our system suggest a popular one for them. If a user chooses
California Screamsn’, as shown in Fig.10.(b), we suggest two
popular next available attractions, which are Ariel’s Grotto
and King Triton’s Carousel. On the bottom, we preview the
initial segments of story subgraphs of the two attractions.

Temporal analysis. Fig.11 shows an example of tem-
poral analysis that benefits from our story graphs. Every
two hours on the timeline, we present exemplar images of
two central vertices of the story graph at the Mickey’s Fun
wheel. The ranking scores of vertices at time ¢ can be easily
obtained by column-wise summing A’. As shown in Fig.11,
even at a single location, a variety of events happen at dif-
ferent time throughout the day, for example, Goofy Instant
Concert, Pixar Play Parade, Electrical Parade, and World
of Color from 2PM to 10PM. Our story graph can help visi-
tors plan their itinerary beforehand by providing an intuitive
way to promptly preview the popular events.

8. CONCLUSION AND DISCUSSION

We presented an approach for creating story graphs from
large collections of online photo streams shared by visitors
to theme parks. We formulate the story reconstruction as
a two-step procedure of story element estimation and infer-
ence of sparse time-varying directed graphs. To demonstrate
the usefulness of the story graphs, we leverage them to per-
form photo-based exploration, recommendation, and tempo-
ral analysis tasks. Through quantitative evaluation and user
studies via AMT, we show that our algorithm outperforms
other alternatives for two image prediction tasks.

There are several promising future directions that go be-
yond the current paper. First, to be more practical for gen-
eral users, we can leverage guidebooks to infuse semantic
meaning for exploration and recommendation. Second, per-
sonalization of story graphs is another interesting direction,
in order to deliver relevant guidelines to visitors based on
the group sizes, people’s age and gender, and visiting sea-
sons. Finally, it would be also interesting to implement our
technique as a function of Disneyland official mobile apps
(e.g. Disneyland Ezplorer and My Disney Ezperience).
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