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Abstract
Deep neural networks (DNNs) have exhibited great success in image saliency prediction. However, few works apply DNNs to
predict the saliency of generic videos. In this paper, we propose a novel DNN-based video saliency prediction method, called
DeepVS2.0. Specifically, we establish a large-scale eye-tracking database of videos (LEDOV), which provides sufficient
data to train the DNN models for predicting video saliency. Through the statistical analysis of LEDOV, we find that human
attention is normally attracted by objects, particularly moving objects or the moving parts of objects. Accordingly, we propose
an object-to-motion convolutional neural network (OM-CNN) in DeepVS2.0 to learn spatio-temporal features for predicting
the intra-frame saliency via exploring the information of both objectness and object motion. We further find from our database
that human attention has a temporal correlation with a smooth saliency transition across video frames. Therefore, a saliency-
structured convolutional long short-termmemory network (SS-ConvLSTM) is developed in DeepVS2.0 to predict inter-frame
saliency, using the extracted features of OM-CNN as the input. Moreover, the center-bias dropout and sparsity-weighted loss
are embedded in SS-ConvLSTM, to consider the center-bias and sparsity of human attention maps. Finally, the experimental
results show that our DeepVS2.0 method advances the state-of-the-art video saliency prediction.

Keywords Deep neural networks · Saliency prediction · Convolutional LSTM · Eye-tracking database · Video · Video
database
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1 Introduction

A foveation mechanism (Matin 1974) in the human visual
system (HVS) indicates that only a small fovea region cap-
tures most visual attention at high resolution, while other
peripheral regions receive little attention at low resolution. To
predict human attention, saliency detection has been widely
studied in recent years, with multiple applications (Borji
and Itti 2013) in object recognition, object segmentation,
action recognition, image captioning, and image/video com-
pression, among others. Typically, saliency detection can
be classified into saliency prediction (Itti et al. 1998) and
salient object detection (Liu et al. 2011). Saliency predic-
tion refers to the task of predicting human fixations, while
salient object detection aims at detecting/segmenting the
most salient objects in a scene. In this paper, we focus on
video saliency prediction, which models pixel level attention
on each video frame.

In the early stages of this field, the traditional video
saliency predictionmethodsmainly followed integration the-
ory (Itti et al. 2004; Ren et al. 2013; Nguyen et al. 2013;
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Zhong et al. 2013; Lee et al. 2014; Leboran et al. 2017), i.e.,
the saliency of video frames can be detected through two
steps: (1) extract spatial and temporal features from videos
for obtaining conspicuous maps, and (2) conduct a fusion
strategy to combine conspicuous maps of different feature
channels together for generating saliency maps. Benefiting
from the state-of-the-art image saliency prediction methods,
a considerable amount of spatial features have been incor-
porated to predict video saliency (Nguyen et al. 2013; Fang
et al. 2014b; Lee et al. 2014). Additionally, some works have
focused on designing temporal features for video saliency
prediction, mainly in three aspects: motion-based features
(Harel et al. 2006; Zhong et al. 2013; Zhou et al. 2014), tem-
poral contrast features (Itti et al. 2004; Zhang et al. 2009; Ren
et al. 2013) and compressed domain features (Hossein Kha-
toonabadi et al. 2015; Xu et al. 2017). For fusing spatial and
temporal features, many machine learning algorithms have
been utilized, such as support vector machine (SVM) (Huang
et al. 2014; Lee et al. 2014; Xu et al. 2017), probabilistic
model (Itti and Baldi 2009; Zhang et al. 2009; Rudoy et al.
2013) and phase spectrum analysis (Guo and Zhang 2010;
Leboran et al. 2017).

Differing from integration theory, deep neural network
(DNN)-based methods have recently been proposed to learn
human attention in an end-to-end manner, significantly
enhancing the accuracy of image saliency prediction (Küm-
merer et al. 2014; Kruthiventi et al. 2017; Huang et al. 2015;
Pan et al. 2016; Li et al. 2016; Wang et al. 2016a; Pan et al.
2017; Wang and Shen 2018). However, only a few works
have managed to apply DNNs in saliency prediction (Bak
et al. 2017; Bazzani et al. 2017; Wang et al. 2018), or salient
object detection (Le and Sugimoto 2017; Li et al. 2018) for
videos. Specifically, Bak et al. (2017) has applied a two-
stream CNN structure taking both RGB frames and motion
maps as the inputs for video saliency prediction. Bazzani
et al. (2017) has leveraged a deep convolutional 3D (C3D)
network to learn the representations of human attention on
16 consecutive frames, and then a long short-term memory
(LSTM)network connected to amixture density networkwas
learned to generate saliency maps in a Gaussian mixture dis-
tribution. However, the above DNN-basedmethods for video
saliency prediction are still in their infancy due to the follow-
ing drawbacks: (1) insufficient eye-tracking data for training
theDNN, (2) lack of a sophisticated network architecture that
learns to simultaneously combine object and motion infor-
mation, and (3) neglect of dynamic pixel-wise transition of
video saliency across video frames.

To overcome the above drawbacks, we propose a novel
large-scale eye-tracking database and a new DNN-based
architecture to predict video saliency.OurDNN-architectural
design is motivated by extensive experiments conducted on
the data of 32 subjects viewing a total of 538 diverse videos.
Our model takes into account a core observation that peo-

ple tend to attend to moving objects or moving parts of
objects, by designing a dual stream network that combines
hierarchical spatio-temporal features from both streams to
predict saliency maps. In particular, our DNN-architecture
consists of two structural components: (1) a spatio-temporal
object-to-motion convolutional neural network (OM-CNN)
for single frame prediction and (2) dynamic recurrent tem-
poral saliency propagation mechanism, which is also called
saliency-structured convolutional long short-term memory
(SS-ConvLSTM). Note that our database and code are avail-
able online 1.

This paper extends our conference paper (Jiang et al.
2018) as follows. In this paper, the existing video eye-
tracking databases are thoroughly reviewed and compared,
where the fixation dropping rates are calculated to evaluate
the efficiency of recording fixations. Besides, we provide
more details about the establishment of our database, by
introducing the apparatus, fixation classification algorithm,
calibration and pre-test in our eye-tracking experiment. This
paper thoroughly analyzes our eye-tracking database tomoti-
vate our DNN method, which is not discussed in Jiang
et al. (2018). More importantly, we advance DeepVS in
our conference paper (Jiang et al. 2018), by proposing the
sparsity-weighted loss, which considers the sparsity prior of
saliency in SS-ConvLSTM. Additionally, this paper further
updates the backbone structures of the motion and object-
ness subnets, taking the advantage of more recent YOLOv3
(Redmon and Farhadi 2018) and FlowNet2 (Ilg et al. 2017)
models. The advanced architecture, called DeepVS2.0, is
effective as verified in the ablation experiment of this paper.
In comparison to Jiang et al. (2018), much more experiments
are conducted in this paper to analyze and visualize the effect
of the key components in our method.

In brief, the main contributions of this paper are summa-
rized as follows.

– We establish an eye-tracking database that consists of
538 videos with diverse content, along with the thorough
analysis and findings on our database.

– We propose a novel OM-CNN structure to predict intra-
frame saliency, which integrates both objectness and
object motion in a uniform deep structure.

– We develop an SS-ConvLSTM network with the center-
bias (CB) dropout and sparsity-weighted loss, to learn the
saliency transition across inter-frames at the pixel-wise
level.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly review the related works and eye-tracking

1 The database and code can be found at https://github.com/remega/
LEDOV-eye-tracking-database and https://github.com/remega/
OMCNN_2CLSTM, respectively.
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databases for video saliency prediction. In Sect. 3, we estab-
lish and analyze our large-scale eye-tracking database. Based
on the findings from our database, we propose a DNN for
video saliency prediction in Sect. 4, including OM-CNN and
SS-ConvLSTM. Section 5 presents the experimental results
for validating the performance of our method. Section 6 con-
cludes this paper.

2 RelatedWork

In this section, we briefly review the recent works and eye-
tracking databases for video saliency prediction.

2.1 Video Saliency Prediction

Most of the traditional methods for video saliency predic-
tion (Itti et al. 2004; Ren et al. 2013; Nguyen et al. 2013;
Zhong et al. 2013; Lee et al. 2014) rely on integration the-
ory, and they consist of two main steps: feature extraction
and feature fusion. In the image saliency prediction task,
many effective spatial features succeed in predicting human
attention with either a top-down (Judd et al. 2009; Goferman
et al. 2012) or bottom-up (Itti et al. 1998; Cheng et al. 2015)
strategy. However, video saliency prediction is more chal-
lenging because temporal features also play an important role
in drawing human attention. To achieve this, motion-based
features (Harel et al. 2006; Zhong et al. 2013; Zhou et al.
2014), temporal difference (Itti et al. 2004; Zhang et al. 2009;
Ren et al. 2013) and compressed domainmethods (Fang et al.
2014a; Xu et al. 2017) are widely used in the existing works
of video saliency prediction. Taking motion as an additional
temporal feature, Zhong et al. (2013) proposed predicting
video saliency using modified optical flow with a restric-
tion of dynamic consistency. Similarly, Zhou et al. (2014)
extended the motion feature by computing center motion,
foreground motion, velocity motion and acceleration motion
in their saliency prediction method. In addition to motion,
other methods (Itti et al. 2004; Zhang et al. 2009; Ren et al.
2013) utilize the temporal changes in videos for saliency
prediction via computing the contrast between successive
frames. For example, Ren et al. (2013) proposed estimating
the temporal difference of each patch by finding the minimal
reconstruction error of the sparse representation over the co-
located patches of neighboring frames. Similarly, in Zhang
et al. (2009), the temporal difference is obtained by adding
pre-designed exponential filters to the spatial features of
successive frames. Taking advantage of sophisticated video
coding standards, the compressed domain features have also
been explored as spatio-temporal features for video saliency
prediction (Fang et al. 2014a; Xu et al. 2017).

In addition to feature extraction,manyworks have focused
on the fusion strategy to generate video saliency maps.

Specifically, a set of probability models were constructed
to calculate the posterior/prior beliefs (Itti and Baldi 2009),
the joint probability distribution of features (Zhang et al.
2009) and candidate transition probability (Rudoy et al.
2013) in predicting video saliency. Similarly, Li et al. (2010)
developed a probabilistic multi-task learning method to
incorporate the task-related prior in video saliency predic-
tion. Moreover, other machine learning algorithms, such
as SVM and neural network, were also applied to linearly
(Nguyen et al. 2013) or non-linearly (Lee et al. 2014) com-
bine the saliency-related features. Other advanced methods
(Guo and Zhang 2010; Wang et al. 2016b) apply phase spec-
trum analysis in the fusion model to bridge the gap between
features and video saliency. For instance, Guo and Zhang
(2010) applied phase spectrum of quaternion Fourier trans-
form (PQFT) on four feature channels (two color channels,
one intensity channel, and one motion channel) to predict
video saliency.

Most recently, DNNs have succeeded in many computer
vision tasks (Simonyan and Zisserman 2015; Du et al. 2015;
Redmonet al. 2016). In thefield of saliencyprediction,DNNs
have also been successfully incorporated to automatically
learn spatial features for predicting the saliency of images
(Kruthiventi et al. 2017; Huang et al. 2015; Pan et al. 2016;
Li et al. 2016;Wang et al. 2016a; Pan et al. 2017; Cornia et al.
2018; Wang and Shen 2018). Specifically, as one of the pio-
neering works, Deepfix (Kruthiventi et al. 2017) proposed a
DNN-based structure on VGG-16 (Simonyan and Zisserman
2015) and inception module (Szegedy et al. 2015) to learn a
multi-scale semantic representation for saliency prediction.
InDeepfix, a dilated convolutional structurewas developed to
extend the receptivefield, and then a location-biased convolu-
tional layer was proposed to learn the CB pattern for saliency
prediction. Similarly, SALICON(Huang et al. 2015)was also
proposed to fine tune the existing DNNs for object recogni-
tion, in which an efficient loss function was developed for
training the DNN model in saliency prediction. Later, some
advancedDNNmethods (Pan et al. 2016; Li et al. 2016;Wang
et al. 2016a; Cornia et al. 2018) were proposed to improve
the performance of image saliency prediction.

However, only a few works have managed to apply DNNs
in saliency prediction (Chaabouni et al. 2016; Bak et al. 2017;
Bazzani et al. 2017; Liu et al. 2017; Palazzi et al. 2017;
Wang et al. 2018) or salient object detection (Wang et al.
2017; Le and Sugimoto 2017; Li et al. 2018) for videos.
The main reasons are as follows. (1) Different from image
saliency, additional dynamic structure needs to be designed
in DNNs for video saliency prediction. (2) The eye-tracking
data are insufficient for training DNN, since it is costly to
record human fixations over videos. In the existing DNNs for
video saliency prediction, the dynamic characteristics were
explored in two ways: adding temporal information to CNN
structures (Chaabouni et al. 2016; Bak et al. 2017) or devel-

123



206 International Journal of Computer Vision (2021) 129:203–224

oping a dynamic structure with LSTM (Bazzani et al. 2017;
Liu et al. 2017). For adding temporal information, a four-
layer CNN in Chaabouni et al. (2016) and a two-streamCNN
in Bak et al. (2017) were trained to predict video saliency,
taking both RGB frames andmotionmaps as the inputs. Sim-
ilarly, Li et al. (2018) applied optical flow and object proposal
as the pre-processing steps to generate saliency cues for the
proposed stacked autoencoders. However, the optical flow
methods applied in these models cause heavy computational
complexity. In Wang et al. (2017), the pair of video frames,
concatenated with a static saliency map (generated by the
static CNN), are input into the dynamic CNN for salient
object detection, allowing the CNN to generalize temporal
features. In this paper, the OM-CNN structure of our method
includes the subnets of objectness and motion, since human
attention is more likely to be attracted by the moving objects
or the moving parts of objects.

For developing the dynamic structure, Le and Sugimoto
(2017) temporally combined the local features of each frame
through a Gaussian averaging, and further trained a C3D
network to extract global features of whole video for salient
object detection. Similarly, Bazzani et al. (2017) andLiu et al.
(2017) applied LSTM networks to predict human attention,
relying on both short- and long-term memory. However, the
fully-connected units in LSTM limit the dimensions of both
the input and output; thus, it is unable to obtain the end-to-end
saliency map. As such, in Bazzani et al. (2017) and Liu et al.
(2017), strong prior knowledge needs to be assumed for the
distribution of saliency. Specifically, in Bazzani et al. (2017),
human attention is assumed to distribute as a Gaussian mix-
ture model (GMM); then, an LSTMwas constructed to learn
the parameters of GMM. Similarly, Liu et al. (2017) focuses
on predicting the saliency of conference videos and assumes
that the saliency in each face is aGaussian distribution. In Liu
et al. (2017), the face saliency transition across video frames
is learned by an LSTM, and the final saliency map is gen-
erated via combining the saliency of all faces in the video.
In our work, we first explore SS-ConvLSTM with the CB
dropout to directly predict saliency maps in an end-to-end
manner. This allows learning the more complex distribution
of human attention rather than a pre-assumed distribution of
saliency.

2.2 Video Eye-Tracking Databases

The eye-tracking databases of videos collect the fixations
of subjects on each video frame, which can be used as
the ground-truth for video saliency prediction. The exist-
ing eye-tracking databases benefit from mature eye-tracking
technology. Specifically, an eye tracker is used to obtain
the fixations of subjects on videos by tracking the pupil
and corneal reflections (Holmqvist et al. 2011). The pupil
locations are then mapped to the real-world stimuli, i.e.,

video frames, through a pre-defined calibration matrix. Con-
sequently, fixations can be located in each video frame,
indicating where people pay their attention.

We now review the existing video eye-tracking databases.
Table 1 summarizes the basic properties of these databases.
It is worth noting that fixation dropping rate r f is defined to
evaluate the efficiency of recording fixations for database by
calculating the average missed fixations per subject during
recording. Specifically, r f can be defined as

r f = 1

C

∑C

c=1

1

Vc

∑Vc

i=1

Pc − f ic
Pc

, (1)

where C is the total number of videos in the database. Addi-
tionally, Vc and Pc are the numbers of frames and subjects
for the c-th video, respectively. Besides, f ic (smaller than Pc)
indicates the number of recorded fixations at the i-th frame
of video c. In addition to r f , we also calculate the average
number of fixations per frame (ANFF) for each dataset, as
listed in Table 1.

Among the databases in Table 1, to the best of our knowl-
edge, CRCNS (Itti 2004), SFU (Hadizadeh et al. 2012),
DIEM (Mital et al. 2011) and Hollywood (Mathe and Smin-
chisescu 2015) are the most popular databases, and they have
been widely used in most of the recent video saliency predic-
tion works (Fang et al. 2014b, a; Hossein Khatoonabadi et al.
2015; Rudoy et al. 2013; Nguyen et al. 2013; Zhong et al.
2013; Wang et al. 2016b; Chaabouni et al. 2016; Mauthner
et al. 2015). These databases are reviewed in more detail as
follows.

CRCNS Itti (2004) is one of the earliest video eye-tracking
databases, and it was established by Itti et al. in 2004.
This database is still used as a benchmark in the recent
video saliency prediction works, such as Fang et al. (2014b).
CRCNS contains 50 videos, which mainly include outdoor
scenes, TV shows and video games. The length of each video
ranges from 5.5 to 93.9 s, and the frame rate of all videos is
30 frames per second (fps). For each video, 4–6 subjects
were asked to look at the main actors or actions. Subse-
quently, they were required to depict the main content of the
video. Thus, CRNS is a task-driven eye-tracking database
for videos. Later, a new database (Carmi and Itti 2006) was
established by manually cutting all 50 videos of CRCNS
into 523 “clippets” with a 1–3 s duration, according to the
abrupt cinematic cuts. Another 8 subjects were recruited to
view these video clippets, and their eye-tracking data were
recorded in Carmi and Itti (2006).

SFU Hadizadeh et al. (2012) is a public video database
that contains the eye-tracking data of 12 uncompressed YUV
videos, which are frequently used as the standard test set for
video compression and processing algorithms. Each video is
in CIF resolution (352×288) and is of 3–10 s at a frame rate
of 30 fps. The eye-tracking data were collected from 15 non-
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Table 1 The basic properties of the existing eye-tracking databases

Database Year Videos Resolution Duration (s) Subjects r af ANFFa Mode

CRCNS (Itti 2004) 2004 50 640 × 480 6–94 4.7 (ave) 23.4% 3.6 Task

SFU (Hadizadeh et al. 2012) 2012 12 352 × 288 3–10 15 0.4% 14.9 Free

DIEM (Mital et al. 2011) 2011 84 ≤ 1280 × 720 27–217 50 (ave) 13.1% 43.5 Free

Hollywood (Mathe and Sminchisescu 2015) 2015 1857 ≤ 720 × 480 2–90 19 30.7% 13.2 Task

(Xu et al. 2017) 2016 32 ≤ 1920 × 1080 6–25 32 4.5% 30.6 Free

IRCCyN (Boulos et al. 2009) 2009 51 720 × 576 8–10 37 – – Free

VAGBA (Li et al. 2011) 2011 50 1920 × 1080 10 14 24.9% 10.5 Free

GazeCom (Dorr et al. 2010) 2010 18 1280 × 720 20 54 – Free

ASCMN (Riche et al. 2012) 2012 24 ≤ 704 × 576 2–76 13 28.0% 9.4 Free

Coutrot-2 (Coutrot and Guyader 2015) 2015 15 1232 × 504 20–80 40 1.7% 39.2 Free

CAMO (Nguyen et al. 2013) 2013 120 640 × 480 1.7–8.6 10 – – Free

Marat (Marat et al. 2007) 2007 53 720 × 576 1–3 15 – – Free

SAVAM (Gitman et al. 2014) 2014 43 1920 × 1080 18.1 (ave) 50 3.9% 48.0 Free

TUD (Alers et al. 2012) 2012 50 1280 × 720 20 12 – – Task

Peters (Peters and Itti 2007) 2007 24 640 × 480 267 5 – – Task

Coutrot-1 (Coutrot and Guyader 2013) 2013 60 720 × 576 10–24.8 20 7.1% 18.6 Task

Our database 2018 538 ≥ 1280 × 720 5–60 32 12.8% 27.9 Free

a r f is the fixation dropping rates, and ANFF indicates the average number of fixations per frame. Note that r f and ANFF of some databases are
not calculated because the raw fixation data cannot be downloaded

expert subjects, who were asked to free view all 12 videos
twice.

DIEM Mital et al. (2011) is another widely used database,
designed to evaluate the contributions of different visual fea-
tures on gaze clustering. DIEM consists of 84 videos sourced
from publicly accessible videos, including advertisements,
game trailers, movie trailers and news clips. Most of these
videos have frequent cinematic cuts. Each video lasts for 27–
217 s at 30 fps. The free-viewing fixations of approximately
50 subjects were tracked for each video.

Hollywood Mathe and Sminchisescu (2015) is a large-
scale eye-tracking database for video saliency prediction,
which contains all videos from two action recognition
databases: Hollywood-2 (Marszalek et al. 2009) and UCF
sports (Rodriguez2010).All of the 1707videos inHollywood-
2 were selected from 69 movies according to 12 action
classes, such as answering phone, eating and shaking hands.
UCF sports is another action database that includes 150
videos with 9 sport action classes. The human fixations of 19
subjects were captured under 3 conditions: free viewing (3
subjects), action recognition task (12 subjects), and context
recognition task (4 subjects). Although the number of videos
in Hollywood is large, its video content is not diverse and is
constrained by human actions. Moreover, it mainly focuses
on the task-driven viewing mode rather than free viewing.

As discussed in Sect. 2.1, video saliency prediction may
benefit from the recent development of deep learning. Unfor-
tunately, as shown in Table 1, the existing databases for video

saliency prediction lack sufficient eye-tracking data for train-
ing DNNs. Although Hollywood (Mathe and Sminchisescu
2015) contains 1857 videos, it mainly focuses on task-driven
visual saliency, and its fixation dropping rate is rather large.
Moreover, the video content of Hollywood is limited, only
involving human actions in movies. In fact, a large-scale eye-
tracking database for video should satisfy 3 criteria: (1) a
large number of videos, (2) sufficient fixations per frame, and
(3) varied video content. To this end, we establish a large-
scale eye-tracking database of videos that satisfies the above
three criteria. The details about our database are discussed in
Sect. 3.

3 Database

In this section, a new large-scale eye-tracking database
of videos (LEDOV) is established for facilitating future
research. The basic information of our database is listed
in Table 1 in comparison with the existing eye-tracking
databases. Besides, more details and analysis of our LEDOV
database are discussed in the following.

3.1 Database Establishment

We present our LEDOV database from the aspects of stimuli,
apparatus, participants and procedure.
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Fig. 1 Category tree of videos in LEDOV according to the content.
The numbers of categories/sub-categories are shown in the brackets.
Besides, the number of videos for each category/sub-category is also
shown in the brackets. Note that the categories/sub-categories are not

mutually exclusive in video search. For each video, it is categorized and
counted depending on the main object in the video. The videos have
multiple kinds of attractive objects are also filtered in the second round
of video selection by 3 PhD students

Stimuli In order to make the content of LEDOV diverse,
we constructed a hierarchical tree of key words for video
categories, as shown in Fig. 1. In practice, we asked 3 volun-
teers tomake a quick survey on the recent videos ofYouTube.
Then, some categories were summarized from these videos,
referring to the keywords of WordTree in Redmon and
Farhadi (2017). After that, the hierarchical tree wasmanually
constructed according to these categories, including three
main categories, i.e., animal, human and man-made object.
Note that the natural scene videos were not included, as they
are scarce in comparison with other categories. The category
of animal had 51 sub-categories, e.g., bird, giraffe and wolf.
Similarly, the category of man-made objects was composed
of 27 sub-categories, such as car and airplane. The category
of human had the sub-categories of daily action, sports, social
activity and art performance. These sub-categories of human
were further classified, as can be seen in Fig. 1. Given the
hierarchical tree of key words on video categories, 10 under-
graduate students were recruited to collect 658 videos from
different channels of YouTube (such as daily vlogs, doc-
umentaries, movies, sport casts, and TV shows.) upon the
following 3 criteria. Subsequently, the collected videos were
filtered by 3 PhD students also upon the following 3 crite-
ria. Specifically, the downloaded videos were excluded from
our database, once vetoed by one PhD student according to
the following criteria. Finally, we had 158 sub-categories in
total, and then collected 538 videos (with a total of 179,336
frames and 6431 s) belonging to these 158 sub-categories
from YouTube. Criteria for selecting videos are as follows.

– Including at Least One Object The videos with at least
onemain object were qualified. Specifically, our database
includes 377, 103 and 58 videos with one, two and more
than two main objects.

– High Quality The videos at low subjective quality were
excluded. To further ensure the subjective quality, the

resolutions and frame rates of videos were at least 720p
and 24 Hz, respectively. Furthermore, the bit rates were
maintained when converting the videos to the uniform
MP4 format, for avoiding quality degradation.

– Stable Shot Videos with unsteady camera motions2 and
frequent cinematic cuts were not included in LEDOV.
Specifically, there are 222 videos with stable camera
motion. The other 316 videos are without any camera
motion.

Apparatus Formonitoring the binocular eyemovements, a
Tobii TX300 eye tracker (Tobii 2017) was used in our exper-
iment. TX300 is an integrated eye tracker with a 23” TFT
monitor at a screen resolution of 1920 × 1080. During the
experiment, TX300 captured gaze data at 300 Hz. Accord-
ing to Tobii (2017), the gaze accuracy can reach 0.4 vision
angle (approximately 15 pixels in stimuli) under ideal work-
ing conditions3. After recording the raw gaze data, a fixation
classification algorithm called the I-VT filter (Olsen 2012)
was applied to filter out fixations from other eye movements,
such as saccades and smooth pursuits. In the I-VT filter, eye
movements were classified based on the velocity of the direc-
tional shifts of the eyes. For more details about Tobii TX300
and the I-VT filter, refer to Tobii (2017) and Olsen (2012).

Calibration and pre-test To ensure the eye-tracking pre-
cision, each subject was required for a 9-point calibration
embedded in Tobii TX300. Additionally, we design a pre-
test to select the qualified subjects who have small fixation
dropping rate. In the pre-test, each subject was asked to view
15 videos, and once the dropping rate of fixations was above

2 Thevideoswith regular cameramotions, such as pans, tilts and zooms,
were not excluded unless the motion was too intensive.
3 The ideal conditions are that the illumination in the working envi-
ronment is constant at 300 lux, and that the distance between subjects
and the monitor is fixed at 65 cm. Such conditions were satisfied in our
eye-tracking experiment.
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Fig. 2 Averaged CC values alongside increased numbers of fixations
per frame over LEDOV and Hollywood. For one frame, the CC of
fixation maps is measured between each fixation and the reminder

15%, the subject cannot participate in the following eye-
tracking experiment. Consequently, 32 subjects among 60
subjects passed the 9-point calibration andpre-test. It isworth
mentioning that the dropping rate of fixations reaches 12.8%
in our database, which is considerably lower than other large-
scale databases as listed in Table 1.

Procedure Since visual fatigue may arise after viewing
videos for a long time, the 538 videos in LEDOV were
equally divided into 6 non-overlapping groups with similar
numbers of videos in terms of content (i.e., human, animal
and man-made object). During the experiment, each subject
was seated on an adjustable chair at approximately 65 cm
from the screen, followed by a 9-point calibration. Then, the
subject was required to free view the 6 groups of videos in a
random order. In each group, the videos were also displayed
at random. Between two successive videos, we inserted a 3-s
rest period with a black screen and a 2-s guidance image with
a red circle in the screen center. Thus, the eyes can be relaxed,
and then the initial gaze location can be reset to center. The
eye-tracking experiment of one subject lasted around 30 min
for each video group, and all videos were divided into 6
video groups. Therefore, the total viewing time for each sub-
ject was about 3 h. Between two groups, the subjects were
also required to have a rest between viewing two groups, in
order to avoid eye fatigue. Note that the whole experiment
of one subject may be divided into a couple of days.

Participants Similar to Bylinskii et al. (2018), Kim et al.
(2017), we conducted a specific scheme for determining the
sufficient number of participants. We stopped recruiting sub-
jects for eye-tracking experiments once recorded fixations
converged. Specifically, after recording eye-tracking data of
each subject, we calculated the consistency of that subject’s
fixations with an existing pool of data to determine whether
additional subjects were needed. For one frame, the consis-
tencywasmeasured by the linear correlation coefficient (CC)
of fixationmaps between each fixation and the reminder. Fig-
ure 2 shows the averaged CC values at different numbers of
fixations per frame over all videos. Note that the fixation

number is increased along with more subjects participat-
ing in the experiment. We can see from Fig. 2 that the CC
value converges at the fixation number of 28, i.e., 32 subjects
with a dropping rate of 12.8% are enough in our experiment.
Finally, 5,058,178 fixations of all 32 subjects (18 males and
14 females) on538videoswere collected for our eye-tracking
database. Figure 2 also shows that the 19 subjects (dropping
rate: 30.7%) of the Hollywood database are not enough. It is
worth mentioning that the previous databases did not inves-
tigate the sufficient numbers of subjects in their eye-tracking
experiments.

3.2 Database Analysis

In this section, wemine our database to analyze human atten-
tion on videos. First, following (Rajashekar et al. 2008), the
fixationmapG is generated by convoluting the fixations with
a Gaussian mask N. The Gaussian mask N is defined with
an assumption that the mask value decreases to half-max at
the boundary of the fovea region. Specifically, the Gaussian
mask can be computed as

N(i, j) = 1

2πσn
exp

(−d2ij
2σ 2

n

)
, where σn = A · P√

2ln(2)
. (2)

In (2), dij is the distance between pixel (i, j) and the center
of Gaussian mask; A refers to the visual angle of the fovea
(= 1.5◦ in our work); P (= 40 in our work) indicates the
number of pixels for each visual angle. Consequently, σn of
our theGaussianmask is around25, and the size of themask is
set to 100×100. Finally, the fixationmapsG can be obtained
upon fixations and Gaussian maskN from (2), which are also
regarded as the ground-truth maps in this paper.

3.2.1 Correlation Between Objectness and Human
Attention

It is intuitive that people may be attracted to objects rather
than background when viewing videos. Therefore, we inves-
tigate how much attention is related to object regions. First,
we apply a CNN-based object detection method named
YOLO (Redmon et al. 2016) to detect the main objects in
each video frame. Here, we generate different numbers of
candidate objects in YOLO, via changing thresholds of con-
fidence probability and non-maximum suppression. Figure
3b shows examples of one detected object, while Fig. 3c
shows the results for more than one object. We can observe
from Fig. 3b that attention is normally attended to object
regions. We can also observe from Fig. 3c that more human
fixations can be included along with an increased number
of detected candidate objects. To quantify the correlation
between human attention and objectness, we measure the
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(a) (b) (c) (d)

Fig. 3 Examples of ground-truth fixation maps and candidate objects
detected by YOLO. a Shows randomly selected frames from three
videos in our LEDOV database. b Illustrates the fixation maps as well
as one candidate object in each frame. c Demonstrates fixation maps
and multiple candidate objects. d Displays optical flow maps of each
frame, represented in HSV color space

proportion of fixations falling into object regions to those
into all regions. In Fig. 4a, we show the fixation proportion
at an increased number of candidate objects, averaged over
all videos in LEDOV. As shown in this figure, the proportion
of fixation hitting object regions is much higher than that
hitting random regions. This implies that a high correlation
exists between objectness and human attention when view-
ing videos. Figure 4a also shows that the fixation proportion
increases alongside more candidate objects, which indicat-
ing that human attention may be attracted by more than one
object.

In addition, one may find from Fig. 3 that human attention
is attended to only small parts of object regions. Therefore,
wemeasure the proportion that fixation area (inside the object
regions) occupies the entire object area. Note that the fixa-
tion area is obtained through a pre-set threshold of 0.5 on
the fixation map. This threshold is consistent with the way
we generate fixation map, which is introduced in Sect. 3.2.
According to (2), the regions with values over 0.5 in our
fixation map are roughly equal to the retinal fovea of peo-
ple when viewing the video. We can see from Fig. 4b that
the proportions of all fixation areas for different numbers of
objects are far from 100%, meaning that human attention is
attended to only small parts of objects. Besides, compared to
random regions, the proportions of fixation areas for objects
are higher, again indicating that the objects are easy to attract
human attention.

3.2.2 Correlation Between Motion and Human Attention

From our LEDOV database, we find that human attention
tends to focus on moving objects or the moving parts of
objects. Specifically, as shown in the first row of Fig. 5,
human attention is transferred to the large penguin when it
suddenly falls with a rapid motion. Additionally, the second
row of Fig. 5 shows that in the scene with a single salient

object, the intensive moving parts of the player may attract
considerably more fixations than the other parts. It is inter-
esting to further explore the correlation between motion and
human attention inside the regions of objects. Here, we apply
FlowNet (Dosovitskiy et al. 2015), aDNN-based optical flow
method, to measure the motion intensity in all frames (some
results are shown in Fig. 3d). At each frame, pixels are ranked
according to the descending order of motion intensity. Sub-
sequently, we cluster the ranked pixels into 10 groups with
equal number of pixels over all video frames in the LEDOV
database. For example, the first group includes pixels with
top 10% ranked motion intensity. The numbers of fixations
falling into each group are shown in Fig. 6. We can see from
Figure 6 that 44.9% of the fixations belong to the group
with the top 10% high-valued motion intensity. This result
implies a high correlation between motion and human atten-
tion within the region of objects.

3.2.3 Temporal Correlation of Attention on Consecutive
Frames

It is interesting to explore the temporal correlation of atten-
tion across consecutive frames. In Fig. 7, we show human
fixation maps along with some consecutive frames for 3
selected videos. As shown in Fig. 7, there exists a high tem-
poral correlation of attention across consecutive frames of
videos. To quantify this correlation, we further measure CC
of the fixationmap between two consecutive frames. Assume
thatGc andGp are fixation maps of the current and previous
frames, respectively. Then, the CC value of fixation maps
averaged over a video can be calculated as follows:

CC(Gc,Gp)

= 1

|Vc|
∑

c∈Vc

1

|Vp|
∑

p∈Vp

Cov(N (Gc),N (Gp))

Std(N (Gc)) · Std(N (Gp))
,

where N (Gc) = Gc − Mean(Gc)

Std(Gc)
. (3)

In (3), Vc is the set of all frames in the video, and Vp is
the set of consecutive frames before frame c. Additionally,
Cov(·), Std(·) and Mean(·) are covariance, standard devia-
tion and mean operators, respectively. For Vp, we choose 4
sets of previous frames, i.e., 0–0.5s before, 0.5–1s before,
1–1.5s before and 1.5–2s before. Then, in Fig. 8, we plot the
CC results of these 4 sets of Vp, which are averaged over all
videos in our LEDOV database. Figure 8 also shows the CC
results of two baselines, i.e., one-vs-all and video content.
The one-vs-all baseline calculates the averaged CC between
the fixationmaps of one subject and the remainder, indicating
attention correlation across subjects. The video content base-
line indicates the temporal correlation of the input videos, by
measuring the averaged CC between the current video frame
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(a) (b)

Fig. 4 a Fixation proportion belonging to object regions at increased
numbers of detected candidate objects. b Proportion of fixation area
in object regions along with increased numbers of detected candidate

objects. The results of all videos as well as animals, human and man-
made object videos are plottedwith different curves. Besides, the results
of fixations hitting random region are plotted as the baseline

Fig. 5 Attention heat maps of some frames selected from video animal_penguin07 and human_basketball02, where the human attention is attracted
by moving objects or the moving parts of objects

and a set of consecutive video frames (0–2 s before). The
following two observations are obtained from Fig. 8.

(1) The CC value of temporal attention is considerably
higher than that of the one-vs-all baseline, implying
a high temporal correlation of attention across con-
secutive frames of video. This is partly due to high
inter-frame consistency of video content with large CC
values.

(2) The temporal correlation of attention decreases along
with the increased distance between the current and
previous frames. Consequently, there exist the long-
and short-term dependencies of attention across video
frames.

4 ProposedMethod

4.1 Framework

For video saliency prediction, we develop a new DNN
architecture called DeepVS2.0 that combines OM-CNN and
SS-ConvLSTM. According to the findings in Sects. 3.2.1

Fig. 6 Proportion of fixations belonging to 10 groups, ranked according
to the motion intensity

and 3.2.2, human attention is highly correlated to object-
ness and object motion. As such, OM-CNN integrates both
regions and motion of objects to predict video saliency
through two subnets, i.e., the subnets of objectness and
motion. InOM-CNN, the objectness subnet yields a cross-net
mask, whichweights on the features of the convolutional lay-
ers in the motion subnet. Then, the spatial features from the
objectness subnet and the temporal features from the motion
subnet are concatenated by the proposed hierarchical fea-
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(a) (b) (c) (d) (e)

Fig. 7 Examples for human fixation maps across consecutive frames

Fig. 8 The CC results of temporal attention correlation averaged over
animal, human, man-made object and all videos in LEDOV

ture normalization to generate the spatio-temporal features of
OM-CNN. The architecture of OM-CNN is shown in Fig. 9.
Besides, SS-ConvLSTM with the CB dropout and sparsity-
weighted loss is developed to learn the dynamic saliency of
video clips, in which the spatio-temporal features of OM-
CNN serve as the input. Then, the saliency map of each
frame is generated from 2 deconvolutional layers of SS-
ConvLSTM. The architecture of SS-ConvLSTM is shown
in Fig. 10.

4.2 Objectness andMotion Subnets in OM-CNN

In OM-CNN, an objectness subnet is designed for extracting
multi-scale spatial features related to objectness informa-
tion, which is based on a pre-trained YOLOv3 (Redmon and
Farhadi 2018). To avoid over-fitting, a pruned structure of
YOLOv3, denoted as Darknet-53 in Redmon and Farhadi
(2018), is applied as the objectness subnet. In short, it is a
residual network with 53 convolutional layers. In addition, a
batch-normalization layer and a leaky ReLU activation fol-
low each convolutional layer. Assuming that ∗, BN (·) and
L0.1(·) are the convolution operation, batch-normalization
and leaky ReLU with coefficient of 0.1, the output of the

k-th convolutional layer Ck
o in the objectness subnet can be

computed as

Ck
o = L0.1

(
BN (Ck−1

o ∗ Wk−1
o + Bk−1

o )
)

, (4)

where Wk−1
o and Bk−1

o indicate the kernel parameters of
weight and bias at the (k−1)-th convolutional layer, respec-
tively. In addition to the objectness subnet, a FlowNet2 (Ilg
et al. 2017) based motion subnet is also incorporated in OM-
CNN to extract multi-scale temporal features from the pair
of neighboring frames. Similar to the objectness subnet, the
motion subnet is applied by a pruned structure of FlowNet2,
denoted as FlowNet2-S in Ilg et al. (2017), with 10 convo-
lutional layers. For details about the objectness and motion
subnets, refer to Redmon and Farhadi (2018) and Ilg et al.
(2017). In the following, we propose some newmodules that
combine the subnets of objectness and motion.

4.3 Combination of Objectness andMotion Subnets

In OM-CNN, the hierarchical FN and the cross-net mask are
proposed to combine the multi-scale features of both object-
ness andmotion subnets for predicting saliency. In particular,
the cross-net mask can be used to encode objectness infor-
mation when generating temporal features. Moreover, the
inferencemodule is developed to generate the cross-netmask
or saliency map, based on the learned features.

Hierarchical FN For leveraging the multi-scale infor-
mation with various receptive fields, the output features
are extracted from different convolutional layers of the
objectness and motion subnets. Here, a hierarchical FN is
introduced to concatenate the multi-scale features, which
have different resolutions and channel numbers. Specifically,
we take the hierarchical FN for spatial features as an exam-
ple. First, the output features of each residual block in the
objectness subnet are normalized through the FN module to
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Fig. 9 a shows the overall architecture of our OMCNN in DeepVS2.0
for predicting video saliency of intra-frame. The detailed structures of
the objectness andmotion subnets are based onYOLOv3 andFlowNet2,
respectively. The details of the inference and feature normalizationmod-

ules are shown in bNote that the proposed cross-net mask, hierarchical
feature normalization and saliency inference module are highlighted
with gray background

obtain 4 sets of spatial features {FSi }4i=1.As shown in Fig. 9b,
each FN module is composed of a convolutional layer with
1× 1 kernels and a bilinear layer to normalize the input fea-
tures into 128 channels at a resolution of 28× 28. All spatial
features {FSi }4i=1 are concatenated in a hierarchy to obtain
a total size of 28 × 28 × 512, as the output of the hierar-
chical FN. Similarly, the features of the 4-th, 6-th, 8-th and
10-th convolutional layers of the motion subnet are concate-
nated by the hierarchical FN, such that the temporal features
{FTi }4i=1 with a total size of 28 × 28 × 512 are obtained.

Inference module Then, given the extracted spatial fea-
tures {FSi }4i=1 and temporal features {FTi }4i=1, an inference
module I f is constructed to generate the saliency map S f ,
which models the intra-frame saliency of a video frame.
Mathematically, S f can be computed as

S f = I f ({FSi }4i=1, {FTi }4i=1). (5)

The inference module I f is a CNN structure that consists of
4 convolutional layers and 2 deconvolutional layers with a

stride of 2. For each convolutional/deconvolutional layer, the
batch-normalization and leaky ReLU activation are applied,
the same as that in (4). For the last deconvolutional layer,
the sigmoid activation is used instead of the leaky ReLU.
The detailed architecture of I f is shown in Fig. 9b. Conse-
quently, S f is used to train the OM-CNNmodel, as discussed
in Sect. 4.5. Additionally, the output of the last convolutional
layer (C4 in Fig. 9b, size: 28 × 28 × 128) in the inference
module I f is viewed as the final spatio-temporal features
of OM-CNN, denoted by F. Afterwards, F is fed into SS-
ConvLSTM for predicting inter-frame saliency.

Cross-netmask Thefinding in Sect. 3.2.2 shows that atten-
tion ismore likely to be attracted by themoving objects or the
moving parts of objects.However, themotion subnet can only
locate the moving parts of a whole video frame without any
object information. Therefore, the cross-netmask is proposed
to impose a mask on the convolutional layers of the motion
subnet, for locating the moving objects and the moving parts
of objects. The cross-net mask Sc can be obtained upon the
multi-scale features of the objectness subnet. Specifically,
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given spatial features {FSi }4i=1 of the objectness subnet, Sc
can be generated by another inference module Ic as follows,

Sc = Ic({FSi }4i=1). (6)

Note that the structure of Ic is same as that of I f as shown
in (5), but not sharing the parameters. Consequently, the
cross-net mask Sc can be obtained to encode the object-
ness information, roughly related to salient regions. Then,
the cross-net mask Sc is used to mask the outputs of the first
6 convolutional layers of the motion subnet. Accordingly,
the output of the k-th convolutional layer Ck

m in the motion
subnet can be computed as

Ck
m = L0.1

(
M(Ck−1

m ,Sc) ∗ Wk−1
m + Bk−1

m

)
,

where M(Ck−1
m ,Sc) = Ck−1

m · (Sc · (1 − γ ) + 1 · γ ).

(7)

In (7), Wk−1
m and Bk−1

m indicate the kernel parameters of
weight and bias at the (k − 1)-th convolutional layer in the
motion subnet, respectively; γ (0 ≤ γ ≤ 1) is an adjustable
hyper-parameter for controlling the mask degree, mapping
the range of Sc from [0, 1] to [γ, 1]. Note that the last 4 con-
volutional layers are not masked with the cross-net mask for
considering the motion of the non-object region in saliency
prediction.

4.4 SS-ConvLSTM

According to the finding in Sect. 3.2.3, we develop an SS-
ConvLSTMnetwork inDeepVS2.0 for learning to predict the
dynamic saliency of a video clip. At frame t , taking the OM-
CNN features F as the input (denoted as Ft ), SS-ConvLSTM
leverages both long- and short-term correlations of the input
features through the memory cells (Mt−1

1 ,Mt−1
2 ) and hid-

den states (Ht−1
1 ,Ht−1

2 ) of the 1-st and 2-nd LSTM layers
at frame t − 1. Then, the hidden states of the 2-nd LSTM
layer Ht

2 are fed into 2 deconvolutional layers to generate
final saliency map Stl at frame t . The architecture of SS-
ConvLSTM is shown in Fig. 10.

Particularly, a CB dropout is developed in SS-ConvLSTM
to improve the generalization capability of saliency predic-
tion via incorporating the prior of CB. It is because the
effectiveness of the CB prior in saliency prediction has been
verified (Kruthiventi et al. 2017; Xu et al. 2017). Specifically,
the CB dropout is inspired by the Bayesian dropout (Gal and
Ghahramani 2016). Given an input dropout rate pb, the CB
dropout operatorZ(pb) is defined based on an L-timeMonte
Carlo integration:

Z(pb) = Bino(L, pb · SCB)/(L · Mean(SCB)),

where SCB(i, j) = 1 −
√

(i − W/2)2 + ( j − H/2)2√
(W/2)2 + (H/2)2

.

(8)

Bino(L,P) is a randomly generated mask, in which each
pixel (i, j) is subject to an L-trial Binomial distribution
according to probability P(i, j). Here, the probability matrix
P is modeled by CB map SCB, which is obtained upon the
distance from pixel (i, j) to the center (W/2, H/2). Conse-
quently, the dropout operator takes the CB prior into account,
the dropout rate of which is based on pb.

Next, similar to Xingjian et al. (2015), we extend the tra-
ditional LSTM by replacing the Hadamard product (denoted
as ◦) by the convolutional operator (denoted as ∗), to con-
sider the spatial correlation of input OM-CNN features in the
dynamic model. Taking the first layer of SS-ConvLSTM as
an example, a single LSTM cell at frame t can be written as

It1 = σ((Ht−1
1 ◦ Zh

i ) ∗ Wh
i + (Ft ◦ Z f

i ) ∗ W f
i + Bi ),

At
1 = σ((Ht−1

1 ◦ Zh
a) ∗ Wh

a + (Ft ◦ Z f
a ) ∗ W f

a + Ba),

Ot
1 = σ((Ht−1

1 ◦ Zh
o) ∗ Wh

o + (Ft ◦ Z f
o ) ∗ W f

o + Bo),

Gt
1 = tanh((Ht−1

1 ◦ Zh
g) ∗ Wh

g + (Ft ◦ Z f
g ) ∗ W f

g + Bg),

Mt
1 = At

1 ◦ Mt−1
1 + It1 ◦ Gt

1, Ht
1 = Ot

1 ◦ tanh(Mt
1), (9)

where σ and tanh are the activation functions of sig-
moid and hyperbolic tangent, respectively. In (9), {Wh

i ,W
h
a ,

Wh
o ,W

h
g,W

f
i ,W f

a ,W f
o ,W f

g } and {Bi ,Ba,Bo,Bg} denote
the kernel parameters of weight and bias at the correspond-
ing convolutional layers; It1, A

t
1 and Ot

1 are the gates of
input (i), forget (a) and output (o) for frame t ; Gt

1, M
t
1

and Ht
1 are the input modulation (g), memory cells and

hidden states (h). They are all represented by 3-D tensors
with a size of 28 × 28 × 128 in SS-ConvLSTM. Besides,
{Zh

i ,Z
h
a,Z

h
o,Z

h
g} are four sets of randomly generated CB

dropout masks (28× 28× 128) through Z(ph) in (8) with a
hidden dropout rate of ph . They are used to mask on the hid-
den statesHt

1, when computing different gates or modulation
{It1,At

1,O
t
1,G

t
1}. Similarly, given feature dropout rate p f ,

{Z f
i ,Z f

a ,Z f
o ,Z f

g } are four randomly generated CB dropout
masks fromZ(p f ) for the input features Ft . Finally, saliency
map Stl is obtained upon the hidden states of the 2-nd LSTM
layer Ht

2 for each frame t .

4.5 Training Process

For training OM-CNN, we utilize the Kullback-Leibler (KL)
divergence-based loss function to update the parameters. This
function is chosen because (Huang et al. 2015) has proven
that the KL divergence is more effective than other metrics
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Fig. 10 Architecture of our SS-ConvLSTM in DeepVS2.0 for predicting saliency transition across frames, following the OM-CNN. Note that the
training process is not annotated in the figure

in training DNNs to predict saliency. Regarding the saliency
map as a probability distribution of attention, we canmeasure
theKL divergence DKL between the saliencymap S f ofOM-
CNN and the ground-truth distributionG of human fixations
as follows:

DKL(G,S f ) = (1/W×H)
∑W

i=1

∑H

j=1
Gi j log(Gi j/S

i j
f ),

(10)

where Gi j and Si jf refer to the values of location (i, j) in G
and S f (resolution:W×H ). In (10), a smaller KL divergence
indicates higher accuracy in saliency prediction.

Loss function for OM-CNN Different from other DNN
based saliency prediction methods, an auxiliary function is
introduced to trainOM-CNN, considering theKL divergence
between the cross-net mask Sc of OM-CNN and the ground-
truth G. This is based on the assumption that the object
regions are also correlated with salient regions. Then, the
OM-CNNmodel is trained by minimizing the following loss
function:

LOM−CNN = 1

1 + λ
DKL(G,S f )+ λ

1 + λ
DKL(G,Sc). (11)

In (11), λ is a hyper-parameter for controlling the weights of
two KL divergences. Note that in addition to the pre-trained
parameters fromYOLOandFlowNet, the remaining parame-
ters of OM-CNN, including those in the hierarchical FN and
inference modules, are initialized by the Xavier initializer
(Glorot and Bengio 2010). Then, all parameters in OM-CNN
are updated during the training process.

Loss function for SS-ConvLSTM We propose a sparsity-
weighted loss function, which leverages the sparsity prior
of saliency maps, for training SS-ConvLSTM. Specifically,
the training videos are cut into clips with the same length

T , in order to train SS-ConvLSTM. In addition, when train-
ing SS-ConvLSTM, the parameters of OM-CNN are fixed to
extract the spatio-temporal features of each T -frame video
clip. According to Jiang et al. (2015), attention is consistent
across different subjects for both videos and images, such that
the saliencymaps are sparse with a certain histogram, seen as
the sparsity prior. Therefore, a sparsity factor fs is proposed
in training SS-ConvLSTM, to make our method generate
saliency maps with similar histogram as ground-truth. Spar-
sity factor fs can be computed based on the Jensen-Shannon
divergence (Manning and Schütze 1999) between the nor-
malized M-bin histogram of the saliency map (Hists) and
its corresponding ground-truth histogram (Histg). Then, the
loss function of SS-ConvLSTMis defined as the averagedKL
divergence multiplied by the sparsity factor over T frames:

LSS−ConvLSTM = 1

T

T∑

i=1

η · fs · DKL(Sil ,Gi ),

where fs =
∑

i

Histg(i) log
2Histg(i)

Histg(i) + Hists(i)

+
∑

i

Hists(i) log
2Hists(i)

Histg(i) + Hists(i)
. (12)

In (12), {Sil }Ti=1 are the final saliency maps of T frames gen-
erated by SS-ConvLSTM, and {Gi }Ti=1 are their ground-truth
fixation maps. Besides, η is the normalization parameter for
sparsity factor, while Histg(i) and Hists(i) are the i-th item
in Histg and Hists . The details about imposing the sparsity-
weighted loss on SS-ConvLSTM are also shown in Fig. 10.
For each LSTM cell, the kernel parameters are initialized
by the Xavier initializer, while the memory cells and hidden
states are initialized by zeros.
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Table 2 The values of
hyper-parameters in DeepVS2.0 OM-CNN Objectness mask parameter γ in (7) 0.4

KL divergences weight λ in (11) 0.75

Stride k between input frames 5

Initial learning rate 1 × 10−5

Training epochs (iterations) 12(∼ 1.5 × 105)

Batch size 12

Weight decay 5 × 10−6

SS-ConvLSTM Bayesian dropout rates ph and p f 0.75 and 0.75

Times of Monte Carlo integration L 100

Video length T 16

Histogram bins M 50

Sparsity factor parameter η in (12) 1

Initial learning rate 1 × 10−4

Training epochs (iterations) 15(∼ 2 × 105)

Weight decay 5 × 10−6

5 Experimental Results

5.1 Settings

In our experiment, the 538 videos of our LEDOV database
are randomly divided into training (456 videos), valida-
tion (41 videos) and test (41 videos) sets. Specifically, to
learn SS-ConvLSTM in our DeepVS2.0 method, we tempo-
rally segment 456 training videos into 24,685 clips, all of
which contain T (= 16) frames. An overlap of 10 frames
is allowed in cutting the video clips, for the purpose of data
augmentation. Before inputting to OM-CNN in DeepVS2.0,
the RGB channels of each frame are resized to 448 × 448,
with their mean values being removed. In training OM-
CNN and SS-ConvLSTM, we learn the parameters using the
stochastic gradient descent algorithm with the Adam opti-
mizer (Kingma and Ba 2015). Here, the hyper-parameters of
OM-CNN as well as SS-ConvLSTM are tuned to minimize
the KL divergence of saliency prediction over the validation
set. The tuned values of some key hyper-parameters are listed
in Table 2. Given the trained models of OM-CNN and SS-
ConvLSTM, all 41 test videos in LEDOV database are used
to evaluate the performance of our method, in comparison
with 10 other state-of-the-art methods. All experiments are
conducted on a computer with an Intel(R) Core(TM) i7-4770
CPU@3.4GHz, 16GB of RAMand a single Nvidia GeForce
GTX 1080 GPU.

5.2 Evaluation on Our LEDOV Database

In this section, we compare the video saliency prediction
accuracy of our DeepVS2.0 method and other state-of-the-
artmethods, includingGBVS (Harel et al. 2006), PQFT (Guo
and Zhang 2010), Rudoy (Rudoy et al. 2013), OBDL (Hos-

sein Khatoonabadi et al. 2015), SALICON (Huang et al.
2015), Xu et al. (2017), BMS (Zhang and Sclaroff 2016),
SalGAN (Pan et al. 2017), AWSD (Leboran et al. 2017),
SAM (Cornia et al. 2018) and Wang (Wang et al. 2018).
Among these methods, Harel et al. (2006), Guo and Zhang
(2010), Rudoy et al. (2013), Hossein Khatoonabadi et al.
(2015), Xu et al. (2017), Leboran et al. (2017) and Wang
et al. (2018) are 7 traditional saliency prediction methods for
videos. Besides, Huang et al. (2015), Pan et al. (2017), Cor-
nia et al. (2018) and Wang et al. (2018) are 4 state-of-the-art
DNN-based methods. Table 3 tabulates some attributes and
the averaged running time of the above methods, where all
methods are tested on the same computer embedded with a
GPU.We can see from this table that our method can achieve
real-time saliency prediction with around 33 fps (0.03 s per
frame), which is the second fastest method.

In our experiments, we apply 7 metrics to measure the
performance of saliency prediction: AUC, NSS, CC, KL
divergence, similarity metric (SIM), information gain (IG)
and earth mover’s distance (EMD). It worth noting that IG
is calculated by measuring the mutual information between
the saliency map and a fixed center-bias baseline. Besides, in
order to reduce the computational cost, the saliency map and
ground-truth fixation map were downsampled to 14 by 14,
when calculating EMD. Among these 7 metrics, the larger
value of AUC, NSS, CC, SIM or IG indicates more accurate
prediction of saliency, while a smaller KL or EMD means
better saliency prediction. Table 4 tabulates the results of
AUC, NSS, CC, KL, SIM, IG and EMD for our and 11
other methods, which are averaged over the 41 test videos
of LEDOV. As shown in this table, compared to other meth-
ods, our DeepVS2.0 method performs best in terms of most
metrics. More specifically, our method achieves at least 0.25
KL reduction and 0.24 IG improvement over other meth-
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Table 3 Attributes and running time of our and 11 other methods

Method Year Video method DNN based Implementation Input size (W×H) Running time
(per frame) (s)

Parameter

GBVS 2006 � Matlab Full size 2.63 –

PQFT 2010 � Matlab 1/8 Full size 1.15 –

Rudoy 2013 � Matlab Height = 144 144 –

OBDL 2015 � Matlab Height = 288 1.27 –

SALICON 2015 � Python+Caffe∗ 800 × 600 0.41s 117M

Xu 2016 � C++ full size 0.14 –

BMS 2016 Matlab+C++ 400 × 400 0.42 –

SalGAN 2017 � Python+Theano∗ 256 × 192 0.14 130M

AWSD 2017 � Matlab Full size 9.62 –

SAM 2018 � Python+Theano∗ 640 × 480 0.07 151M

Wang 2018 � � Python+Tensorflow∗ 224 × 224 0.02 96M

Ours 2019 � � Python+Tensorflow∗ 448 × 448 0.03 84M

∗DNN-based methods run by GPU

Table 4 Mean of saliency prediction accuracy for our and 11 other methods over all test videos in our database

GBVS PQFT Rudoy OBDL SALICON∗ Xu BMS SalGAN∗ AWSD SAM∗ Wang◦ Ours

AUC 0.84 0.70 0.80 0.80 0.89 0.83 0.76 0.87 0.80 0.88 0.89 0.90

NSS 1.54 0.69 1.45 1.54 2.43 1.47 0.98 2.39 1.36 2.94 2.87 3.02

CC 0.32 0.14 0.32 0.32 0.43 0.38 0.21 0.45 0.29 0.57 0.56 0.60

KL 1.82 2.46 2.42 2.05 1.57 1.65 2.23 1.62 2.02 1.47 1.45 1.20

SIM 0.26 0.19 0.23 0.26 0.32 0.22 0.21 0.28 0.22 0.44 0.44 0.42

IG 0.57 −0.14 0.28 0.15 0.94 0.29 0.22 0.85 0.26 1.22 1.21 1.46

EMD 3.74 5.80 3.09 4.69 3.95 4.55 5.28 4.34 5.19 2.29 2.11 2.06

∗DNN-based methods have been fine-tuned by our database with their default settings
◦We cannot fine-tune this model since it does not release the training code
The best result of each metric is listed in bold

ods. Meanwhile, among the compared methods, Wang et al.
(2018) and SAM (Cornia et al. 2018) are the best video
and image saliency prediction methods, respectively, which
are both based on DNN. This verifies the effectiveness of
saliency related features automatically learnedbyDNN.Note
that our method is still significantly superior to Wang et al.
(2018). Themain reasons for the superior performance of our
method are as follows. (1)Ourmethod embeds the objectness
subnet to utilize objectness information in saliency predic-
tion. (2) The object motion is explored in the motion subnet
to predict video saliency. (3) SS-ConvLSTM is leveraged
to model saliency transition across video frames. Sect. 5.4
analyzes the above three reasons in more detail.

Next, we compare the subjective results in video saliency
prediction. Figure 11 demonstrates the saliency maps of 8
randomly selected videos in the test set, predicted by our
method and 11 other methods. In this figure, one frame is
selected for each video. As shown in Fig. 11, our method
is capable of well locating the salient regions, which are
close to the ground-truth maps of human fixations. In con-

trast, most of the comparedmethods fail to accurately predict
the regions that attract human attention. In addition, Fig. 12
shows the saliency maps of some frames selected from one
test video. As shown in this figure, our method is able to
model human fixation with a smooth transition, better than
all other methods. In summary, our method is superior to
other state-of-the-art methods in both objective and subjec-
tive results, as tested on our LEDOV database.

5.3 Evaluation on Other Databases

To evaluate the generalization capability of our method, we
further evaluate the performance of our DeepVS2.0 method
and 11 other methods on two widely used databases, SFU
(Hadizadeh et al. 2012) and DIEM (Mital et al. 2011). In the
experiments, the models of OM-CNN and SS-ConvLSTM,
learned from the training set of our LEDOV database, are
directly used to predict the saliency of test videos from the
DIEM and SFU databases. Table 5 presents the averaged
results of AUC, NSS, CC, KL, SIM, IG and EMD for our
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Fig. 11 Saliency maps of 8 videos randomly selected from the test set of our LEDOV database. The maps were yielded by our and 11 other methods
as well the ground-truth human fixations. Note that the results of only one frame are shown for each selected video

Fig. 12 Saliency maps of several frames randomly selected from a single test video in LEDOV. The maps were yielded by our method and the 11
other methods as well the ground-truth human fixations

and 11 other methods over SFU and DIEM. As shown in this
table, our method again outperforms the compared meth-
ods, especially over the DIEM database. For instance, there
are at least 0.05, 0.52, 0.11, 0.19, 0.01 and 0.09 improve-
ment in AUC, NSS, CC, KL, IG and EMD, respectively.

Similar improvement can be found over the SFU database.
Such improvement is comparable to that over our LEDOV
database. This demonstrates the generalization capability of
our method in video saliency prediction.
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Table 5 Mean values for saliency prediction accuracy of our and other methods over SFU and DIEM databases

GBVS PQFT Rudoy OBDL SALICON∗ Xu BMS SalGAN∗ AWSD SAM∗ Wang◦ Ours

AUC 0.76 0.61 0.73 0.74 0.78 0.80 0.66 0.79 0.76 0.79 0.81 0.82

NSS 0.91 0.31 0.83 1.03 1.24 1.24 0.50 1.25 1.26 1.22 1.31 1.53

CC 0.44 0.12 0.34 0.42 0.58 0.43 0.25 0.51 0.28 0.53 0.54 0.59

KL 0.61 0.98 0.93 0.80 1.12 1.35 0.83 0.70 1.82 0.88 0.86 0.60

SIM 0.54 0.44 0.34 0.48 0.44 0.55 0.49 0.56 0.49 0.53 0.53 0.59

IG 0.44 −0.17 0.02 0.06 −1.29 0.43 0.17 0.48 0.23 0.21 0.22 0.47

EMD 2.33 3.08 2.37 2.65 2.65 2.35 2.68 2.20 2.71 2.25 2.14 2.01

DIEM

GBVS PQFT Rudoy OBDL SALICON∗ Xu BMS SalGAN∗ AWSD SAM∗ Wang◦ Ours

AUC 0.81 0.71 0.80 0.75 0.79 0.80 0.77 0.81 0.76 0.78 0.81 0.86

NSS 1.21 0.86 1.40 1.26 1.68 1.34 1.20 1.60 1.26 1.78 1.50 2.30

CC 0.30 0.19 0.38 0.29 0.36 0.35 0.28 0.35 0.28 0.38 0.40 0.51

KL 1.64 1.73 2.33 2.77 1.66 1.67 1.96 1.64 1.82 1.55 1.44 1.25

SIM 0.30 0.24 0.28 0.27 0.30 0.27 0.27 0.28 0.28 0.40 0.44 0.40

IG 0.27 −0.21 −1.89 −2.81 0.39 0.09 −0.10 0.36 0.14 0.48 0.94 0.95

EMD 2.92 3.58 2.56 3.57 3.12 3.26 3.39 3.12 3.40 2.77 2.49 2.40

∗DNN-based methods have been fine-tuned by our database with their default settings
◦We cannot fine-tune this model since it does not release the training code
The best result of each metric is listed in bold

Table 6 Averaged CC between
saliency maps and object
region/object motion maps

OM-CNN Objectness subnet Motion subnet

Object region 0.42 0.44 0.36

Object motion map 0.35 0.30 0.35

5.4 Performance Analysis of DeepVS2.0

Supervision evaluation of subnets Since OM-CNN is com-
posed of the objectness and motion subnets, we evaluate
the supervision of objectness and object motion in our
saliency prediction method. Specifically, the objectness sub-
net, motion subnet and OM-CNN are trained independently
with the same settings introduced above. For each video in
the validation set, 3 sets of saliency maps are obtained upon
the trained models of objectness subnet, motion subnet and
OM-CNN.Meanwhile, themaps of object regions and object
motion are also generated based on YOLO and FlowNet.
Then, the CC values between saliency maps and the maps of
object regions/object motion are shown in Table 6. We can
see from Table 6 that the saliency maps generated from OM-
CNN and the objectness subnet are much more correlated
to object regions than those from the motion subnet. This
indicates that the objectness subnet contributes to learning
objectness cues for saliency prediction. Similarly, the motion
subnet is verified to highlight the object motion information
in video saliency prediction.

Evaluation on the cross-net mask For evaluating the effec-
tiveness of the cross-net mask, we visualize the intermediate

cross-net masks at different iterations in training OM-CNN.
Figure 13 shows the cross-net masks, ground-truth fixation
maps and output saliencymaps of some video frames.We can
see from this figure that, at the beginning of the training pro-
cess (500 iterations), the cross-netmasks are coarse due to the
random initialization of the inference module. Then, along
with the increased training iterations, the cross-net masks
become sparse and center on the object regions. Thus, the
cross-net mask is effective in adding the object information
to the motion subnet, for saliency prediction.

Performance analysis of components We further analyze
the contribution of each component in our method through
ablation experiments. The KL and CC results of our abla-
tion experiments are shown in Fig. 14, in which each model
is trained independently. Note that the improvement by the
sparsity weighted loss is not significant, since it is used for
adjusting the sparsity of saliency maps, not for improving
the accuracy of saliency prediction. In Fig. 14, DeepVS
(Jiang et al. 2018) and the method (Wang et al. 2018) with
second best performance in Table 4, are used as the base-
lines. As shown in this figure, there are 0.070 reduction in
KL and 0.021 improvement in CC for DeepVS2.0 against
DeepVS. We can see from Fig. 14 that OM-CNN performs

123



220 International Journal of Computer Vision (2021) 129:203–224

Fig. 14 Ablation results of our DeepVS2.0 method, compared with DeepVS (our conference paper) and Wang. Note that the smaller KL or larger
CC indicates higher accuracy in saliency prediction

Fig. 13 Cross-net masks at different iterations of 5 randomly selected
input frames, as well as their corresponding ground-truths and output
saliency maps of our method

better than the objectness subnet with 0.043 KL reduction
and 0.012 CC improvement. Meanwhile, OM-CNN outper-
forms the motion subnet by 0.091 reduction in KL and 0.023
improvement in CC. These results indicate the effective-
ness of integrating the subnets of objectness and motion.
Moreover, Fig. 14 shows that the final model with OM-CNN
and SS-ConvLSTM improves the performance by 0.111 in

KL and 0.029 in CC, against the single OM-CNN. Hence,
we can conclude that SS-ConvLSTM can further improve
the performance of OM-CNN. In addition, the cross-net
mask, CB dropout and sparsity-weighted loss can reduce KL
divergence by 0.024, 0.037 and 0.032, respectively. Similar
improvement can be found in terms of the other 6 metrics.
Note that the ablation results of all metrics are provided in
our supplementary material. This verifies the effectiveness
of the proposed components in our method.

Performance analysis of backbone structures As intro-
duced above, we update the backbone structures of the
motion and objectness subnets in DeepVS2.0, taking the
advantage ofmore recentYOLO (Redmon andFarhadi 2018)
and FlowNet (Ilg et al. 2017) models. Here, we evaluate
the performance of our method with different backbone
structures from YOLO and FlowNet. Note that in order to
avoid over-fitting and reduce computational cost, we do not
apply the whole structure of YOLO or FlowNet. Specifi-
cally, we apply the basic structures of YOLOv1 (Redmon
et al. 2016) (i.e., Fast YOLO), YOLOv2 (Redmon and
Farhadi 2017) (i.e., Darknet-19) and YOLOv3 (Redmon and
Farhadi 2018) (i.e., Darknet-53) as the objectness subnet.
Meanwhile, we implement the motion subnet by FlowNet-
Simple in FlowNet1 (Dosovitskiy et al. 2015), FlowNet2-SD,
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Table 7 Performance of our method with different backbone structures

CC KL

YOLOv1 + FlowNet1 (DeepVSa) 0.567 1.252

YOLOv2 + FlowNet1 0.562 1.271

YOLOv3 + FlowNet1 0.574 1.223

YOLOv3 + FlowNet2-SD 0.572 1.230

YOLOv3 + FlowNet2-C 0.566 1.256

YOLOv3 + FlowNet2-S (DeepVS2.0) 0.581 1.199

aSparsity weighted loss is added for fair comparison

Fig. 15 KL divergences of our models with different values of γ and λ

FlowNet2-S and FlowNet2-C in FlowNet2 (Ilg et al. 2017).
According to the results in Table 7, the combination of
YOLOv3 and FlowNet2-S achieves the best performance.
Compared with DeepVS, the new backbone structures can
bring 0.014 CC improvement and 0.053 KL reduction,
respectively. In addition to CC and KL, similar results can
be found in terms of other 5 metrics, which are provided in
our supplementary material.

Performance analysis of OM-CNN Here, we analyze the
impacts of 2 hyper-parameters of OM-CNN for saliency
prediction: i.e., cross-net mask weight γ and auxiliary KL
weight λ. We can see from (7) that γ is an adjustable param-
eter to control the degree of the cross-net mask, while λ in
(11) is used to balance the KL divergences of main and auxil-
iary loss function in training the OM-CNNmodel. Figure 15
shows the KL divergences of our OM-CNN model with var-
ious values of γ and λ. Therefore, in our method, cross-net
mask weight γ and auxiliary KL weight λ are set to 0.4 and
0.75, respectively, to achieve the appropriate performance of
saliency prediction.

Performance analysis of SS-ConvLSTM We evaluate the
performance of proposed CB dropout in SS-ConvLSTM. To
this end, we train the SS-ConvLSTM models at different
values of hidden dropout rate ph and feature dropout rate p f ,
and then we test the trained models over the validation set.
The averaged KL divergence results are shown in Fig. 16a.

We can see that the CB dropout can reduce KL divergence by
0.032 and improve CC by 0.014, when both ph and p f are
0.75, compared to the model without CB dropout (i.e., ph =
p f = 1). Meanwhile, the performance sharply degrades by
0.064 in KL and 0.034 in CC, when both ph and p f decrease
from 0.75 to 0.2. This is caused by the under-fitting issue, as
most connections in SS-ConvLSTM are dropped. Thus, ph
and p f are set to 0.75 in our model.

The SS-ConvLSTM model is trained at a fixed video
length (T = 16). We further evaluate the saliency pre-
diction performance of the trained SS-ConvLSTM model
on variable-length videos. Here, we test the trained SS-
ConvLSTM model over the validation set, the videos of
which are clipped with their length varying from 8 to 54
frames. Fig. 16b shows the averaged KL divergence and CC
for video clips at various lengths. We can see from this figure
that the performance of SS-ConvLSTM fluctuates from 8 to
54 frames, with the maximum at T = 32. On the other hand,
the performance fluctuation of SS-ConvLSTM is tiny, indi-
cating the robustness of our method to varying video length.

6 Conclusion

In this paper, we have proposed a DNN-based method,
which predicts video saliency throughDeepVS2.0. For train-
ing the DNN models of DeepVS2.0, we established the
LEDOV database, which has the fixations of 32 subjects
on 538 videos. Then, the OM-CNN architecture was pro-
posed in DeepVS2.0 to explore the spatio-temporal features
of the objectness and object motion to predict the intra-frame
saliencyof videos. InDeepVS2.0, SS-ConvLSTMwasdevel-
oped to model the inter-frame saliency of videos. Finally,
the experimental results verified that our method signifi-
cantly outperforms 11 other state-of-the-art methods over
both our and 2 other public eye-tracking databases, in terms
of AUC, CC, NSS, KL, SIM, IG and EMD metrics. Thus,
the prediction accuracy and generalization capability of our
DeepVS2.0 method can be validated.

It is interesting to discuss the of inspiration this work
may bring to other computer vision tasks. For instance, the
cross-net mask can be regarded as a kind of attention mech-
anism, which has been wildly used in other vision tasks
(Hu et al. 2018; Woo et al. 2018; Fu et al. 2019). Different
from the existing attention mechanisms, the cross-net mask
is extracted from the objectness subnet, indicating the region
of interest (ROI) related to objects. Besides, the CB dropout
can be utilized in other computer vision tasks for considering
the center-bias prior, such as image classification and object
detection. Similarly, the sparsity weighted loss can be used in
some vision tasks that need to generate images with certain
sparsity, such as optical flow.
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Fig. 16 a KL divergence and CC of our models with different dropout rates. b KL divergence and CC over validation videos with variable lengths
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