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Abstract
Despite significant recent progress on generative models, controlled generation of images depicting multiple and complex
object layouts is still a difficult problem. Among the core challenges are the diversity of appearance a given object may
possess and, as a result, exponential set of images consistent with a specified layout. To address these challenges, we propose
a novel approach for layout-based image generation; we call it Layout2Im. Given the coarse spatial layout (bounding boxes
+ object categories), our model can generate a set of realistic images which have the correct objects in the desired locations.
The representation of each object is disentangled into a specified/certain part (category) and an unspecified/uncertain part
(appearance). The category is encoded using a word embedding and the appearance is distilled into a low-dimensional vector
sampled from a normal distribution. Individual object representations are composed together using convolutional LSTM, to
obtain an encoding of the complete layout, and then decoded to an image. Several loss terms are introduced to encourage
accurate and diverse image generation. The proposed Layout2Immodel significantly outperforms the previous state-of-the-art,
boosting the best reported inception score by 24.66% and 28.57% on the very challenging COCO-Stuff and Visual Genome
datasets, respectively. Extensive experiments also demonstrate our model’s ability to generate complex and diverse images
with many objects.

Keywords Scene image generation · Image translation · Image generation · Generative adversarial networks

1 Introduction

Image generation of complex realistic scenes with multiple
objects and desired layouts is one of the core frontiers for
computer vision. Existence of such algorithms would not
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only inform our designs for inference mechanisms, needed
for visual understanding, but also provide practical appli-
cation benefits in terms of automatic image generation for
artists and users. In fact, such algorithms, if successful, may
replace visual search and retrieval engines in their entirety.
Why search the web for an image, if you can create one to
user’s specification?

For these reasons, image generation algorithms have been
a major focus of recent research. Of specific relevance are
approaches for text-to-image (Hong et al. 2018;Karacan et al.
2016; Mansimov et al. 2015; Reed et al. 2017; Tan et al.
2018; Zhang et al. 2017) generation. By allowing users to
describe visual concepts in natural language, text-to-image
generation provides natural and flexible interface for con-
ditioned image generation. However, existing text-to-image
approaches exhibit two drawbacks: (i) most approaches can
only generate plausible results on simple datasets such as
cats (Zhang et al. 2008), birds (Welinder et al. 2010) or
flowers (Nilsback and Zisserman 2008). Generating com-
plex, real-world images such as those inCOCO-Stuff (Caesar
et al. 2016) andVisual Genome (Krishna et al. 2017) datasets
remains a challenge; (ii) the ambiguity of textual description
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Fig. 1 Image generation from layout. Given the coarse layout (bound-
ing boxes + object categories), the proposed Layout2Im model samples
the appearance of each object from a normal distribution, and trans-

forms these inputs into a real image by a serial of components. Please
refer to Sect. 3 for a detailed explanation

makes it more difficult to constrain complex generation pro-
cess, e.g. , locations and sizes of different objects are usually
not given in the description.

Scene graphs are powerful structured representations that
encode objects, their attributes and relationships. In John-
son et al. (2018) an approach for generating complex images
with many objects and relationships is proposed by condi-
tioning the generation on scene graphs. It addresses some of
the aforementioned challenges. However, scene graphs are
difficult to construct for a layman user and lack specification
of core spatial properties, e.g. , object size/position.

To overcome these limitations, we propose to generate
complicated real-world images from layouts, as illustrated
in Fig. 1. By simply specifying the coarse layout (bound-
ing boxes + categories) of the expected image, our proposed
model can generate an image which contains the desired
objects in the correct locations. It is much more controllable
and flexible to generate an image from layout than textual
description.

With the new task comes newchallenges. First, image gen-
eration from layout is a difficult one-to-many problem.Many
images could be consistent with a specified layout; same lay-
out may be realized by different appearance of objects, or
even their interactions (e.g. , a person next to the frisbee may
be throwing it or be a bystander, see Fig. 1). Second, the
information conveyed by a bounding box and corresponding
label is very limited. The actual appearance of the object dis-
played in an image is not only determined by its category and
location, but also its interactions and consistency with other
objects. Moreover, spatially close objects may have over-
lapping bounding boxes. This leads to additional challenges
of “separating” which object should contribute to individual
pixels. A good generative model should take all these factors
and challenges into account implicitly or explicitly.

We address these challenges using a novel variational
inference approach. The representation of each object in the
image is explicitly disentangled into a specified/certain part

(category) and an unspecified/uncertain part (appearance).
The category is encoded using a word embedding and the
appearance is distilled into a low-dimensional vector sam-
pled from a normal distribution. Based on this representation
and specification of object bounding box, we construct a
feature map for each object. These feature maps are then
composed using convolutional LSTM into a hidden feature
map for the entire image, which subsequently is decoded
into an output image. This set of modelling choices makes
it easy to generate different and diverse images by sampling
the appearance of individual objects, and/or adding, moving
or deleting objects from the layout. Our proposed model is
end-to-end learned using a loss that consists of a number of
objectives. Specifically, a pair of discriminators are designed
to discriminate the overall generated image and the generated
objects within their specified bounding boxes, as real or fake.
In addition, object discriminator is also trained to classify the
categories of generated objects.

Contributions Our contributions are three-fold:

– We propose a novel approach for generating images from
coarse layout (bounding boxes + object categories). This
provides a flexible control mechanism for image gener-
ation;

– By disentangling the representation of objects into a cat-
egory and (sampled) appearance, our model is capable
of generating a diverse set of consistent images from the
same layout;

– We propose an object-wise attention mechanism, which
enables the network to model shape of different objects
in an explicit manner and therefore enhances the overall
visual quality.

– We show qualitative and quantitative results on COCO-
Stuff (Caesar et al. 2016) and Visual Genome (Krishna
et al. 2017) datasets, demonstrating our model’s ability
to generate complex images with respect to object cate-
gories and their layout (without access to segmentation
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masks (Hong et al. 2018; Johnson et al. 2018)). We also
perform comprehensive ablations to validate each com-
ponent in our approach.

Summary of Changes This work is an extension of our
CVPR paper Image Generation from Layout. The main
changes of this extended version are:

– Explicitly define the loss functions;
– Extend Object Feature Map Composition Module with
Object-Wise Attention.

– Add one new section in the related work for semantic
image generation.

– Add three new baselines for comparison: BicycleGAN,
pix2pixHD and GauGAN (SPADE), and report their per-
formance in inception score, FID, object classification
accuracy and diversity score; add qualitative results on
COCO and VG datasets.

– Add four ablation experiments: (a) remove the path of
generating I’ from normal distribution; (b) remove both
latent code reconstruction loss and KL loss; (c) replace
convolutionLSTMwith sum; (d) remove both latent code
reconstruction loss, KL loss, and replace convolution
LSTM with sum.

– Report FID scores for the ablation study in Table 6.

The source code of this work is available at https://github.
com/zhaobozb/layout2im.

2 RelatedWork

2.1 Conditional Image Generation

Conditional image generation approaches generate images
conditioned on additional input information, including entire
source image (Isola et al. 2017; Liu et al. 2017; Pathak et al.
2016; Yang et al. 2017; Zhao et al. 2018; Zhu et al. 2017a, b),
sketches (Isola et al. 2017; Sangkloy et al. 2017; Wang et al.
2018; Xian et al. 2018; Zhu et al. 2017b), scene graphs (John-
son et al. 2018), dialogues (Kim et al. 2017; Sharma et al.
2018) and text descriptions (Mansimov et al. 2015;Reed et al.
2017; Tan et al. 2018; Zhang et al. 2017). Variational Autoen-
coders (VAEs) (Kingma and Welling 2014; Mansimov et al.
2015; Sohn et al. 2015), autoregressive models (Oord et al.
2016; van den Oord et al. 2016) and GANs (Isola et al. 2017;
Mirza andOsindero 2014;Wang et al. 2018; Zhu et al. 2017a)
are powerful tools for conditional image generation and have
shown promising results. However, many previous genera-
tive models (Isola et al. 2017; Pathak et al. 2016; Sangkloy
et al. 2017; Xian et al. 2018; Yang et al. 2017; Zhu et al.
2017a) tend to largely ignore the random noise vector when
conditioning on the same relevant context, making the gen-

erated images very similar to each other. By enforcing the
bijection mapping between the latent and target space, Bicy-
cleGAN (Zhu et al. 2017b) pursues the diversity of generated
images from the same input. Inspired by this idea, in our
paper, we also explicitly regress the latent codes which are
used to generate the different objects.

2.2 Image Generation from Layout

Existingmodels usually use key points of the object to gener-
ate specific type of image, i.e. human body (Ma et al. 2018b)
or birds (Reed et al. 2016). However these models cannot be
easily generalized to different objects in general image gen-
eration. The use of layout in image generation is a relative
novel task. It is usually served as an intermediate representa-
tion between other input sources [e.g. , text (Hong et al. 2018)
or scene graphs (Johnson et al. 2018)] and the output images,
or as a complementary feature for image generation based on
context [e.g. , text (Karacan et al. 2016; Reed et al. 2016; Tan
et al. 2018), shape and lighting (Dosovitskiy et al. 2015)]. In
Hong et al. (2018) and Johnson et al. (2018), instead of learn-
ing a direct mapping from textual description/scene graph to
an image, the generation process is decomposed into multi-
ple individual steps. They first construct a semantic layout
(bounding boxes + object shapes) from the input, and then
convert it to an image using an image generator. Both of
them can generate an image from a coarse layout together
with textual description/scene graph. However, Hong et al.
(2018) requires detailed object instance segmentation masks
to train its object shape generator. Getting such segmenta-
tion masks for large scale datasets is both time-consuming
and and labor-intensive. Different from Hong et al. (2018)
and Johnson et al. (2018), we use the coarse layout without
instance segmentation mask as a fundamental input modality
for diverse image generation.

2.3 Semantic Image Generation

The task of image generation from semantic label maps
has received lots of attention recently. Pix2pix (Isola et al.
2017) used an encoder-decoder generatorwith patch discrim-
inator to translate input semantic label maps into images.
Pix2pixHD (Wang et al. 2017) proposed a coarse-to-fine gen-
erator andmulti-scale discriminators to generate high resolu-
tion images. GauGAN (Park et al. 2019) used input semantic
label maps to generate normalization parameters for differ-
ent layers. This track of work requires that accurate semantic
label maps are provided as input where shape and location of
each object is encoded inside the input. Different from these
works, our method only requires coarse layout as input.

123

https://github.com/zhaobozb/layout2im
https://github.com/zhaobozb/layout2im


International Journal of Computer Vision

2.4 Disentangled Representations

Many papers (Chen et al. 2016; Cheung et al. 2015; Den-
ton and Birodkar 2017; Lai et al. 2017; Lee et al. 2018;
Ma et al. 2018a; Mathieu et al. 2016; Murez et al. 2018)
have tried to learn disentangled representations as part of
image generation. Disentangled representations model dif-
ferent factors of data variations, such as class-related and
class-independent parts (Cheung et al. 2015; Lai et al. 2017;
Lee et al. 2018; Mathieu et al. 2016; Murez et al. 2018). By
manipulating the disentangled representations, images with
different appearances can be generated easily. In Ma et al.
(2018a), three factors (foreground, background and pose) are
disentangled explicitly when generating person image. Info-
GAN (Chen et al. 2016), DrNet (Denton and Birodkar 2017)
and DRIT (Lee et al. 2018) learn the disentangled repre-
sentations in an unsupervised manner, either by maximizing
the mutual information (Chen et al. 2016) or adversarial
losses (Denton and Birodkar 2017; Lee et al. 2018). In our
work, we explicitly separate the representation of each object
into a category-related and an appearance-related parts, and
only the bounding boxes and category labels are used during
both training and testing.

3 Image Generation from Layout

The overall training pipeline of the proposed approach is
illustrated in Fig. 2. Given a ground-truth image I and its
corresponding layoutL, whereLi = (xi , yi , hi , wi ) contain-
ing the top-left coordinate, height and width of the bounding
box, our model first samples two latent codes zri and zsi for
each object instance Oi . The zri is sampled from the pos-
terior Q(zr |Oi ) conditioned on object Oi cropped from the
input image according to Li . The zsi is sampled from a nor-
mal prior distributionN (zs). Each objectOi also has a word
embedding wi , which is an embedding of its category label
yi . Based on the latent codes zi ∈ {zri , zsi }, word embedding
wi , and layout Li , multiple object feature maps Fi are con-
structed, and then fed into the object encoder and the objects
fuser sequentially, generating a fused hidden feature map H
containing information from all specified objects. Finally, an
image decoder D is used to reconstruct, Î = D(H), the input
ground-truth image I and generate a new image I′, simultane-
ously; the former comes from zr = {zri } and the latter from
zs = {zsi }. Notably, both resulting images match the train-
ing image input layout. To make the mapping between the
generated object O′

i and the sampled latent code zsi consis-
tent, we make the object estimator regress the sampled latent
codes zsi based on the generated object O′

i in I′ at locations
Li . To train the model adversarially, we also introduce a pair
of discriminators, Dimg and Dobj, to classify the results at
image and object level as being real or fake.

Once the model is trained, it can generate a new image
froma layout by samplingobject latent codes from thenormal
prior distribution N (zs) as illustrated in Fig. 1.

3.1 Object Latent Code Estimation

Object latent code posterior distributions are first estimated
from the ground-truth image, and used to sample object latent
code zri ∼ N (μ(Oi ), σ (Oi )). These object latent codes
model the ambiguity in object appearance in the ground-truth
image, and play important roles in reconstructing the input
image later.

Figure 3 illustrates the object latent code estimation pro-
cess. First, each object Oi is cropped, from the input image
I according to its bounding box Li , and then resized to fit
the input dimensionality of object estimator using bilinear
interpolation. The resized object crops are fed into an object
estimator which consists of several convolutional layers and
two fully-connected layers. The object estimator predicts the
mean and variance of the posterior distribution for each input
object Oi . Finally, the predicted mean and variance are used
to sample a latent code zri for the input objectOi . We sample
latent code for every object in the input image.

3.2 Object Feature Map Composition

Given the object latent code zi ∈ R
m sampled from either

posterior or the prior ( zi ∈ {zri , zsi }), object category label yi
and corresponding bounding box information Li , the object
composer module constructs a feature mapFi for each object
Oi . Each feature map Fi contains a region corresponding to
Li filled with the disentangled representation of that object,
consisting of object identity and appearance.

Figure 4 illustrates this module. The object category label
yi is first transformed to a correspondingword vector embed-
ding wi ∈ R

n , and then concatenated with the object latent
vector zi . This results in the representation of the object
which has two parts: object embedding and object latent
code. Intuitively, the object embedding encodes the identity
of the object, while the latent code encodes the appearance
of a specific instance of that object. Jointly these two compo-
nents encode sufficient information to reconstruct a specific
instance of the object in an image. The object feature map Fi

is composed by simply filling the region within its bounding
boxwith this object representation (wi , zi ) ∈ R

m+n . For each
tuple < yi , zi ,Li > encoding object label, latent code and
bounding box, we compose an object feature map Fi . These
object feature maps are downsampled by an object encoder
network which contains several convolutional layers. Then
an object fuser module is used to fuse all the downsampled
object feature maps, generating a hidden feature map H.
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Fig. 2 Overview of our Layout2Im network for generating images from
layout during training. The inputs to the model are the ground truth
imagewith its layout. The objects are first cropped from the input image
according to their bounding boxes, and then processed with the object
estimator to predict a latent code for each object. After that, multiple
object feature maps are prepared by the object composer based on the
latent codes and layout, and processed with the object encoder, objects

fuser and image decoder to reconstruct the input image. Additional set
of latent codes are also sampled from a normal distribution to generate
a new image. Finally, objects in generated images are used to regress
the sampled latent codes. The model is trained adversarially against a
pair of discriminators and a number of objectives. For clarity, we omit
Dobj for the objects cropped from Î

Fig. 3 Object latent code
estimation. Given the input
image and its layout, the objects
are first cropped and resized
from the input image. Then the
object estimator predicts a
distribution for each object from
the object crops, and multiple
latent codes are sampled from
the estimated distribution
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3.3 Object Feature Map Composition with
Object-Wise Attention (OWA)

Our original method produces object feature map Fi by sim-
ply filling the region within its bounding boxes with object
representations. This method has its limitations in that the
shape of different classes of objects are all provided as rectan-
gles and the network needs to figure out the shape implicitly
with following fusion layers and decoders. To alleviate this
problem, we proposed Object-Wise Attention(OWA). After
we get the word embeddingwi representing different classes
of objects, an attention decoder M is used to generate cor-
responding object wise attention mask ai = M(wi ) for
different objects. Thenwe fill out each featuremapF′

i with its
object representations (wi , zi ) using the corresponding atten-

tion mask ai . Thus the shape of objects is modeled explicitly
so that the network does not need to figure out the shape of
different objects during decoding process. It can focus more
on textures and coherence between objects to enhance visual
quality. This is validated in following experiments (Fig. 5).

3.4 Object Feature Maps Fusion

Since the result image will be decoded from it, a good hidden
feature map H is crucial to generating a realistic image. The
properties of a good hidden feature map can be summarized
as follows: (i) it should encode all object instances in the
desired locations; (ii) it should coordinate object representa-
tions basedonother objects in the image; (iii) it should be able
to fill the unspecified regions, e.g. , background, by implic-
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Fig. 5 Object Feature Map Composition with Object-Wise Atten-
tion(OWA). Instead of using the object bounding box to construct the
object feature map as shown in Fig. 4, here we also predict an attention
map for each object from the object embedding. By interpolating the
attention map fitting into the bounding box, it provides finer guidance
to generate target objects

itly reasoning about plausibility of the scene with respect to
the specified objects.

To satisfy these requirements, we choose a multi-layer
convolutional Long-Short-Term Memory (cLSTM) network
(Shi et al. 2015) to fuse the downsampled object feature
maps F as illustrated in Fig. 6. Different from the traditional
LSTM(Hochreiter and Schmidhuber 1997), the hidden states
and cell states in cLSTM are both feature maps rather than
vectors. The computation of different gates are also done by

H

H

F2

Fi

WW

HF1

128 64 64512

Fig. 6 Object Feature Maps Fusion. Three layers CLSTM is used to
encodes all object feature maps together

convolutional layers. Therefore, cLSTM can better preserve
the spatial information compared with the traditional vector-
based LSTM. The cLSTM acts like an encoder to integrate
object feature maps one-by-one, and the last output of the
cLSTM is used as the fused hidden layout H, which incor-
porates the location and category information of all objects.

3.5 Image Decoder

Given the fused image hidden feature mapH, image decoder
is tasked with generating a result image. As shown in Fig. 2,
there are two paths (blue and red) in the networks. They
differ in latent code estimation. The blue path reconstructs
the input image using the object latent codes zr sampled from
the posteriors Q(zr |O) that are conditioned on the objectsO
in the input image I, while in the red one, the latent codes
zs are directly sampled from prior distributions N (zs). As a
result, two images are generated, i.e. , Î and I′, through the
red and blue paths, respectively. Although they may differ in
appearance, both of them share the same layout.

3.6 Object Latent Code Regression

To explicitly encourage the consistent connection between
the latent codes and outputs, our model also tries to recover
the random sampled latent codes from the objects generated
along the red path. One can think of this as an inference
network for the latent codes. This helps prevent a many-
to-one mapping from the latent code to the output during
training, and as a result, produces more diverse results.

To achieve this, we use the same input object bounding
boxes L to crop the objectsO′ in the generated image I′. The
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resized O′ are then sent to an object latent code estimator
(which shares weights with the one used in image reconstruc-
tion path), getting the estimated mean and variance vectors
for the generated objects.We directly use the computedmean
vectors, as the regressed latent codes z′

s , and compare them
with the sampled ones zs , for all objects.

3.7 Image and Object Discriminators

To make the generated images realistic, and the objects rec-
ognizable, we adopt a pair of discriminators Dimg and Dobj.
The discriminator is trained to classify an input image or
object as real or fake. Meanwhile, the generator networks
are trained to fool the discriminator.

The image discriminator Dimg is applied to input images
I, reconstructed images Î and sampled images I′, classify-
ing them as real or fake. The object discriminator Dobj is
designed to assess the quality and category of the real objects
O, reconstructed objects Ô and sampled objects O′ at the
same time. In addition, since Ô andO′ are cropped from the
reconstructed/sampled images according to the input bound-
ing boxes L, Dobj also encourages the generated objects to
appear in their desired locations.

3.8 Loss Function

We end-to-end train the generator network and two dis-
criminator networks in an adversarial manner. The generator
network, with all described components, is trained to mini-
mize the weighted sum of six losses:

KL Loss computes the KL-Divergence between the distri-
bution Q(zr |O) and the normal distributionN (zr ), which is
defined as:

LKL =
o∑

i=1

E[DKL(Q(zri |Oi )||N (zr ))], (1)

where o is the number of objects in the image/layout, O
are the cropped objects, and z are the appearance codes of
objects.
Image Reconstruction Loss penalizes the difference
between ground-truth image I and reconstructed image Î.
In our paper, L1 distance is chosen as shown in Eq. (2).

Limg
1 = ||I − Î||1. (2)

Object Latent Code Reconstruction Loss encourages the
connection between specific appearance and the latent code
to be invertible, which is defined as the L1 distance between
the randomly sampled zs ∼ N (zs) and the re-estimated z′

s
from the generated objects O′:

Llatent
1 =

o∑

i=1

||zsi − z′
si ||1. (3)

Image Adversarial Loss encourages the model to generate
realistic images, which is defined as:

Limg
GAN = E

I∼preal
log D(I) + 0.5 E

Î∼ p̂fake
log(1 − D(Î))

+ 0.5 E
I′∼p′

fake

log(1 − D(I′)), (4)

where I is the ground truth image, Î is the reconstructed image
and I′ is the sampled image.

Object Adversarial Loss encourages the model to generate
realistic objects within an image, which is defined as:

Lobj
GAN = E

O∼preal
log D(O)

+ 0.5 E

Ô∼ p̂fake
log(1−D(Ô))

+ 0.5 E
O′∼p′

fake

log(1 − D(O′)), (5)

whereO are the objects cropped from the ground truth image
I, Ô andO′ are objects cropped from the reconstructed image
Î and sampled image I′, respectively.

Auxiliary Classification Loss is adopted to classify the
generated objects Ô and O′. It encourages them to be rec-
ognizable as their corresponding categories. The auxiliary
classification loss is defined as:

Lobj
AC = EÔ,c[− log Dobj(c|Ô)] + EO′,c[− log Dobj(c|O′)],

(6)

where c is the object class label.
Therefore, the final loss function of our model is defined

as:

L = λ1LKL + λ2Limg
1 + λ3Llatent

1 + λ4Limg
adv

+ λ5Lobj
adv + λ6Lobj

AC, (7)

where λ1 ∼ λ6 are the parameters balancing different losses.

3.9 Implementation Details

We use SN-GAN (Miyato et al. 2018) for stable training.
Batch normalization (Ioffe and Szegedy 2015) and ReLU are
used in the object encoder, image decoder, and only ReLU
is used in the discriminators (no batch normalization). Con-
ditional batch normalization (de Vries et al. 2017) is used
in the object estimator to better normalize the object feature
map according to its category. After object fuser, we use six

123



International Journal of Computer Vision

Table 1 Statistics of
COCO-Stuff and Visual
Genome dataset

Dataset Train Val. Test # Obj. # Obj. in Image

COCO (Caesar et al. 2016) 24,972 1024 2048 171 3–8

VG (Krishna et al. 2017) 62,565 5506 5088 178 3–30

residual blocks (He et al. 2016) to further refine the hidden
image feature maps. We set both m and n to 64. The image
and crop size are set to 64 × 64 and 32 × 32, respectively.
The λ1 ∼ λ6 are set to 0.01, 1, 10, 1, 1 and 1 respectively.

We train all models using Adam (Kingma and Ba 2014)
with learning rate of 0.0001 and batch size of 8 for 300,000
iterations; training takes about 3 days on a single Titan Xp
GPU. Full details about our architecture can be found in
“Appendix”, and code will be made publicly available.

4 Experiments

Extensive experiments are conducted to evaluate the pro-
posed Layout2Im network. We first compare our proposed
method and the proposedOWAextensionwith previous state-
of-the-art models for scene image synthesis, and show its
superiority in aspects of realism, recognition and diversity.
Finally, the contributions of each loss for training our model
are studied through ablation.

4.1 Datasets

The same as previous scene image generation method (John-
son et al. 2018), we evaluate our proposed model on the
COCO-Stuff (Caesar et al. 2016) andVisualGenome (Krishna
et al. 2017) datasets.We preprocess and split the two datasets
the same as that in Johnson et al. (2018). Table 1 lists the
datasets statistics. Each image in these datasets has multiple
bounding boxes annotations with labels for the objects.

4.2 Baselines

We compare our approach with several state-of-the-art meth-
ods.

pix2pix (Isola et al. 2017) translates images between two
domains. In this paper, we define the input domain as feature
maps constructed from layoutL, and set the real images as the
output domain. We construct the input feature map with the
size of C ×H ×W for each layout L, where C is the number
of object categories, H × W is the image size. A bounding
boxOi with label yi will set the corresponding region within
c-th channel (the channel for category yi ) of the feature map
to 1 and others are all 0. The pix2pix model is learned to

translate the generated feature maps to real images.

BicycleGAN (Zhu et al. 2017b) models a distribution of pos-
sible outputs in a conditional generative modeling setting
when a single input may correspond to multiple possible
outputs. The ambiguity of the mapping is represented as
a low-dimensional latent vector, which will be combined
with the input, and be translated into the output. It explic-
itly encourages the connection between output and the latent
code to be invertible, contributing to generating diversified
translated images. In our paper, we construct the input the
same as pix2pix, and generate real images.

sg2im (Johnson et al. 2018) is originally trained to generate
images from scene graphs. However, it can also generate
images from layout, simply replacing the predicted layout
with ground truth layout.We list the Inception Score of sg2im
using ground truth layouts as reported in their paper, and
generate the results for other comparisons using their released
model trained with ground truth layout. In other words, the
input and training data for our and sg2immodels is identical.

pix2pixHD (Wang et al. 2017) produces realistic images
from given semantic label maps. It uses multi-scale patch
wise discriminator andmulti-scale generator to generate high
resolution images. To manipulate object with different input
style vectors, they use a encoder-decoder to generate latent
vectors at each spatial location and perform instance-wise
average pooling for each instance to get the style vector. Then
it can be used to control style of different objects, such as
colors. As only coarse layouts are provided, we use the same
setting as pix2pix where the input is semantic map translated
from layouts.

GauGAN (Park et al. 2019) is proposed to synthesize high-
resolution imageswith realistic details. They propose that the
original batch normalization will wash away semantic infor-
mation during each layer, so spatial adaptive normalization is
proposed to alleviate this problem. Different from previous
conditional normalization layers, their proposed normaliza-
tion layer applies a spatially varying affine transformation,
making it suitable for image synthesis from spatially-varying
semantic mask. We use the same setting as pix2pix and input
is converted from layouts.
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Fig. 7 Examples of 64× 64 generated images from complex layouts on
COCO-Stuff by our proposed method and baselines. For each example,
we show the input layout, images generated by pix2pix, BicycleGAN,
sg2im, pix2pixHD, GauGAN, results of our method, results of our

method with object wise attention added and the ground truth image
in the datasets. Please zoom in to see the category of each object. Better
view in color

4.3 EvaluationMetrics

Plausible images generated from layout should meet three
requirements: be realistic, recognizable and diverse. There-
fore we choose four different metrics, Inception Score (IS)
(Salimans et al. 2016), Fréchet Inception Distance (FID)
(Heusel et al. 2017), Object Classification Accuracy (Accu.)
and Diversity Score (DS) (Zhang et al. 2018).

Inception Score (Salimans et al. 2016) is adopted to mea-
sure the quality, as well as diversity, of generated images. In
our paper, we use the pre-trained VGG-net (Simonyan and
Zisserman 2014) as the base model to compute the inception
scores for our model and the baselines.

Fréchet Inception Distance (Heusel et al. 2017) uses 2nd
order information of the final layer of the inception model,
and calculates the similarity of generated images to real
ones. Fréchet Inception Distance is more robust to noise than
Inception Score.

Classification Accuracy measures the ability to generate
recognizable objects, which is an important criteria for our
task. We first train a ResNet-101 model (He et al. 2016) to
classify objects. This is done using the real objects cropped
and resized from ground truth images in the training set of
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Fig. 8 Examples of 64 × 64 generated images from complex layouts
on Visual Genome by our proposed method and baselines. For each
example, we show the input layout, images generated by pix2pix, Bicy-
cleGAN, sg2im, pix2pixHD, GauGAN, results of our method, results

of our method with object wise attention added, the ground truth image
in the datasets. Please zoom in to see the category of each object. Better
view in color

each dataset. We then compute and report the object classi-
fication accuracy for objects in the generated images.

Diversity Score computes the perceptual similarity between
two images in deep feature space. Different from the incep-
tion score which reflects the diversity across the entire
generated images, diversity score measures the difference
of a pair of images generated from the same input. We use
the LPIPS metric (Zhang et al. 2018) for diversity score, and
use AlexNet (Krizhevsky et al. 2012) for feature extraction
as suggested in the paper.

4.4 Qualitative Results

Figures 7 and 8 show generated images using our method,
as well as baselines on COCO and Visual Genome datasets

respectively. From these examples it is clear that our method
can generate complex imageswithmultiple objects, and even
multiple instances of the same object type. For example,
Fig. 7(a) shows two boats, (c) shows two cows, (e) and
Fig. 8(r) contain two people. More qualitative results of our
model of COCO and Visual Genome dataset are demon-
strated in Figs. 9 and 10, respectively. These examples also
show that our method generates images which respect the
location constraints of the input bounding boxes, and the
generated objects in the image are also recognizable and con-
sistent with their input labels.

As we can see in Figs. 7 and 8, pix2pix fails to generate
meaningful images, due to the extreme difficulty of directly
mapping layout to a real image without detailed instance
segmentation. Pix2PixHDandGauGANprovidemoremean-
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Fig. 9 More Qualitative Examples on COCO Dataset. Please zoom in to see the categories. Best viewed in color

ingful outputs but the shape of some object does not look
realistic due to the lack of correct segmentation. For exam-
ple in Fig. 7(g) the giraffe looks like a rectangle. The results
generated by BicycleGAN and sg2im are also not as good
as ours. For example, in Fig. 7(g), (i), the generated giraffe
and zebra are difficult to recognize, and (l) contains lots of
artifacts, making result look unrealistic. We also provide the
result of OWA extension. The overall quality is better than

our original method and the shape of each object is more
reasonable. As is shown in Fig. 7(f), the shape of airplane
looks more reasonable thanks to the attention representation,
which captures the shape of each object better.

In Fig. 11 we demonstrate our model’s ability to gen-
erate complex images by starting with simple layout and
progressively adding new bounding box or moving exist-
ing bounding box, e.g. , (g) and (k), to build/manipulate a
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Fig. 10 More Qualitative Example Results on Visual Genome Dataset. Please zoom in to see the categories. Best viewed in color

complex image. From these examples we can see that new
objects are drawn in the images at the desired locations, and
existing objects are kept consistent as new content is added.

Figure 12 shows the diverse results generated from the
same layouts. Given that the same layout may have many
different possible real image realizations, the ability to sam-
ple diverse images is a key advantage of our model.

4.5 Quantitative Results

Table 2, 3, 4 and 5 summarize comparison results of the
inception score, Fréchet Inception Distance (FID), object
classification accuracy and diversity score of baseline mod-
els and our model. We also report the inception score and
object classification accuracy on real images.
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Table 2 Performance on COCO and VG in Inception Score (IS)

Method COCO VG

Real Images (64 × 64) 16.3 ± 0.4 13.9 ± 0.5

pix2pix (Isola et al.
2017)

3.5 ± 0.1 2.7 ± 0.02

BicycleGAN (Zhu et al.
2017b)

6.4 ± 0.1 5.6 ± 0.1

sg2im (GT
Layout) (Johnson et al.
2018)

7.3 ± 0.1 6.3 ± 0.2

pix2pixHD (Wang et al.
2017)

4.7 ± 0.1 4.5 ± 0.1

GauGAN (Park et al.
2019)

8.3 ± 0.2 6.4 ± 0.2

Ours 9.1 ± 0.1 8.1 ± 0.1

Ours + OWA 9.7 ± 0.1 8.0 ± 0.2

Numbers in bold means best performance
The output size of all methods is 64 × 64. We train the pix2pix,
pix2pixhd and GauGAN from scratch by feeding layout, and gener-
ate image from the released sg2im model using ground truth layout

Table 3 Performance on COCO and VG in Fréchet Inception Dis-
tance (FID)

Method COCO VG

pix2pix (Isola et al. 2017) 121.97 142.86

BicycleGAN (Zhu et al. 2017b) 82.48 80.35

sg2im (GT Layout) (Johnson et al. 2018) 67.96 74.61

pix2pixHD (Wang et al. 2017) 121.21 83.12

GauGAN (Park et al. 2019) 49.27 47.74

Ours 44.19 39.68

Ours + OWA 40.19 33.54

Numbers in bold means best performance
The output size of all methods is 64 × 64. We train the pix2pix,
pix2pixhd and GauGAN from scratch by feeding layout, and gener-
ate image from the released sg2im model using ground truth layout

Our proposed method significantly outperforms base-
lines in all the evaluation metrics except Diversity Score. In
terms of Inception Score and Fréchet Inception Distance, our
method outperforms the existing approaches with a substan-
tial margin, presumably because our method generates more
recognizable objects as proved by object classification accu-
racy. By adding the object-wise attention machnism, we can
see a boost of Inception score on COCO dataset, and com-
parable performance on VG dataset. The FID scores, as well
as the object classification accuracy are increased on both
datasets with OWA. Please note that the object accuracy on
real images is not the upper bound of object classification
accuracy, since the object cannot be classified correctly in
a real image does not necessarily mean it is also difficult
to distinguish in a generated image. Pix2pix are determin-
istic so the diversity score is zero. We perform multimodal

Table 4 Performance on COCO andVG inObject Classification Accu-
racy

Method COCO VG

Real Images (64 × 64) 55.16 49.13

pix2pix (Isola et al. 2017) 12.06 9.20

BicycleGAN (Zhu et al. 2017b) 14.20 11.65

sg2im (GT Layout) (Johnson et al. 2018) 30.04 40.29

pix2pixHD (Wang et al. 2017) 21.26 22.59

GauGAN (Park et al. 2019) 35.82 34.43

Ours 50.84 48.09

Ours + OWA 54.95 51.49

Numbers in bold means best performance
The output size of all methods is 64 × 64. We train the pix2pix,
pix2pixhd and GauGAN from scratch by feeding layout, and gener-
ate image from the released sg2im model using ground truth layout

Table 5 Performance on COCO and VG in Diversity Score

Method COCO VG

pix2pix (Isola
et al. 2017)

0 0

BicycleGAN(Zhu
et al. 2017b)

0.33 ± 0.14 0.35 ± 0.12

sg2im (GT Lay-
out) (Johnson
et al. 2018)

0.02 ± 0.01 0.15 ± 0.12

pix2pixHD(Wang
et al. 2017)

0.24± 0.10 0.26 ± 0.12

GauGAN (Park
et al. 2019)

0.18 ± 0.06 0.18± 0.11

Ours 0.15 ± 0.06 0.17 ± 0.09

Ours + OWA 0.09 ± 0.05 0.09 ± 0.11

Numbers in bold means best performance
The output size of all methods is 64 × 64. We generate image from the
released sg2immodel using ground truth layout. The other baselines do
not provide diversity sampling so we do not compare with

sampling for pix2pixHD. Though the diversity is high as
shown in Table 5, the image quality still low with differ-
ent style codes because during training time the network
cannot learn meaningful style code due to inaccurate corre-
spondence between bounding boxes and ground truth image.
We can sample diverse images from GauGAN by using VAE
to provide global style information, but we cannot control
style for each object with this global style code. Since Bicy-
cleGAN explicitly pursues the diversity of results, it can
generate more diverse results, and has the highest diversity
score. However, the generated objects of BicycleGAN are
hard to recognize, as shown in the Figs. 7 and 8, which leads
to poor performance on the rest evaluationmetrics. By adding
global noise to scene layout, sg2im can generate images with
limited diversity. The diversity performance shows that our
method can generate diverse results from the same layout. A
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Fig. 11 Example of generated images by adding or moving bounding boxes based on previous layout. Three groups of images, (a)–(c), (d)–(g) and
(h)–(k), are shown. In (g) and (k), original bounding boxes are drawn in dash. Please zoom in to see the category of each object
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very notable improvement is on COCO, where we achieve
diversity score of 0.15 as compared to 0.02 for sg2im.

4.6 Ablation Study

Wedemonstrate the necessity of all components of ourmodel
by comparing the inception score, object classification accu-
racy, and diversity score of several ablated versions of our
model trained on Visual Genome dataset:

– w/o Limg
1 reconstructs ground truth images without pixel

regression;
– w/o Llatent

1 does not regress the latent codes which are
used to generated objects in the result images;

– w/o Lobj
AC does not classify the category of objects;

– w/o Limg
adv removes the object adversarial loss when train-

ing the model;
– w/o Lobj

adv removes the image adversarial loss when train-
ing the model.

– w/o I′ removes the path which generates I′ from prior
distribution.

– w/o Llatent
1 and LKL removes both the KL loss and latent

code regression loss.
– w/o cLSTM replaces the cLSTM in the object fusion
module with simple object feature maps summation.

– w/o Llatent
1 , LKL and cLSTM removes both the KL

loss and latent code regression loss. It also replaces the
cLSTM in the object fusion module with simple object
feature maps summation.

As shown in Table 6, removing any loss termwill decrease
the overall performance. Specifically, The model trained
without Limg

1 or Llatent
1 generates less realistic images, which

decreases the inception score. The object classification accu-
racy is still high because of the object classification loss.
Without the constraint on reconstructed images or latent
codes, the models get lower inception scores, but simi-
lar diversity scores. Removing the object classification loss
degrade the inception score and object classification accuracy
significantly, since the model cannot generate recognizable
objects. Not surprisingly, this freedom results in higher diver-
sity score. It is expected to see that removing the adversarial
loss on image or object will decrease the inception score
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Table 6 Ablation study of our
model on Visual Genome
dataset by removing different
objectives

Method IS FID Accuracy DS

w/o Limg
1 7.6 ± 0.2 39.29 49.03 0.17 ± 0.09

w/o Llatent
1 7.5 ± 0.1 36.81 48.90 0.16 ± 0.09

w/o Lobj
AC 6.5 ± 0.1 49.74 10.06 0.37 ± 0.11

w/o Limg
adv 7.1 ± 0.1 43.14 56.17 0.13 ± 0.09

w/o Lobj
adv 7.3 ± 0.1 44.01 57.74 0.14 ± 0.09

w/o I′ 7.2 ± 0.3 39.04 44.64 0.28 ± 0.08

w/o Llatent
1 & Lkl 7.9 ± 0.2 36.37 50.65 0.16 ± 0.09

w/o cLSTM 7.5 ± 0.1 44.32 11.54 0.12 ± 0.10

w/o Llatent
1 & Lkl & cLSTM 7.9 ± 0.2 41.20 11.12 0.10 ± 0.11

Full model 8.1 ± 0.1 31.25 48.09 0.17 ± 0.09

Numbers in bold means best performance
IS is the inception score, Accuracy is the object classification accuracy, and DS is the diversity score

substantially. However, the object classification accuracy
increases further comparing to the full model. We believe
that without the realism requirement of image or object, the
object classification loss could be tampered with adversarial
attack. Without explicitly sampling images from prior distri-
bution, the model is only learned from real data. A random
latent code can not yield realistic images at test time since the
KL loss may not be well optimized during training. Without
bothKLdivergence loss and latent code regression, themodel
is not enforced to encode the appearance of different objects
into prior distribution, and cannot generate diversified object
appearance fromprior distribution. It results to a drop on both
inception score and FID. The performance drops in all four
metrics when replacing the cLSTM in the Object Feature
Maps Fusion module with simple feature maps summation,
especially the object classification accuracy. Since object
bonding boxes usually have overlaps, adding different object
vectors together in the overlap region may confuse the image
decoder to generate recognizable objects.We observe similar
performance decrease in object classification accuracy when
we remove both KL divergence loss and latent code regres-
sion, and replace cLSTM with summation. Trained with all
the losses, our full model achieves a good balance across all
four metrics.

5 Conclusion

In this paper we have introduced an end-to-end method for
generating diverse images from layout (bounding boxes +
categories). Our method can generate reasonable images
which look realistic and contain recognizable objects at the
desired locations. We also showed that we can control the

image generation process by adding/moving objects in the
layout easily. To further improve the overall visual quality,
we proposed an extension of our method called object wise
attention, which helps the network model shape of differ-
ent classes. Qualitative and quantitative results on COCO-
Stuff (Caesar et al. 2016) and Visual Genome (Krishna et al.
2017) datasets demonstrated our model’s ability to generate
realistic complex images. Generating high resolution images
from layouts will be our future work. Moreover, making the
image generation process more controllable, such as spec-
ifying the fine-grained attributes of instances, would be an
interesting future direction.

Acknowledgements This research was supported, in part, by NSERC
Discovery, NSERC DAS and NSERC CFI grants. We gratefully
acknowledge the support of NVIDIA Corporation with the donation
of the Titan V GPU used for this research.

Appendix

Network Architecture

Here, we describe the detailed network architecture of all
our model components in Tables 7, 8, 9, 10, 11 and 12. Here
are some notations: CONV: convolutional layers; DECONV:
transposed convolutional layers; FC: fully connected layer;
CLSTM: convolutional LSTM;AVGPOOL: average pooling
layer; CBN: conditional batch normalization; BN: batch nor-
malization; ReLU: rectified linear unit; SUM: summation of
feature maps along H & W axis; N: the number of output
channels; K: kernel size; S: stride size; P: padding size.
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Table 7 Architecture of object
estimator

Index Inputs Operation Output shape

(1) – Object Crops {Oi } 3 × 32 × 32

(2) (1) CONV-(N64, K7, S1, P3), CBN, ReLU 64 × 32 × 32

(3) (2) CONV-(N128, K4, S2, P1), CBN, ReLU 128 × 16 × 16

(4) (3) CONV-(N256, K4, S2, P1), CBN, ReLU 256 × 8 × 8

(5) (4) CONV-(N512, K4, S2, P1), CBN, ReLU 512 × 4 × 4

(6) (5) CONV-(N1024, K4, S2, P1), CBN, ReLU 1024 × 2 × 2

(7) (6) AVGPOOL-(K2) 1024

(8) (7) FC-(1024, 64) 64

(9) (7) FC-(1024, 64) 64

Table 8 Architecture of object
encoder

Index Inputs Operation Output shape

(1) – Object Feature Maps {Fi } (64+64) × 64 × 64

(2) (1) CONV-(N64, K1, S1, P1), CBN, ReLU 64 × 64 × 64

(3) (2) CONV-(N128, K4, S2, P1), CBN, ReLU 128 × 32 × 32

(4) (3) CONV-(N256, K4, S2, P1), CBN, ReLU 256 × 16 × 16

(5) (4) CONV-(N512, K4, S2, P1), CBN, ReLU 512 × 8 × 8

Table 9 Architecture of objects
fuser

Index Inputs Operation Output shape

(1) – Downsampled {Fi } 512 × 8 × 8

(2) (1) CLSTM-(N128, K5, S1, P2) 128 × 8 × 8

(3) (2) CLSTM-(N64, K5, S1, P2) 64 × 8 × 8

(4) (3) CLSTM-(N64, K5, S1, P2) 64 × 8 × 8

(5) (4) Residual Block: CONV-(N64, K3, S1, P1), BN, ReLU 64 × 8 × 8

(6) (5) Residual Block: CONV-(N64, K3, S1, P1), BN, ReLU 64 × 8 × 8

(7) (6) Residual Block: CONV-(N64, K3, S1, P1), BN, ReLU 64 × 8 × 8

(8) (7) Residual Block: CONV-(N64, K3, S1, P1), BN, ReLU 64 × 8 × 8

(9) (8) Residual Block: CONV-(N64, K3, S1, P1), BN, ReLU 64 × 8 × 8

(10) (9) Residual Block: CONV-(N64, K3, S1, P1), BN, ReLU 64 × 8 × 8

Table 10 Architecture of image
decoder

Index Inputs Operation Output shape

(1) – Image Hidden Feature Map H 64 × 8 × 8

(2) (1) CONV-(N256, K3, S1, P1), BN, ReLU 256 × 8 × 8

(3) (2) DECONV-(N256, K4, S2, P1), BN, ReLU 256 × 16 × 16

(4) (3) DECONV-(N128, K4, S2, P1), BN, ReLU 128 × 32 × 32

(5) (4) DECONV-(N64, K4, S2, P1), BN, ReLU 64 × 64 × 64

(6) (5) CONV-(N3, K7, S1, P3) 3 × 64 × 64

123



International Journal of Computer Vision

Table 11 Architecture of image discriminator

Index Inputs Operation Output shape

(1) – Ground Truth Image I, Generated Image Î & I′ 3 × 64 × 64

(2) (1) Residual Block: CONV-(N64, K3, S1, P1), ReLU, AVGPOOL-(K2) 64 × 32 × 32

(3) (2) Residual Block: CONV-(N128, K3, S1, P1), ReLU, AVGPOOL-(K2) 128 × 16 × 16

(4) (3) Residual Block: CONV-(N256, K3, S1, P1), ReLU, AVGPOOL-(K2) 256 × 8 × 8

(5) (4) Residual Block: CONV-(N512, K3, S1, P1), ReLU, AVGPOOL-(K2) 512 × 4 × 4

(6) (5) Residual Block: CONV-(N1024, K3, S1, P1), ReLU, AVGPOOL-(K2) 1024 × 2 × 2

(7) (6) SUM-(K2) 1024

(8) (7) FC-(1024, 1) 1

Table 12 Architecture of object discriminator. C is the number of object categories

Index Inputs Operation Output shape

(1) – Ground Truth Objects O, Generated Objects Ô & O′ 3 × 32 × 32

(2) (1) Residual Block: CONV-(N64, K3, S1, P1), ReLU 64 × 32 × 32

(3) (2) Residual Block: CONV-(N128, K3, S1, P1), ReLU, AVGPOOL-(K2) 128 × 16 × 16

(4) (3) Residual Block: CONV-(N256, K3, S1, P1), ReLU, AVGPOOL-(K2) 256 × 8 × 8

(5) (4) Residual Block: CONV-(N512, K3, S1, P1), ReLU, AVGPOOL-(K2) 512 × 4 × 4

(6) (5) Residual Block: CONV-(N1024, K3, S1, P1), ReLU, AVGPOOL-(K2) 1024 × 2 × 2

(7) (6) SUM-(K2) 1024

(8) (7) FC-(1024, 1) 1

(9) (7) FC-(1024, C) C
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