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Abstract. We present a probabilistic framework for component-based
automatic detection and tracking of objects in video. We represent ob-
jects as spatio-temporal two-layer graphical models, where each node
corresponds to an object or component of an object at a given time, and
the edges correspond to learned spatial and temporal constraints. Object
detection and tracking is formulated as inference over a directed loopy
graph, and is solved with non-parametric belief propagation. This type
of object model allows object-detection to make use of temporal consis-
tency (over an arbitrarily sized temporal window), and facilitates robust
tracking of the object. The two layer structure of the graphical model
allows inference over the entire object as well as individual components.
AdaBoost detectors are used to define the likelihood and form proposal
distributions for components. Proposal distributions provide ‘bottom-
up’ information that is incorporated into the inference process, enabling
automatic object detection and tracking. We illustrate our method by
detecting and tracking two classes of objects, vehicles and pedestrians,
in video sequences collected using a single grayscale uncalibrated car-
mounted moving camera.

1 Introduction

The detection and tracking of complex objects in natural scenes requires rich
models of object appearance that can cope with variability among instances
of the object and across changing viewing and lighting conditions. Traditional
optical flow methods are often ineffective for tracking objects because they are
memoryless; that is, they lack any explicit model of object appearance. Here we
seek a model of object appearance that is rich enough for both detection and
tracking of objects such as people or vehicles in complex scenes. To that end we
develop a probabilistic framework for automatic component-based detection and
tracking. By combining object detection with tracking in a unified framework we
can achieve a more robust solution for both problems. Tracking can make use of
object detection for initialization and re-initialization during transient failures or



occlusions, while object detection can be made more reliable by considering the
consistency of the detection over time. Modeling objects by an arrangement of
image-based (possibly overlapping) components, facilitates detection of complex
articulated objects, as well as helps in handling partial object occlusions or local
illumination changes.

Object detection and tracking is formulated as inference in a two-layer graph-
ical model in which the coarse layer node represents the whole object and the
fine layer nodes represent multiple component “parts” of the object. Directed
edges between nodes represent learned spatial and temporal probabilistic con-
straints. Each node in the graphical model corresponds to a position and scale
of the component or the object as a whole in an image at a given time instant.
Each node also has an associated AdaBoost detector that is used to define the
local image likelihood and a proposal process. In general the likelihoods and de-
pendencies are not Gaussian. To infer the 2D position and scale at each node we
exploit a form of non-parametric belief propagation (BP) that uses a variation
of particle filtering and can be applied over a loopy graph [8, 15].

The problem of describing and recognizing categories of objects (e.g. faces,
people, cars) is central to computer vision. It is common to represent objects as
collections of features with distinctive appearance, spatial extent, and position
[2, 6, 10, 11, 16, 17]. There is however a large variation in how many features one
must use and how these features are detected and represented. Most algorithms
rely on semi-supervised learning [11, 16, 17] schemes where examples of the de-
sired class of objects must be manually aligned, and then learning algorithms
are used to automatically select the features that best separate the images of
the desired class from background image patches. More recent approaches learn
the model in an unsupervised fashion from a set of unlabeled and unsegmented
images [2, 6]. In particular, Fergus et al [6] develop a component based object
detection algorithm that learns an explicit spatial relationship between parts of
an object, but unlike our framework assumes Gaussian likelihoods and spatial
relationships and does not model temporal consistency.

In contrast to part-based representations, simple discriminative classifiers
treat an object as a single image region. Boosted classifiers [16], for example,
while very successful tend to produce a large set of false positives. While this
problem can be reduced by incorporating temporal information [17], discrimina-
tive classifiers based on boosting do not explicitly model parts or components
of objects. Such part-based models are useful in the presence of partial occlu-
sions, out-of-plane rotation and/or local lighting variations [5, 11, 18]. Part- or
component-based detection is also capable of handling highly articulated objects
[10], for which a single appearance model classifier may be hard to learn. An il-
lustration of the usefulness of component-based detection for vehicles is shown
in Fig. 1. While all vehicles have almost identical parts (tires, bumper, hood,
etc.) their placement can vary significantly due to large variability in the height
and type of vehicles.

Murphy et al [12] also use graphical models in the patch-based detection
scheme. Unlike our approach they do not incorporate temporal information or



Fig. 1. Variation in the vehicle class of objects is shown. While objects shown here
have a drastically different appearance as a whole due to the varying height and type
of the vehicle, their components tend to be very homogeneous and are easy to model.

explicitly reason about the object as a whole. Also closely related is the work of
[13] which uses AdaBoost for multi-target tracking and detection. However, their
Boosted Particle Filter [13] does not integrate component-based object detection
and is limited to temporal propagation in only one direction (forward in time). In
contrast to these previous approaches we combine techniques from discriminative
learning, graphical models, belief propagation, and particle filtering to achieve
reliable multi-component object detection and tracking.

In our framework, object motion is represented via temporal constraints
(edges) in the graphical model. These model-based constraints for the object
and components are learned explicitly from the labeled data, and make no use
of the optical flow information. However the model could be extended to use ex-
plicit flow information as part of the likelihood model, or as part of the proposal
process. In particular, as part of the proposal process, optical flow information
can be useful in focusing the search to the regions with “interesting” motion,
that are likely to correspond to an object or part/component of an object.

2 Graphical Object Models

Following the framework of [14] we model an object as a spatio-temporal di-
rected graphical model. Each node in the graph represents either the object
or a component of the object at time t. Nodes have an associated state vector
XT = (x, y, s) defining the component’s real-valued position and scale within
an image. The joint probability distribution for this spatio-temporal graphical
object model with N components and over T frames can be written as:

P (XO
0 ,X

C0

0
,X

C1

0
, ...,X

CN
0

, ......,X
O
T ,X

C0

T ,X
C1

T , ...,X
CN
T ,Y0,Y1, ...,YT ) =

1

Z

∏

ij

ψij(X
O
i ,X

O
j )

∏

ik

ψik(XO
i ,X

Ck
i )

∏

ikl

ψkl(X
Ck
i ,X

Cl
i )

∏

i

φi(Yi,X
O
i )

∏

ik

φi(Yi,X
Ck
i )

where XO
t and XCn

t is the state of the object, O, and object’s n-th component,
Cn, at time t respectively (n ∈ (1, N) and t ∈ (1, T )); ψij(X

O
i ,X

O
j ) is the tempo-

ral compatibility of the object state between frames i and j; ψik(XO
i ,X

Ck

i ) is the



spatial compatibility of the object and it’s components at frame i; ψkl(X
Ck

i ,XCl

i )
is the spatial compatibility between object components at frame i; and φi(Yi,X

O
i )

and φi(Yi,X
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i ) denote the local evidence (likelihood) for the object and com-
ponent states respectively.

Our framework can be viewed as having five distinct components: (i) a graph-
ical model, (ii) an inference algorithm that infers a probability distribution over
the state variables at each node in the graph, (iii) a local evidence distribution
(or image likelihood), (iv) a proposal process for some or all nodes in a graphical
model, and (v) a set of spatial and/or temporal constraints corresponding to the
edges in a graph. We will now discuss each one of these in turn.

2.1 Building the Graphical Model

For a single frame we represent objects using a two-layer spatial graphical model.
The fine, component, layer contains a set of loosely connected “parts.” The
coarse, object, layer corresponds to an entire appearance model of the object
and is connected to all constituent components. Examples of such models for
pedestrian and vehicle detection are shown in a the shaded regions of Fig. 2a
and 2b respectively. In both cases objects are modeled using four overlapping
image components. For the vehicle the components are: top-left (TL), top-right
(TR), bottom-right (BR) and bottom-left (BL) corners; while for the pedestrian,
they are: head (HD), left arm (LA), right arm (RA) and legs (LG) (see Fig. 3ab).

To integrate temporal constraints we extend the spatial graphical models over
time to an arbitrary-length temporal window. The resulting spatio-temporal
graphical models are shown in Fig. 2a and 2b. Having a two-layer graphical
model, unlike the single component layer model of [14], allows the inference pro-
cess to reason explicitly about the object as a whole, as well as helps reduce
the complexity of the graphical model, by allowing the assumption of indepen-
dence of components over time conditioned on the overall object appearance.
Alternatively, one can also imagine building a single object layer model, which
would be similar to the Boosted Particle Filter [13] (with bi-directional temporal
constraints).

2.2 Learning Spatial and Temporal Constraints

Each directed edge between components i and j has an associated potential func-
tion ψij(Xi,Xj) that encodes the compatibility between pairs of node states. The
potential ψij(Xi,Xj) is modeled using a mixture of Mij Gaussians (following
[14])

ψij(Xi,Xj) = λ
0N (Xj ;µij , Λij) + (1 − λ

0)

Mij
∑

m=1

πijmN (Xj ;Fijm(Xi), Gijm(Xi))

where λ0 is a fixed outlier probability, µij and Λij are the mean and covari-
ance of the Gaussian outlier process, and Fijm(Xi) and Gijm(Xi) are functions
that return the mean and covariance matrix respectively of the m-th Gaussian



(a) (b)

Fig. 2. Graphical models for the (a) pedestrian and (b) vehicle detection and tracking.
Spatio-temporal models are obtained by replicating a spatial model (shown by the
shaded region) along the temporal domain to a w-length window and then connecting
the object layer nodes across time.

mixture component. πijm is the relative weight of an individual component and
∑Mij

m=1
πijm = 1. For experiments in this paper we used Mij = 2 mixture com-

ponents.
Given a set of labeled images, where each component is associated with a

single reference point, we use standard iterative Expectation-Maximization (EM)
algorithm with K-means initialization to learn Fijm(Xi) of the form:
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where µx
ijm, µy

ijm, µs
ijm is the mean position and scale of component or ob-

ject j relative to i. Gijm(Xi) is assumed to be diagonal matrix, representing
the variance in relative position and scale. Examples of the learned conditional
distributions can be seen in Fig. 3cde.

2.3 AdaBoost Image Likelihoods

The likelihood, φ(Y,Xi) models the probability of observing the image Y con-
ditioned on the state Xi of the node i, and ideally should be robust to partial
occlusions and the variability of image statistics across many different inputs.
To that end we build our likelihood model using a boosted classifier.

Following [16] we train boosted detectors for each component. For simplicity
we use AdaBoost [16] without a cascade (training with a cascade would likely
improve the computational efficiency of the system). In order to reduce the num-
ber of false positives produced by the detectors, we use a bootstrap procedure
that iteratively adds false positives that are collected by running the trained
strong classifier over the set of background images (not containing the desired
object) and then re-training the detectors using the old positive and the new
extended negative sets.
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Fig. 3. Components for the (a) pedestrian and (b) vehicle object models (entire ap-
pearance model is in cyan) and learned conditional distributions from (c) Bottom-Left
(BL) to Top-Left (TL) component, (d) Bottom-Left (BL) to the whole appearance
model, and (e) whole appearance model to the Bottom-Left (BL) component.

Given a set of labeled patterns the AdaBoost procedure learns a weighted
combination of base weak classifiers, h(I) =

∑K
k=1

αkhk(I), where I is an image
pattern, and hk(I) is the weak classifier chosen for the round k of boosting, and
αk is the corresponding weight. We use a weak classifier scheme similar to the

one discussed in [16]: hk(I) = pk

([

βk

√

(fk(I))βk < θk

])

, where fk(I) is a feature

of the pattern I computed by convolving I with the delta function over the
extent of a spatial template; θk is a threshold, pk is the polarity indicating the
direction of inequality, and βk ∈ [1, 2] allowing for a symmetric two sided pulse
classification.

The output of the AdaBoost classifier is a confidence hk(I) that the given
pattern I is of the desired class. It is customary to consider an object present
if hk(I) ≥ 1

2

∑K
k=1

αk. We convert this confidence into a likelihood function by
first normalizing the αk’s, so that h(I) ∈ [0, 1], and then exponentiating

φ(Y,Xi) ∝ exp(h(I)/T ) (2)

where image pattern I is obtained by cropping full image Y based on the state
of the object or component Xi; and T is an artificial temperature parameter
that controls the smoothness of the likelihood function, with smaller values of T
leading to peakier distribution. Consequently we can also anneal the likelihood
by deriving a schedule with which T changes. We found an exponential annealing
schedule T = T0υ

κ, where T0 is the initial temperature, υ is a fraction ∈ (0, 1),
and κ is the annealing iteration, to work well in practice. AdaBoost classifiers are
learned using a database of 861 vehicles and 662 pedestrians [11]. The number of
negative examples after bootstrapping tends to be on the order of 2000 to 3000.

Depending on an object one may or may not have a likelihood or a proposal
process for the object layer nodes. For example if the whole appearance of an
object is indeed too complicated to model as a whole (e.g. arbitrary size vehicles)
and can only be modeled in terms of components, we can simply assume a
uniform likelihood over the entire state space. In such cases the object layer



nodes simply fuse the component information to produce estimates for the object
state that are consistent over time.

It is worth noting that the assumption of local evidence independence im-
plicit in our graphical model is only approximate, and may be violated in the
regions where object and components overlap. In such cases the correlation or
bias introduced into the inference process will depend on the nature of the fil-
ters chosen by the boosting procedure. While this approximation works well in
practice, we plan to study it more formally in the future.

2.4 Non-parametric BP

Inferring the state of the object and it’s components in our framework is defined
as estimating belief in a graphical model. We use a form of non-parametric belief
propagation [8] Pampas to deal with this task. The approach is a generalization
of particle filtering [4] which allows inference over arbitrary graphs rather then a
simple chain. In this generalization the ‘message’ used in standard belief propa-
gation is approximated with a kernel density (formed by propagating a particle
set through a mixture of Gaussians density), and the conditional distribution
used in standard particle filtering is replaced by product of incoming messages.
Most of the computational complexity lies in sampling from a product of ker-
nel densities required for message passing and belief estimation; we use efficient
sequential multi-scale Gibbs sampling and epsilon-exact sampling [7] to address
this problem.

Individual messages may not constrain a node well, however the product over
all incoming messages into the node tends to produce a very tight distribution
in the state space. For example, any given component of a vehicle is incapable
of estimating the height of the vehicle reliably, however once we integrate infor-
mation from all components in the object layer node, we can get a very reliable
estimate for the overall object size.

More formally a message mij from node i to node j is written as

mij(Xj) =

∫

ψij(Xi,Xj)φi(Yi,Xi)
∏

k∈Ai/j

mki(Xi)dXi, (3)

where Ai/j is the set of neighbors of node i excluding node j and φi(Yi,Xi) is
the local evidence (or likelihood) associated with the node i, and ψij(Xi,Xj) is
the potential designating the compatibility between the states of node i and j.
The details of how the message updates can be carried out by stratified sampling
from belief and proposal function see [14].

While it is possible and perhaps beneficial to perform inference over the
spatio-temporal model defined for the entire image sequence, there are many
applications for which this is impractical due to the lengthy off-line processing
required. Hence, we use a w-frame windowed smoothing algorithm where w is
an odd integer ≥ 1 (see Fig. 2). There are two ways one can do windowed
smoothing: in an object-detection centric way or a tracking-centric way. In the
former we re-initialize all nodes every time we shift a window, hence the temporal



integration is only applied in the window of size w. In the tracking centric way
we only initialize the nodes associated with a new frame, which tends to enforce
temporal consistency from before t−(w−1)/2. While the later tends to converge
faster and produce more consistent results over time, it is also less sensitive to
objects entering and leaving the scene. Note that with w = 1, the algorithm
resembles single-frame component-based fusion [18].

2.5 Proposal Process

To reliably detect and track the object non-parametric BP makes use of the
bottom-up proposal process, that constantly looks for and suggests alternative
hypothesis for the state of the object and components. We model a proposal
distribution using a weighted particle set. To form a proposal particle set for
a component, we run the corresponding AdaBoost detector over an image at
a number of scales to produce a set of detection results that score above the
1

2

∑K
k=1

αk threshold. While this set tends to be manageable for the entire ap-
pearance model, it is usually large for non-specific component detectors (a few
thousand locations can easily be found). To reduce the dimensionality we only
keep the top P scoring detections, where P is on the order of a 100 to 200. To
achieve breadth of search we generate proposed particles by importance sam-
pling uniformly from the detections. For more details on the use of the proposal
process in the Pampas framework see [14].

3 Experiments

Tests were performed using a set of images collected with a single car-mounted
grayscale camera. The result of vehicle detection and tracking over a sequence
of 55 consecutive frames can be seen in Fig. 5. A 3-frame spatio-temporal object
model was used and was shifted in a tracking-centric way over time. We run BP
with 30 particles for 10 iterations at every frame. For comparison we implemented
a simple fusion scheme that averages the best detection result from each of the
four components (Fig. 5(b) ‘Best Avg.’) to produce an estimate for the vehicle
position and scale independently at every frame. The performance of the simple
fusion detection is very poor suggesting that the noisy component detectors
often do not have the global maximum at the correct position and scale. In
contrast, the spatio-temporal object model consistently combines the evidence
for accurate estimates throughout the sequence.

The performance of the pedestrian spatio-temporal detector is shown in
Fig. 6. A 3-frame spatio-temporal object model is run at a single instance in
time for two pedestrians in two different scenes. Similar to the vehicle detec-
tion we run BP with 30 particles for 10 iterations. For both experiments the
temperature of the likelihood is set to T0 = 0.2.

While in general the algorithm presented here is capable of detecting multiple
targets, by converging to multi-modal distributions for components and objects,
in practice this tends to be quite difficult and requires many particles. Particle



filters in general have been shown to have difficulties when tracking multi-modal
distributions [13]. The Pampas framework used here is an extension of parti-
cle filtering, and the message update involves taking a product over particle
sets, consequently, Pampas suffers from similar problems. Furthermore, belief
propagation over a loopy graph such as ours may further hinder the modeling
of multi-modal distributions. To enable multi-target tracking then we employ a
peak suppression scheme, where modes are detected one at a time, and then the
response of the likelihood function is suppressed in the regions where peaks have
already been found. An example of this obtained by running a purely spatial
graphical model over the image containing 6 vehicles is shown in Fig. 4.

4 Conclusion

In this paper we present a novel object detection and tracking framework ex-
ploiting boosted classifiers and non-parametric belief propagation. The approach
provides component-based detection and integrates temporal information over
an arbitrary size temporal window. We illustrate the performance of the frame-
work with two classes of objects: vehicles and pedestrians. In both cases we can
reliably infer position and scale of the objects and their components. Further
work needs to be done to evaluate how the method copes with changing lighting
and occlusion. Additional work is necessary to develop a mutli-target scheme
that incorporates a probabilistic model of the entire image.

The algorithm developed here is quite general and might be applied to other
objection tracking and motion estimation problems. For example, we might for-
mulate a parameterized model of facial motion in which the optical flow in dif-
ferent image regions (mouth, eyes, eyebrows) are modeled independently. These
motion parameters for these regions could then be coupled via the graphical
model and combined with a top-level head tracker. Such an approach might
offer improved robustness over previous methods for modeling face motion [1].
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Fig. 4. Vehicle component-based spatio-temporal object detection for multiple targets.
The algorithm was queried for 8 targets. The mean of 30 samples from the belief for
each object are shown in red. Targets are found one at the time using an iterative
approach that adjusts the likelihood functions to down weight regions where targets
have already been found.
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Fig. 5. Vehicle component-based spatio-temporal object detection and tracking. (a)
shows samples from the initialization/proposal distribution, and (b) 30 samples taken
from the belief for each of the four component (middle) and an object (right). The
detection and tracking was conducted using a 3-frame smoothing window. Frames 2
through 52 are shown (top to bottom respectively) at 10 frame intervals. For comparison
(b) (left) shows the performance of a very simple fusion algorithm, that fuses the best
result from each of the components by averaging.
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Fig. 6. Pedestrian component-based spatio-temporal object detection for two subjects
(a) and (b). (top) shows the initialization/proposal distribution, and (bottom) 30 sam-
ples taken from the belief for each of the four component and an object. The detection
was conducted using a 3-frame temporal window.


