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Abstract

Discriminative regression models have proved effective for many vision applications (here we focus on 3D
full-body and head pose estimation from image and depth data). However, dataset bias is common and is
able to significantly degrade the performance of a trained model on target test sets. As we show, covariate
shift, a form of unsupervised domain adaptation (USDA), can be used to address certain biases in this
setting, but is unable to deal with more severe structural biases in the data. We propose an effective and
efficient semi-supervised domain adaptation (SSDA) approach for addressing such more severe biases in the
data. Proposed SSDA is a generalization of USDA, that is able to effectively leverage labeled data in the
target domain when available. Our method amounts to projecting input features into a higher dimensional
space (by construction well suited for domain adaptation) and estimating weights for the training samples
based on the ratio of test and train marginals in that space. The resulting augmented weighted samples can
then be used to learn a model of choice, alleviating the problems of bias in the data; as an example, we
introduce SSDA Twin Gaussian Process regression (SSDA-TGP) model. With this model we also address
the issue of data sharing, where we are able to leverage samples from certain activities (e.g., walking, jogging)
to improve predictive performance on very different activities (e.g., boxing). In addition, we analyze the
relationship between domain similarity and effectiveness of proposed USDA vs. SSDA methods. Moreover,
we propose a computationally efficient alternative to TGP (Bo and Sminchisescu, 2010), and it’s variants,
called the direct TGP (dTGP). We show that our model outperforms a number of baselines, on two public
datasets: HumanEva and ETH Face Pose Range Image Dataset. We can also achieve 8 to 15 times speedup
in computation time, over the traditional formulation of TGP, using the proposed direct formulation, with
little to no loss in performance.

1 Introduction

Many problems in computer vision can be expressed in the form of discriminative (structured) predictions of
real-valued multivariate output, y ∈ Rdy , from a high-dimensional multivariate input, x ∈ Rdx . A success of such
methods in 3D full-body pose estimation is evident from recent results that use Microsoft Kinect sensor (Girshick
et al., 2011; Sun et al., 2012); such discriminative methods have also proved effective for other problems, including
image-based 3D pose (Bo and Sminchisescu, 2010; Kanaujia et al., 2007; Shakhnarovich et al., 2003; Sminchisescu
et al., 2006; Urtasun and Darrell, 2008), head pose (Fanelli et al., 2011) and body shape (Chen et al., 2011; Sigal
et al., 2007) estimation. The typical goal of discriminative regression methods is to learn a direct (and sometimes
multi-modal) mapping, f : Rdx → Rdy , from features (e.g., computed from image or depth data) to pose (e.g.,
3D position and orientation of the head, or full 3D pose of the body encoded by joint positions or joint angles).
Despite success and large body of work, most approaches by-and-large still suffer from two important issues:
dataset bias and lack of data sharing in learning – an inability to effectively leverage information from one, or
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more, source motion(s) or pose types to improve performance on a different, target, pose type, which may have
few training samples.

Dataset bias refers to the general observation that models trained on one dataset (or on a training partition
of a dataset) may not perform well on another dataset (or disjoint test partition of the same dataset). Biases can
come in variety of different forms and have been shown to be present even in very large and carefully collected
datasets. Consider training a regression model that predicts position and orientation of a person’s head from
Kinect data as in Figure 1 (c). If the model is trained based on the data from subject A and then tested on
subject B, the results may be sub-optimal because statistics of the facial features between the two subjects
are likely to be different (e.g., subject B may have higher cheekbones which may lead the model to wrongly
predict a higher pitch angle). Even if the model is trained on many subjects, the presence or absence of certain
accessories (e.g., glasses) may cause similar performance degradation. Consider an even simpler case where the
model is trained on many subjects, including a test subject under consideration. If the model cannot fit the
training data perfectly, which is typical, the performance on the test subject may again be inferior because the
learning algorithm would try to distribute errors among all subjects by minimizing the average error over the
entire training set. Note, these issues are not specific to the problem of head pose estimation and exist in most
regression problems.

To address these issues we propose a new Semi-supervised Domain Adaptation (SSDA) approach, which is
a generalization of the Unsupervised Domain Adaptation (USDA) we proposed earlier in Yamada et al. (2012).
Our domain adaptation method allows us to easily adapt a model learned on a (source) training set of feature-
pose pairs - {(xtr

i ,y
tr
i )}ntr

i=1, to a partially labeled (target) test set consisting of very few labeled examples -

{(xte
j ,y

te
j )}n

′
te
j=1 (for which outputs are known) and many unlabeled samples for which outputs should be inferred

- {(xte
j )}nte

j=n′te
. When labeled test samples (in the target domain) are unavailable, it effectively reduces to the

original USDA formulation.
Our SSDA approach is surprisingly simple yet effective. First, both target and source samples are transformed

into a common higher-dimensional space, through feature augmentation (Daumé, 2007); this augmentation in-
itself aligns the two spaces1. Second, we apply importance weight estimation to correct for sampling bias in
the augmented feature space. Finally, we use the resulting weighted augmented samples to learn a non-linear
multivariate regression model in the form of Importance Weighted Twin Gaussian Processes (Yamada et al.,
2012). Moreover, we propose a computationally efficient alternative to TGP (Bo and Sminchisescu, 2010), that
we call direct TGP (dTGP). The benefit of dTGP is that the learning and inference can be carried out by
using only simple linear algebra. We apply the proposed approach to two problems (see Figure 1): (1) 3D pose
estimation from images on the HumanEva dataset (Sigal and Black, 2006) and (2) 3D head pose estimation
based on depth data using the ETH Face Pose Range Image Dataset (Breitenstein et al., 2008).

The issue of dataset bias was partially addressed in our preliminary work in Yamada et al. (2012). As
we observe in Yamada et al. (2012), the key assumption that training and test samples come from the same
underlying density (i.e., (xtr

i ,y
tr
i ) ∼ ptr(x,y), (xte

j ,y
te
j ) ∼ ptr(x,y)), is often flawed, even for large datasets;

this fact leads to biased models that perform sub-optimally on the test set. In Yamada et al. (2012), we have
proposed a simple unsupervised approach for removing certain biases, most notably those that adhere to the
assumption of covariate shift, where both the training and test sets are defined on the same domain (overlap)
but the density of samples may be different. This setting is well suited for reducing effects of sampling bias.
However, as we show here, the entirely unsupervised approach may be ineffective in dealing with more severe
biases (e.g., those that induce structured changes between the training and test data) that make the training
and test domains largely disjoint (e.g., see Figure 3 (a)). Here we expand on the findings in Yamada et al.
(2012), and propose a much more aggressive semi-supervised approach that is able to work even in the cases
where the earlier formulation becomes less effective. It’s important to note that the proposed approach is a strict
generalization. It can be reduced to our earlier unsupervised formulation in Yamada et al. (2012) by choosing
appropriate model parameter.

1We use the term alignment loosely here, as in practice, the spaces are not explicitly aligned, but rather the augmented space
is by construction better suited for learning the adapted model; this effect is achieved by implicitly assigning higher importance to
labeled test samples over training samples.
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Figure 1: Illustration of results: HoG features for the gesture motion from HumanEva-I dataset (a) along
with the corresponding poses inferred using proposed SSDA method (blue) and the ground truth (green) in (b);
results of SSDA on the head pose estimation in ETH Face Pose Range Image Dataset is illustrated in (c).

The issue of data sharing has been around for some time in object detection and categorization community,
but to our knowledge, has not been explored in the context of 3D pose estimation (i.e., structured prediction
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problems). In object detection, it is often argued that for certain classes of objects the data is scarce and
information transfer from other categories (e.g., in the form of priors (Miller et al., 2000), feature sharing
(Torralba et al., 2004) or data sample sharing (Lim et al., 2011)) is necessary to regularize the performance.
In pose estimation, one is typically interested in learning a single regression function. However, we argue that
similar issues hold, in that for certain parts of the pose space the samples may be scarce (e.g., we may only have
2–3 annotated boxing postures in the training set, but thousands of walking and jogging postures). In this case
utilizing samples from other parts of the space to regularize performance in a smart way, as we show, can also
lead to improvements. Because our approach can deal with large biases in the data, we can simply treat data
sharing as a form of a bias (e.g., where we let samples from walking and jogging constitute our training set and
samples from boxing our test set). It is worth noting that in the object detection and categorization community,
in contrast, the two problems of data sharing and bias are often addressed separately.

Another potential use case for our semi-supervised method is general model adaptation. Imagine a system
(e.g., Microsoft Kinect) shipped with a pose estimation model trained on a large dataset of exemplars (e.g.,
(Shotton et al., 2011) quotes 15 base body mesh shapes and a total of about 500,000 annotated samples). While
effective, this model may not be optimally tuned for recognizing poses specific to some activity that one may
want to employ in a game design (e.g., fishing) or to a specific user (e.g., 6 year old girl); by cueing and recording
the user in a set of predefined postures (thereby getting a few annotated samples for the target test set) the
performance of the general model can be improved.

1.1 Contributions and Core Findings

We expand on our original unsupervised domain adaptation (USDA) formulation for regression, in Yamada et al.
(2012), by proposing a new semi-supervised domain adaptation (SSDA) approach. Proposed SSDA approach
when used in absence of labeled target domain samples, and/or under certain parameter settings, reduces to
our earlier formulation of USDA. Both, USDA and the more general SSDA are amenable to most discriminative
and structured regression/prediction models and problems. The proposed SSDA method is simple, efficient and
effective. It amounts to projecting input features to a higher dimensional space and appropriately weighting
them to alleviate domain biases; the resulting transformed and weighted samples are then used for learning.
Using USDA and SSDA as the basis, we propose and explore new forms of Twin Gaussian Processes regression
(USDA-TGP) and (SSDA-TGP).

Further, we propose a measure of domain similarity, between the source and target domains, which allows us
to explore the tradeoffs between effectiveness of USDA-TGP and SSDA-TGP. As a consequence, we are able to
show that the proposed SSDA-TGP model is more effective in removing large structural biases in data and in
promoting data sharing during learning, as is illustrated in two applications: 3D pose estimation from images
and 3D head pose estimation from depth data. The unsupervised variant, USDA-TGP, on the other hand, is
more effective in removing smaller biases such as selection bias. Moreover, we propose a structured prediction
method we call direct TGP (dTGP), which is a computationally efficient approximation to TGP and it’s variants.
We show that dTGP is nearly equally effective, but is 8 to 15 times faster than standard TGP formulation (and
corresponding variants).

2 Related Work

Our work touches on a number of topics in both computer vision and machine learning, including, discriminative
(structured) regression, pose estimation, transfer learning, domain adaptation, and dataset bias.

Discriminative regression: Over the past 10 years many methods have been introduced that include both
parametric (e.g., conditional mixture of experts (Kanaujia et al., 2007; Sminchisescu et al., 2006)) and non-
parametric (e.g., nearest neighbor regression (Shakhnarovich et al., 2003), linear locally-weighted regression
(Shakhnarovich et al., 2003), regression forests (Sun et al., 2012), local Gaussian process regression (Urtasun
and Darrell, 2008), twin Gaussian processes regression (Bo and Sminchisescu, 2010), etc.) models. A variety
of feature representations and learning architectures have also been explored. We build on this literature by
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formulating a new SSDA variant of twin Gaussian process regression (Bo and Sminchisescu, 2010) with histogram
of oriented gradients (HoG) as features.

Domain adaptation: The first step of our SSDA domain adaptation approach relates closely to the EasyAdapt
method of (Daumé, 2007), where domain adaptation is achieved by projecting the source and target data into a
higher dimensional space, through augmentation. This projection in-itself facilitates domain adaptation. How-
ever, we do not stop there, but also allow these samples to be weighted, to account for additional sampling
biases in the data. For more detailed overview of domain adaptation we refer reader to (Jiang, 2007; Pan and
Yang, 2010). The issue of dataset bias has recently emerged as a serious problem in object categorization, with
(Torralba and Efros, 2011) showing that significant biases exist in all current datasets.

Domain adaptation in object categorization: Since in our mapping each feature in the original problem
is mapped into three versions of it: a general version, a source-specific version and target-specific version, our
approach also relates to Khosla et al. (2012) where dataset bias in object recognition is addressed by learning
a generalized model and dataset specific models within the max-margin framework. Authors in Khosla et al.
(2012) also point out the relationship of their method, and by induction of our method, to a problem of multi-task
learning (Evgeniou and Pontil, 2004). Alternative methods for domain adaptation in object recognition space
include semi-supervised metric learning (Saenko et al., 2010; Kulis et al., 2011) and un-supervised domain shift
(Gopalan et al., 2011). The key difference with these methods is that our approach is simpler (instead of learning
a metric space as in Saenko et al. (2010); Kulis et al. (2011), we define our transformations in closed form), more
general (in a sense that it can work with nearly any regression model), and works with multivariate (structured)
real-valued outputs.

Transfer learning for sharing: Information transfer for enhancing performance of object detectors on cate-
gories where data is sparse dates to at least 2000. Many approaches exist that include different forms of priors
(Miller et al., 2000), feature sharing (Torralba et al., 2004) or use intermediate representations (like attributes).
Conceptually (but not mathematically) our approach is most similar to the idea of sample sharing introduced
in Lim et al. (2011), where an object detector can opportunistically borrow transformed samples from other
classes to enhance it’s performance on a target class. Similar in spirit, our learning procedure is able to borrow
transformed weighted samples from motions of other types (as is illustrated by our ability to perform motion
transfer experiments in Figure 5 (c,f,g)).

3 Unsupervised Domain Adaptation (USDA) for Regression

In this section, we introduce our unsupervised domain adaptation (USDA) method for 3D pose estimation, after
our original formulation in Yamada et al. (2012). This method amounts re-weighting of training instances based
on the ratio of their probabilities under the test and training marginals. Note that while we focus on 3D body
and head pose estimation in this paper, the proposed approach is applicable to any regression problem.

Let X tr(⊆ Rdx) be the domain of training image feature vector xtr, Ytr(⊆ Rdy) be the domain of training
pose vector ytr, and X te(⊆ Rdx) be the domain of testing image feature vector xte. Suppose we are given ntr
i.i.d. training image-pose feature pairs and nte i.i.d. test image feature vectors,

{(xtr
i ,y

tr
i ) | xtr

i ∈ X tr,ytr
i ∈ Ytr, i = 1, . . . , ntr},

{xte
j | xte

j ∈ X te, j = 1, . . . , nte},

drawn from distributions with the densities ptr(x,y) and pte(x) respectively.
The final goal of USDA for 3D pose estimation is to learn a function f(x; Θ) with low expected pose error,

in the target domain, based on the training image-pose feature pairs and test image feature vectors.
Learning of model parameters, Θ, amounts to solving the following optimization problem:

min
Θ

[∫∫
loss(y,f(x; Θ))pte(x,y)dxdy

]
. (1)
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Note, we need to minimize the error over the test distribution pte (not over the training distribution ptr).
Because in the unsupervised setting we do not have test image-pose feature pairs, the optimization of Eq.(1)

is not feasible. Thus, instead, we consider the following covariate shift adaptation problem (Shimodaira, 2000):

min
Θ

[∫∫
loss(y,f(x; Θ))w(x)ptr(x,y)dxdy

]
, (2)

where w(x) = pte(x)
ptr(x)

is the importance weight function.

The advantage of this USDA formulation is that we can reduce sample selection bias, with the use of large
number of test image features, through covariate shift adaptation.

Our proposed method consists of the following two steps that we describe in turn:

(i) Estimation of the importance weights w(x) using RuLSIF (see Section 3.1).

(ii) Importance weighted learning of parameters Θ of f(x; Θ) from weighted augmented feature-pose pairs (see
Section 5 and Appendix A).

3.1 Importance Weight Estimation

The importance weight may be estimated by independently estimating densities ptr(x) and pte(x) from training
and test feature vectors and then taking their ratio. However, density estimation is known to be a hard problem
and taking the ratio of estimated densities tends to increase the estimation error (Sugiyama et al., 2008). Thus,
this two-step approach is not appropriate in practice. We use a direct density-ratio estimation method that
allows us to directly learn the importance weight function without going through density estimation. We ex-
ploit an importance weight estimation method called the relative unconstrained least-squares importance fitting
(RuLSIF) (Yamada et al., 2013).

Let us first define the relative importance weight (Yamada et al., 2013):

wα(x) =
pte(x)

(1− α)pte(x) + αptr(x)
, 0 ≤ α ≤ 1, (3)

where α is a tuning parameter to control the adaptiveness to the test distribution. Note that ptr(x) here is a
distribution over all labeled samples (training and test; if labeled test samples are available). If α = 0 (i.e.,

w0(x) = 1) gives no adaptation, while α = 1 (i.e., w1(x) = pte(x)
ptr(x)

) gives the full adaptation from ptr(x) to pte(x);

0 < α < 1 will give an intermediate estimator2.
Let X tr(⊆ Rdx) be the domain of training image feature vector xtr and X te(⊆ Rdx) be the domain of test

image feature vector xte. Suppose we are given ntr and nte i.i.d. training and test image feature vectors, {xtr
i }

ntr
i=1,

{xte
j }

nte
j=1, drawn from distributions with densities ptr(x) and pte(x), respectively.

The final goal of relative importance weight estimation is to estimate the relative importance weight based
on the training and test image features.

Let us model the relative importance weight wα(x) by the following kernel model:

wα(x;θ) =

nte∑

`=1

θ`κ(x,xte
` ), (4)

where θ ∈ Rnte are parameters to be learned from data samples, > denotes the transpose, κ(x,x′) =

exp
(
−‖x−x

te
` ‖

2

2τ2

)
is the Gaussian kernel and τ (> 0) is the kernel bandwidth.

2α = 1 (i.e., w1(x) =
pte(x)
ptr(x)

) gives the full adaptation from ptr(x) to pte(x). However, since the importance weight w1(x) =
pte(x)
ptr(x)

can diverge to infinity under a rather simple setting, the estimation of w1(x) =
pte(x)
ptr(x)

is unstable and the covariate shift adaptation

tends to be unstable (Shimodaira, 2000). To cope with this instability issue, setting α to 0 < α < 1 is practically useful for stabilizing
the covariate shift adaptation, even though it cannot give an unbiased model under covariate shift (Yamada et al., 2013).
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(a) Data samples (ROD = 0.177)
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Figure 2: Predicted outputs y using TGP (b), and USDA-TGP (c) in green. Samples from the model x =
y+0.3 sin(2πy)+e where e ∼ N (0, 0.052) are illustrated in (a); ◦ and × are training and test samples respectively
(for clarity we also illustrate marginals ptr(x) and pte(x) in (b) and (c) bottom). Note that the input-output
test samples are not used in the training of TGP and the output test samples are not used in the training
USDA-TGP, they are plotted for illustration purposes only.

The parameters θ in the model wα(x;θ) are determined so that the following expected squared-error J is
minimized:

J(θ)=
1

2
Eqα(x)

[
(wα(x;θ)− wα(x))

2
]
,

=
(1− α)

2
Epte(x)

[
wα(x;θ)2

]
+
α

2
Eptr(x)

[
wα(x;θ)2

]

− Epte(x)[wα(x;θ)]+Const.,

where qα(x) = (1− α)pte(x) + αptr(x), and we used wα(x)qα(x) = pte(x) in the third term.
Approximating the expectations by empirical averages, we obtain the following optimization problem:

θ̂ = argmin
θ∈Rnte

[
1

2
θ>Ĥθ − ĥ>θ +

ν

2
θ>θ

]
, (5)

where νθ>θ/2 is included to avoid overfitting, and ν (≥ 0) denotes the regularization parameter. Ĥ is the
nte × nte matrix with the (`, `′)-th element

Ĥ`,`′ =
(1− α)

nte

nte∑

i=1

κ(xte
i ,x

te
` )κ(xte

i ,x
te
`′ )

+
α

ntr

ntr∑

j=1

κ(xtr
j ,x

te
` )κ(xtr

j ,x
te
`′ );

ĥ is the nte-dimensional vector with the `-th element ĥ` = 1
nte

∑nte

i=1 κ(xte
i ,x

te
` ). Then the solution to Eq. (5)

can be analytically obtained as

θ̂ = (Ĥ + νI)−1ĥ, (6)

where I is the nte × nte-dimensional identity matrix.
The performance of RuLSIF depends on the choice of the kernel bandwidth τ and the regularization parameter

ν. Model selection of RuLSIF is possible based on cross-validation with respect to the squared-error criterion J
(Yamada et al., 2013).
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3.2 Illustrative example

We illustrate the efficacy of the proposed USDA approach in Figure 2 on a simple synthetically generated
example. For this illustration, as well as for remainder of the paper we use USDA as part of the Twin Gaussian
Regression (TGP) model (we review TGP and discuss how it can be learned with importance weighting imposed
on the samples in Section 5 and Appendix A), which is able to deal with non-linear multi-modal relationships
between input and output variables. Note, that for value of input close to x = 0.5, the output can have up to
3 modes. The proposed USDA-TGP approach (α = 0.5) can substantially improve on the mean squared error
with respect to the ground truth.

3.3 Issues with USDA under Severe Biases

The proposed USDA is well suited for reducing effects of sampling bias (as is illustrated in Figure 2), but
the approach is not well suited for dealing with more severe biases (e.g., those that induce structured changes
between the training and test sets) and therefore make the training and test domains largely disjoint (e.g., see
Figure 3 (a)). This is easy to see, as the relative importance weight, in Eq.(3), goes to a constant 1/(1 − α)
under such scenario. As a result, the unsupervised approach becomes ineffective and potentially large benefits
can be obtained by leveraging small amounts of labeled data in the target domain, leading to the semi-supervised
domain adaptation we introduce next.

4 Semi-Supervised Domain Adaptation (SSDA) for Regression

Here, we propose a semi-supervised domain adaptation method (SSDA) for 3D pose estimation to deal with
more severe biases. Our semi-supervised approach is a generalization of USDA introduced in the previous
section, and amounts to first projecting training and test samples to a higher dimensional space, through feature
augmentation, then applying re-weighting to training and labeled test instances based on the ratio of their
probabilities under the test and training marginals.

Let X tr(⊆ Rdx) be the domain of training image feature vector xtr, Ytr(⊆ Rdy) be the domain of training
pose vector ytr, X te(⊆ Rdx) be the domain of test image feature vector xte, and Yte(⊆ Rdy) be the domain
of test pose vector yte. Suppose we are given ntr and n′te i.i.d. training and test image-pose feature pairs and
nte − n′te i.i.d. test image feature vectors,

{(xtr
i ,y

tr
i ) | xtr

i ∈ X tr,ytr
i ∈ Ytr, i = 1, . . . , ntr},

{(xte
j ,y

te
j ) | xte

j ∈ X te,yte
j ∈ Yte, j = 1, . . . , n′te},

{xte
j | xte

j ∈ X te, j = n′te, . . . , nte},

drawn from distributions with densities ptr(x,y), pte(x,y), and pte(x) respectively; note, n′te � nte. Since we
have n′te test image-pose feature pairs, it is natural to include them in the training data set. Thus, we use

{(xtr
i ,y

tr
i )}ntr

i=1 ∪{(xte
j ,y

te
j )}n

′
te
j=1 as a new traning data set and assume the samples are drawn from a distribution

with the density p′tr(x,y).
The final goal of SSDA for 3D pose estimation is to learn a function f(x; Θ) with low expected pose error in

the target domain based on the training and test image-pose feature pairs and test image feature vectors.
Similar to the USDA formulation in Section 3, learning of parameters amounts to solving the following

optimization problem:

min
Θ

[∫∫
loss(y,f(x; Θ))pte(x,y)dxdy

]
, (7)

where Θ are the model parameters.
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However, because we can have a small number of test image-pose feature pairs, the optimization in Eq.(7) is
rather difficult. Thus, we again consider the following covariate shift adaptation problem (Shimodaira, 2000):

min
Θ

[∫∫
loss(y,f(z; Θ))w(z)p′tr(z,y)dzdy

]
, (8)

where z = g(x) is the transformed sample of x, g(·) is an arbitrarry transformation function, and w(z) = pte(z)
p′tr(z)

is

the importance weight function. The difference from the USDA formulation is that we use feature transformation
(i.e., z = g(x)).

The advantage of the proposed SSDA approach is two fold: (1) the feature transformation can reduce the effect
of non-overlapping regions between training and testing distributions (making the covariate shift assumption3

valid), and (2) we can reduce sample selection bias in domain adaptation with the use of large number of test
image features through covariate shift adaptation. Our proposed method consists of the following three steps
that we describe in turn:

(i) Feature transformation z = g(x) obtained using feature augmentation (see Section 4.1).

(ii) Estimation of the importance weights w(z) using RuLSIF (see Section 3.1).

(iii) Importance weighted learning of parameters Θ of f(z; Θ) from weighted augmented feature-pose pairs (see
Section 5 and Appendix A).

4.1 Feature Transformation

We adopt the supervised domain adaptation method called EasyAdapt (EA) (Daumé, 2007), which proved useful
in natural language processing (NLP) community. In this paper, we further extend the EA method by introducing
a new parameter β (0 ≤ β ≤ 1) which controls the adaptiveness to the target data4:

ztr = [xtr> βxtr> 0d
>]>,

zte = [xte> 0d
> βxte>]>,

where 0d is a d-dimensional vector with all zeros. Intuitively, these transformations map the original feature
vectors into three versions: a general version, a source-specific version and a target-specific version. Note, β = 0
gives no adaptation in the sense of EA, while β = 1 gives the same effect as the original EA (Daumé, 2007); 0 <
β < 1 will give an intermediate adaptation. Moreover, setting β = 0 corresponds to simply merging {(xtr

i ,y
tr
i )}ntr

i=1

and {(xte
j ,y

te
j )}n

′
te
j=1 and regarding it as the training dataset. As such, the proposed SSDA formulation is a

generalization of the original feature augmentation approach in Daumé (2007). In addition, this simple extension
allows us to tune the adaptiveness based on prior information or using cross validation, which is desirable.

Analysis and intuition: To analyze the behavior of this transformation, let us focus on a Gaussian kernel for

x: κ(x,x′; ρ2) = exp
(
−‖x−x

′‖2
2ρ2

)
. Then, when x and x′ are samples from the same domain, we can compute

the Gaussian kernel between z and z′ as

K(z, z′) = κ(x,x′; ρ2)κ(x,x′;
ρ2

β2
).

3Covariate shift assumption formally amounts to assuming that conditional distributions on the source and target domains are
the same but the marginal distributions are different.

4While it is possible to set β > 1, this gives an even higher importance to the target domain samples (meanwhile largely ignoring
contributions from the source domain samples), which with few target samples leads to overfitting.
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Figure 3: Predicted outputs y using USDA-TGP with source data samples (b), USDA-TGP with target data
samples (c), and SSDA-TGP method (d) in green. Samples from the model x = y + 0.3 sin(2πy) + e where
e ∼ N (0, 0.052); ◦ and × are training and test samples respectively (for clarity we also illustrate marginals
ptr(x) and pte(x) in (b), (c), and (d) bottom). Note that the input-output test samples are not used in the
training of USDA-TGP Source, and we used only 100 input-output test samples for USDA-TGP Target and the
proposed SSDA-TGP method.

On the other hand, when the domain is not the same,

K(z, z′) = κ(x,x′; ρ2)κ(x,x′;
ρ2

β2
) exp

(
−2β2x>x′

ρ2

)
,

≤ κ(x,x′; ρ2)κ(x,x′;
ρ2

β2
),

where the inequality holds when z and z′ only take positive values such as HoG features. Thus, data samples
from the same domain are enhanced compared to those from different domains. Intuitively, this means that the
labeled data samples from the target domain have a larger influence, as controlled by β, than samples from the
source domain when making predictions about target (test) data. A more complete analysis of this is given in
Daumé (2007). Note, if elements of x take negative value, we can use a different type of feature augmentation.
For example, instead of concatenating the features in the original space, as we do here, we can first map each
of the three elements of the transformed feature vector into the kernel space and then concatenate them in the
kernel space, which would allow us to apply the method for any features so long as we have a positive semi-definite
kernel (Daumé, 2007). The approach also extends to problems with more than two domains.

4.2 Illustrative Example

We compare the performance of USDA to SSDA approach on a one dimensional synthetic example in Figure 3.
Note, that the setting is similar to the one in Figure 2, with two notable differences: (i) the source and target
distributions are more disjoint (Relative Pearson Divergence (ROD) = 0.485 while the data in Figure 2 (a) have
ROD = 0.177; see Section 7) and (ii) we assume that a number (100 in this case) labeled input-output pairs
are available in the target domain. Similarly to prior example, we compare USDA and SSDA in the context of
Important Weighted Twin Gaussian Processes Regression which we discuss at length in the next section and
Appendix A.

It is clear that USDA-TGP (α = 0.5) performs poorly regardless whether source or labeled target data is
used for training. We note that USDA-TGP trained on the labeled target samples performs better here because
we have relatively many labeled target samples – 100 in this case. In contrast, SSDA-TGP, here with α = 0.5
and β = 0.5, performs much better than both USDA alternatives with 32% lower mean squared error (MSE)
over USDA-TGP Target and 78% lower MSE over USDA-TGP Source.
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5 Importance Weighted Twin Gaussian Processes Regression

USDA and SSDA approaches introduced in previous sections are applicable to variety of regression models.
The only restriction placed on the regression model, is that learning must take into account weighted samples.
We discuss variety of alternatives in our earlier work (Yamada et al., 2012); here we focus on twin Gaussian
processes regression (Bo and Sminchisescu, 2010) which proved very effective for high dimensional problems with
potentially structured outputs and multi-valued relationships between inputs and outputs. We overview the
twin Gaussian processes (TGP) regression (Bo and Sminchisescu, 2010) and importance-weighted twin Gaussian
process (IWTGP) regression (Yamada et al., 2012) in Appendix A.

Computational complexity: Since TGP/IWTGP requires matrix inversions of ntr × ntr matrices, the com-
plexity of solving Eq.(21) is O(n3tr), which is impractical when ntr is large. To deal with this issue, a common
solution, which we adopt, is to first find M nearest neighbors to a test input and estimate TGP on the reduced
set of training paired samples. The inverse matrix in Eq.(21) can then be efficiently computed with complex-
ity O(M3). However, in addition to matrix inversion, TGP needs to solve a nonlinear optimization problem,
Eq.(21), which tends to be computationally expensive and typically requires L-BFGS (Limited-memory Broyden-
Fletcher-Goldfarb-Shanno) solver and computation of gradients.

6 Computationally Efficient Twin Gaussian Processes Regression

TGP and IWTGP, discussed in the previous section, require solving of a nonlinear optimization problem which
tends to be computationally expensive. As a consequence, our domain adaptation variants, USDA-TGP and
SSDA-TGP inherit these computational burdens. To alleviate these issues, we propose computationally efficient
alternative to TGP, which we call Direct TGP (dTGP), and its importance weighted variants.

To cope with computational challenges in TGP, we propose an approximation which results in a model
similar to locally weighted K-nearest neighbor regression (WKNN). In this model the weights for the samples
are estimated such that the Kullback-Leibler divergence between input and output Gaussian distributions is
minimized, approximating the original TGP objective. This is efficient, as the weights can be analytically
obtained. We can then estimate an (output) pose as a weighted sum of K-nearest training pose vectors, where
top K nearest training pose vectors are obtained based on the estimated weighting.

6.1 Direct Twin Gaussian Processes (dTGP)

A computational limitation of TGP is that it needs to optimize y variable inside a Gaussian kernel, which makes
TGP optimization nonlinear. To avoid solving nonlinear optimization problem, we adopt two-step approach
which is similar to weighted K-nearest neighbor regression (WKNN) (Shakhnarovich et al., 2003). More specifi-
cally, since l(y) = [L(y,y1), . . . , L(y,yn)]> can be regarded as a sample re-weighting vector, we first estimate ly
and choose top K nearest output vectors {y′k}Kk=1 by ranking based on ly, and then, second, estimate an output
y as a weighted sum over K-nearest neighbors. Therefore, the key issue is efficient estimation of l(y).

Estimating re-weighting vector: We regard ly = l(y) as a variable to be optimized. Then, the optimization
problem in Eq.(21) can be expressed as

min
ly

[
1 + λy−2l>y u−η log

[
1 + λy−l>yL−1ly

]]

s.t. 0 ≤ ly,i ≤ 1 + λy, i = 1, . . . , n, (9)

where we use L(y,y) = 1 + λy. Note, to further speed up the inference, we first estimate ly without box
constraint and then clamp ly to satisfy the constraint.

Taking derivative of the objective function in Eq.(9) with respect to ly and equating it to zero, we get

ly = µLu, (10)
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Figure 4: Predicted outputs y by TGP (b) and dTGP (c) for multi-modal data, where we set M = 200. (a):
Samples from the model x = y + 0.3 sin(2πy) + e where e ∼ N (0, 0.052). (d): Average test time for TGP and
dTGP over 500 test samples with respect to the number of nearest neighbors M .

where µ =
(1+λy−lyL−1ly)

η is a scalar. By plugging Eq. (10) back into Eq. (9), we can rewrite the optimization
problem as

min
µ

[
1 + λy−2µa−η log

[
1 + λy−µ2a

]]
, (11)

where a = u>Lu is a constant. Note, we only need to estimate a scalar µ, while originally we needed to optimize
y ∈ Rdy . Hence the new optimization problem is much easier to solve compared to the original optimization
problem.

Taking derivative of Eq.(11) with respect to µ and equating it to zero, we get the following analytical solution:

µ̂ =
−η +

√
η2 + 4a(1 + λy)

2a
.

The final solution can be written as

l̂y = min((1 + λy)1n,max(0n, µ̂Lu)),

where 1n denotes the n-dimensional vector with all ones, 0n denotes the n-dimensional vector with all zeros,
and the ’max’ and ’min’ operation for vectors are applied in an element-wise manner.

Estimating Pose using Weighted K-nearest Neighbor Regression: We estimate y using weighted KNN
regression (Shakhnarovich et al., 2003). We first obtain K nearest neighbors and their weights {(y′k, l̂′y,k)}Kk=1

from {yi}ni=1, by sorting training samples based on l̂y, and estimate y as

ŷ =

K∑

k=1

γ̂ky
′
k,

where γ̂k are the weights which are computed from l̂y. In contrast to traditional WKNN where the weights are
a function of the distance in the input space, in our case the weights are functions of both similarity of the test
point to the training pairs, in the input space, and the similarity among the training pairs themselves, in the
output space. We evaluate the following weighting functions:

Uniform: γ̂k = 1
K , k = 1, . . . ,K

Gaussian: γ̂k =
l̂′y,k∑K
k=1 l̂

′
y,k

, k = 1, . . . ,K
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Distance: γ̂k =
−1/ log(l̂′y,k)∑K
k=1−1/ log(l̂′y,k)

, k = 1, . . . ,K

Note, since l̂′y,k takes value of a Gaussian kernel, l̂′y,k = exp(−‖y−yk‖
2

2ρy
), the Distance weighting may be approx-

imated by ‖y − yk‖2 ∝ − log(l̂′y,k).
The advantage of the proposed method over the existing TGP is that we can estimate the output y using

simple linear algebra, while the original TGP needs to solve a nonlinear optimization problem which tends to
be computationally expensive. In addition, the proposed approach does not depend on a specific nonlinear
optimization solver, and is very easy to implement.

Relation to Standard Weighted K-nearest Neighbor Regression: Here, we show that a standard WKNN
regression (Shakhnarovich et al., 2003) is a special case of our proposed method.

Let us assume that input and output distributions are the same, i.e., K = L and λz = λy. Then, the
estimated ly is given by

l̂y = µ̂KK−1k(z) = k(z),

where µ̂ = 1 and kk(z) = exp
(
−‖zk−z‖

2

2ρ2z

)
. Hence the Gaussian weighting parameter can be given as

γ̂k =
exp

(
−‖zk−z‖

2

2ρ2z

)

∑K
k=1 exp

(
−‖zk−z‖

2

2ρ2z

) , k = 1, . . . ,K,

where {z′k}Kk=1 is the K-nearest neighbor set. The resulting weighting parameter is the same as the weighting
in standard WKNN regression. Therefore the proposed method, in particular with Gaussian weighting, reduces
to standard WKNN when covariance matrices are the same (i.e., K = L).

6.2 Direct Importance Weighted Twin Gaussian Processes (dIWTGP)

The proposed speedup technique can also be applied for importance weighted variant of TGP, called IWTGP
after (Yamada et al., 2012).

Estimating re-weighting vector: Again let us consider ly = l(y) as a variable to be optimized. Then, the
optimization problem in Eq.(24) can be written as

min
ly

[
1 + λy−2l>y uw−ηw log

[
1 + λy−l>yL−1w ly

]]

s.t. 0 ≤ ly,i ≤ 1 + λy, i = 1, . . . , n. (12)

Taking derivative of Eq.(12) and equating it to zero, we can similarly obtain the sample re-weighting vector:

l̂y = min((1 + λy)1n,max(0n, µ̂w(Lw)uw)), (13)

where µ̂ =
−ηw+

√
η2w+4aw(1+λy)

2aw
and aw = u>wLwuw. As before, y can be estimated by weighted K-nearest

neighbor regression. We call the importance weighted variant of dTGP – dIWTGP.

6.3 Illustrative Example

Figure 4 illustrates predicted outputs y using TGP and dTGP (Dist) for multi-modal data: x = y+0.3 sin(2πy)+e
where e ∼ N (0, 0.052). In these experiments, we use 10,000 training samples and 500 test samples. As Figures 4
(b) and (c) clearly show, dTGP (Dist) performs very similarly to the original TGP implementation (Bo and
Sminchisescu, 2010). In addition, Figure 4 (d) shows the test computational time for 500 test samples with respect
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to the number of nearest neighbors M . The computational speed of the proposed method is about 20 times
faster than that of the original TGP when M = 50. The computational cost of the proposed method gradually
increase when M increases. This is because dTGPs need to compute a matrix inverse and the computational
cost of inverse becomes dominant when M is large. In practice, setting M to 200 works favorably in terms of
both performance and computational time.

7 Domain Similarity Estimation using relative Pearson Divergence

Our leading assumption is that SSDA is more effective, than USDA, when difference between source and target
domains is larger. To analyze the relationship between the similarity of domains and the proposed USDA and
SSDA approaches, we propose an approach to estimate the rank of domain (ROD) measure (Gong et al., 2012),
which is useful to measure the difference between source and target dataset, based on the relative Pearson (PE)
Divergence (Yamada et al., 2013). We use the relative Pearson (PE) Divergence, since it can be estimated
analytically and has good non-parametric convergence property (Yamada et al., 2013).

Let Ptr and Pte be probability distributions of samples in {xtr
i }

ntr
i=1 and {xte

j }
nte
j=1, then the relative PE

divergence is defined as (Yamada et al., 2013)

PEα(Ptr‖Pte) =

∫
(wα(x)− 1)

2
qα(x)dx, (14)

where wα(x) is the relative density-ratio (a.k.a., relative importance weight in Eq.(3)) and qα(x) = (1−α)pte(x)+
αptr(x). The relative PE divergence is a squared loss variant of the KL divergence, and it takes non negative
value and vanish when Ptr = Pte (Ali and Silvey, 1966). We use the symmetrized relative Pearson divergence as
the rank of domain estimation:

ROD(Ptr, Pte) =
1

2
(PEα(Ptr‖Pte) + PEα(Pte‖Ptr)).

Estimation of the Relative Pearson Divergence: Using estimator of the relative density-ratio wα(x), which
is efficiently computed using RuLSIF, we can construct estimator of the relative PE divergence (14). After a few
lines of calculation, we can show that the relative PE divergence (14) is equivalently written as

PEα(Ptr‖Pte) = −α
2

∫
wα(x)2ptr(x)dx

− (1− α)

2

∫
wα(x)2pte(x)dx+

∫
wα(x)pte(x)dx. (15)

Based on this expression, we obtain the estimator of the relative PE divergence as

P̂Eα(Ptr‖Pte) = − α

2ntr

ntr∑

i=1

ŵα(xtr
i )2

− (1− α)

2nte

nte∑

j=1

ŵα(xte
j )2 +

1

nte

nte∑

j=1

ŵα(xte
j ). (16)

Finally, the estimator of ROD measure based on the relative PE divergence is given by

R̂OD(Ptr, Pte) =
1

2
(P̂Eα(Ptr‖Pte) + P̂Eα(Pte‖Ptr)).

In this paper, we experimentally use α = 0.5.
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8 Experiments

8.1 Evaluation of USDA and SSDA

We start by exploring the ability of USDA and SSDA to battle various biases in different transfer learning settings.
As in simple examples before, we analyze USDA and SSDA in the context of Importance Weighted Twin Gaussian
Processes Regression. We apply USDA-TGP and SSDA-TGP to two problems on publicly available datasets:
(i) 3D pose estimation from monocular images - on the HumanEva-I dataset and (ii) 3D head pose estimation
from range data – on the ETH Face Pose Range Image Dataset (Breitenstein et al., 2008). We further explore
the benefits of USDA vs. SSDA as a function of the similarity between source and target domains on these real
world datasets.

To do the latter, we compute an ROD score (based on the formulation in Section 7) for each setting. Lower
value of ROD score corresponds to more similarity between source and target domains; higher value of ROD
implies more dissimilarity between source and target domains. Experimentally, we observe that values of ROD
close to 0.2 or less imply relatively small bias in the data (e.g., sample selection bias); values of ROD around
0.35 moderate bias and ROD ≥ 0.4 implies large structural biases in the data.

We compare the proposed USDA-TGP and SSDA-TGP methods to the following baselines:

TGP (S): TGP learned with training (source) image-pose pairs

TGP (T): TGP learned with test (target) image-pose pairs

TGP (S+T): TGP learned with training (source) image-pose pairs and test (target) image-pose pairs

TGP (EA): TGP learned with training (source) image-pose pairs and test (target) image-pose pairs in the
augmented space

WKNN: Weighted k nearest neighbor regression with k = 25, using training (source) image-pose pairs.

Note, that, much like TGP, USDA-TGP can be trained with different slices of data, so we test the following
alternatives:

USDA-TGP (S): IWTGP with training (source) image-pose pairs and test (target) image features for learning

USDA-TGP (T): IWTGP with test (target) image-pose pairs and test (target) image features for learning

USDA-TGP (S+T): IWTGP with training (source) image-pose pairs, test (target) image-pose pairs and test
(target) image features for learning

Further note, TGP (S+T), USDA-TGP (S+T), TGP (EA) are actually special cases of proposed SSDA-
TGP model where (α = 0, β = 0), (α = 0.5, β = 0) and (α = 0, β = 1.0) respectively.

8.1.1 3D Human Pose Estimation

For these experiments we utilize HumanEva-I dataset (Sigal and Black, 2006). HumanEva-I contains syn-
chronized multi-view video and Mocap data. It consists of 3 subjects performing multiple activities: walking,
jogging, boxing, throw and catch, and gesturing. We use the histogram of oriented gradient (HoG) features
(∈ R270) proposed in Bo and Sminchisescu (2010) (we refer to (Bo and Sminchisescu, 2010) for details). We
use training and validations sub-sets of HumanEva-I and only utilize data from 3 color cameras with a total of
9630 image-pose frames for each camera. This is consistent with experiments in Bo and Sminchisescu (2010) and
Yamada et al. (2012). We first divide 9630 image-pose frames into training and test data set. Then, we randomly
sub-sample n′te from the full test data set as labeled samples and used rest of test, nte − n′te data samples, for
testing. We randomly sub-sample n′te image-pose pairs from the full test set; to alleviate the sampling bias we
sample 100 times, learn 100 different models, and average their corresponding errors.

We test three transfer scenarios: (1) subject transfer bias (sampling bias) – the training data includes 2
subjects and test data comes from a 3-rd subject not used for training, (2) motion transfer bias (data sharing)
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– the training data does not include test motion, and (3) camera transfer – camera view is different between
training and test. We propose 3 experiments:

Subject transfer (C1-C3): Test subject is not included in training phase. Data from cameras C1, C2, and
C3 is used for this experiment as independent single-view samples.

Camera transfer (C1): Camera 1 data is used for training and Camera 2 data is used for testing.

Motion transfer (C1-3): Walk, Jog, and ThrowCatch motions are used for training and Boxing and Gestures
are used for testing. Data from cameras C1, C2, and C3 is used for this experiment as independent
single-view samples.

Error metric: In HumanEva-I pose is encoded by (20) 3D joint markers defined relative to the ‘torsoDistal’
joint in camera-centric coordinate frame, so y = [y(1), . . . ,y(20)]> ∈ R60 and y(i) ∈ R3. Error (in mm) for each

pose is measured as average Euclidean distance: Errorpose(ŷ,y
∗) = 1

20

∑20
m=1 ‖ŷ(m) − y∗(m)‖, where ŷ is an

estimated pose vector, and y∗ is a true pose vector (see Sigal and Black (2006) for details).

Parameters: For HumanEva-I dataset, we used the original parameter setting of Bo and Sminchisescu (2010):
λz = λy = 10−3, 2ρ2z = 5, and 2ρ2y = 5×105. The number of M nearest neighbors in TGP and USDA-TGP is set
to min(300, ntr). In USDA-TGP, we set α = 0.5, and bte = min(500, nte) to be consistent with original published
results in Yamada et al. (2012). In SSDA-TGP, we choose the α and β parameters using cross-validation and let
bte = min(500, nte). In our cross-validation procedure we evaluate 9 different parameter settings where we set α
and β to 0.0, 0.5, and 1.0 each and choose the parameter setting combination that maximizes performance on the
validation set (in all experiments we use half of the labeled target samples for training and half for validation).

Performance and Analysis: Figures 5 (a)–(c) show the average mean pose estimation error as a function of
the paired target set size (averaged over all motions and 100 runs of random sampling of paired target samples);
Figure 5 (g) specifically shows performance with 5 labeled training samples, again averaged over 100 runs. The
graphs and table show that the proposed USDA-TGP and SSDA-TGP outperform standard TGP on equivalent
settings.

In particular, Figure 5 (g) shows that USDA-TGP outperforms TGP in all three transfer settings and on
every single split of the data (S), (T) and (S+T). We notice that the largest boost (28% improvement in error)
from USDA-TGP comes in the subject transfer case, with model trained on the source (S) samples. We believe
there are two reasons for this. First, number of labeled target samples in this case is relatively small (only 5) in
comparison to source samples, so training on them alone (T) is unlikely to be successful; adding them to a source
samples (S+T) also has limited benefit. Second, the source and target domains are relatively similar (ROD =
0.207), making this setting particularly well suited for unsupervised domain adaptation. This also explains why
SSDA-TGP performs marginally inferior to USDA-TGP on subject transfer.

Interestingly, however, USDA-TGP(S) starts to become much less effective as the dissimilarity between the
target and source domains increases. In such cases, one can see that improvements obtained using a semi-
supervised setting SSDA-TGP are considerably more pronounced; in Figure 5 (g) SSDA-TGP has 20% lower
error than USDA-TGP (S+T) in the motion transfer setting with ROD= 0.406 (note, both approaches use the
same exact labeled and unlabeled data). Further, for the intermediate ROD value of 0.353, in the camera transfer
setting, the improvement of SSDA-TGP over USDA-TGP is also moderate at 5% lower error. This suggests that
effectiveness of USDA and SSDA methods can be approximated by measuring the similarity/dissimilarity of the
source and target domains.

Figures 5 (d)–(f) show the comparison of SSDA-TGP with different α and β parameters. The automatically
chosen parameters selected by cross-validation are labeled CV. We observed that setting β = 0 in SSDA-TGP
tends to perform well when the training and test data set are not disjoint, while β ≥ 0.5 tends to perform
well when the training and test data set are disjoint (e.g., motion transfer). Cross-validation-based parameter
selection tends to perform well when the number of labeled target samples is larger and becomes somewhat
unstable when the number of labeled target samples is small. We observe that manually setting α = 0.5
and β = 0.5 performs favorably in such cases and avoids instabilities of cross-validation. Paired t-tests were
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(f) Motion transfer (C1-3)

(ROD = 0.406)

Subject Transfer Camera Transfer Motion Transfer
(ROD = 0.207) (ROD = 0.353) (ROD = 0.406)

TGP(S) (Bo and Sminchisescu, 2010) 165. 1 212.4 182.4
USDA-TGP(S) 132.4 208.2 178.8
TGP(S+T) (Bo and Sminchisescu, 2010) 123.1 203.7 150.0
USDA-TGP(S+T) 119.3 200.2 143.7
TGP(T) (Bo and Sminchisescu, 2010) 189.8 188.9 123.9
USDA-TGP(T) 189.0 186.8 123.9
TGP(EA) 156.4 186.7 119.7
WkNN 142.6 191.9 174.7
SSDA-TGP 132.9 189.9 120.0

(g) Quantitative results with 5 labeled paired target samples (based on (a), (b) and (c) above).

Figure 5: Performance on HumanEva-I dataset illustrated as a function of the number of paired target
samples (a)-(c); we averaged the error over all motions for each subject and across (100) different random
samplings of n′te. Comparable methods according to the paired t-test at the significance level 5% are specified
by ‘◦’. Performance comparison of SSDA-TGP with respect to the α and β parameter illustrated in (d)-(f) as a
function of the number of paired target samples; we averaged the error over all subjects. Comparable methods
according to the paired t-test at the significance level 5% are specified by ‘◦’. The table in (g) shows performance
with 5 labeled paired target samples for easier analysis, and comparable methods according to the paired t-test
are specified by bold font.

conducted for all experiments and we observe that SSDA-TGP statistically outperforms competitors at p=0.05
(5%) significance in most cases. We conducted the paired t-tests by first selecting the algorithm (parameter
setting) with the lowest error and then performing pair-wise comparisons between it and every other algorithm
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Figure 6: Cross-validation parameter selection analysis on HumanEva-I dataset illustrated as a function
of the number of paired target samples; we averaged the error over all motions for each subject and across (100)
different random samplings of n′te. Each plot shows the fraction of the time a given parameter setting was chosen
by cross-validation.

(parameter setting) considered.
One may be tempted to conclude that feature augmentation is what contributes the most to the performance,

since in camera transfer and motion transfer settings performance of TGP(EA) is statistically indistinguishable
from the proposed SSDA-TGP approach. However, we would like to highlight that in the subject transfer scenario
SSDA-TGP does perform considerably (and statistically significantly) better than TGP(EA). In other words, we
view SSDA-TGP as a more versatile approach that is capable of better dealing with variety of transfer settings.

The cross-validation parameter selection procedure is more closely evaluated in Figure 6 where we plot the
fraction of runs (y-axis) in which cross-validation selected a given parameter value for α (a)-(c) and β (d)-(f)
for a chosen number of labeled target samples (x-axis). As mentioned previously, we have multiple subjects and
do 100 random samplings of n′te for each transfer setting, so we have a distribution over the parameters chosen
by cross-validation which we show in Figure 6. We observe that with few labeled target samples the results of
cross-validation are not very stable and different parameters are chosen in many cases nearly equally frequently
(Figure 6 (a,e)). As the number of labeled target samples increases cross-validation tends to become more stable
with certain parameter setting being clearly preferred over the others (for example, see Figure 6 (c) or (e)).

8.1.2 3D Head Pose Estimation

We also assess the performance of the proposed USDA-TGP and SSDA-TGP methods on ETH Face Pose Range
Image Dataset (Breitenstein et al., 2008) (see Figure 1 (c)). The dataset contains 10780 range images of 20
people (3 females, 6 subjects recorded twice, with and without glasses) turning their head while captured at
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(a) Depth Images (b) HoG Descriptor

Figure 7: ETH Depth Face images and the corresponding HoG features.

28 fps by the range scanner of (Weise et al., 2007). The resolution of each image is 640x480 pixels, and a face
typically consists of 150x200 pixels. The head pose range is about ±90◦ yaw and ±45◦ pitch rotations. The
provided ground truth for each image consists of the 3D nose tip coordinates and the coordinates of a vector
pointing in the face direction (Breitenstein et al., 2008).

We compute HoG feature within a depth image’s region of interest (ROI) (see Figure 7), in our case the
bounding box around the face (200x200 pixels). To obtain the HoG, we divide the ROI into a non-overlapping
5× 5 grid. Within each cell in the grid, we compute the orientation and magnitude of each pixel and obtain a 31
dimensional feature for each cell. We concatenated all features of cells to obtain 775 dimensional HoG feature
(∈ R775). Finally, we normalized the HoG vector to unit length. For pose vector y, we use five dimensional
vector comprising of yaw and pitch angle, and location of the nose (∈ R3).

The bias in head pose estimation can come in (at least) two forms: the training (source) data may simply be
biased and for example, not contain the subject present in the test (target) set, or an subject in test set wears
glasses while no subjects wearing glasses were observed in the training set. Hence we propose 2 experiments:

Subject transfer: Test subject is not included in the training set.
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(f) Nose error

Subject Transfer (ROD = 0.416) Glass Transfer (ROD = 0.404)
Yaw [deg] Pitch [deg] Nose [mm] Yaw [deg] Pitch [deg] Nose [mm]

TGP(S) (Bo and Sminchisescu, 2010) 5.78 8.82 58.6 7.74 7.99 30.25
USDA-TGP(S) 5.79 9.28 59.2 7.89 7.83 30.03
TGP(S+T) (Bo and Sminchisescu, 2010) 3.95 5.62 35.8 6.00 6.65 20.28
USDA-TGP(S+T) 3.60 5.15 29.6 5.61 6.17 17.65
TGP(T) (Bo and Sminchisescu, 2010) 5.54 8.53 23.7 8.30 9.85 24.22
USDA-TGP(T) 5.57 8.66 24.0 8.34 9.99 24.45
TGP(EA) 3.93 5.66 17.5 5.98 6.67 15.74
WkNN 6.72 10.24 57.8 8.98 8.28 33.41
SSDA-TGP 3.89 5.48 18.2 5.42 5.61 15.08

(g) Quantitative results with 30 labeled paired target samples (based on (a)–(f) above).

Figure 8: Performance on ETH Face Pose Range Image Dataset illustrated as a function of the number of
test (target) samples; we averaged the error over all subjects. Subject transfer (ROD = 0.416): (a)-(c)
and Glass transfer (ROD = 0.404): (d)-(f). Comparable methods according to the paired t-test at 5%
significance are specified by ‘◦’. Results in (a)-(c) are competitive with (Breitenstein et al., 2008), but are not
directly comparable since the settings are different. The table in (g) shows performance with 30 labeled paired
target samples for easier analysis, and comparable methods according to the paired t-test are specified by bold
font.

Glass transfer: Subjects not wearing glass are used for training and subjects wearing glass are used for testing.

Error metric: We compute error in yaw (degrees), pitch (degrees), and nose position error (mm), where each
error is measured as average Euclidean distance between estimated and ground truth data.

Parameters: For ETH data set, we experimentally (through grid search) set the TGP, USDA-TGP, and SSDA-
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(f) Nose error

Figure 9: Subject transfer (ROD = 0.415). (a)-(c): Performance comparison of SSDA-TGP with respect
to the α and β parameter on the ETH face Pose Range Image dataset illustrated as a function of the number
of paired target samples; we averaged the error over all subjects. Glass transfer (ROD = 0.404). (d)-(f):
Performance comparison of SSDA-TGP with respect to the α and β parameter on ETH face Pose Range Image
dataset illustrated as a function of the number of paired target samples; we averaged the error over all subjects.
Comparable methods according to the paired t-test at the significance level 5% are specified by ‘◦’.

TGP parameters to λz = λy = 10−5, 2ρ2z = 5 × 103, and 2ρ2y = 5 × 107. The number of M nearest neighbors
in TGP and USDA-TGP is set to min(300, ntr). In SSDA-TGP, we choose the α and β parameters by cross-
validation, and bte = min(500, nte), respectively.

Performance and Analysis: Figure 9 shows the performance comparison of SSDA-TGP with respect to the
α and β parameters on ETH face dataset. Figure 8 (g) shows performance with 30 labeled training samples.
From these experiments, we observed that cross-validation (SSDA-TGP setting) and α = 0.5, β = 0.5 both give
favorable estimation accuracy with respect to the number of paired target samples. Moreover, Figures 8 (a)–(e)
show the average mean yaw, pitch, and nose estimation error as a function of test set size (averaged over all
subjects and 30 runs) for subject and glass transfer cases. The graphs clearly show that the proposed SSDA-
TGP method outperforms non domain adaptation and USDA-TGP methods under most settings. Paired t-tests
were conducted for all experiments. We observe that the USDA-TGP and SSDA-TGP methods statistically
outperform competitors at p=0.05 (5%) significance. In both transfer sittings considered, the ROD values are
relatively large, so SSDA-TGP tends to perform well; USDA-TGP (S+T) performs well on the yaw and pitch
estimates in the subject transfer setting.

Figure 9 shows the performance of SSDA-TGP with different α and β parameters as compared to the cross-
validation parameter setting procedure. The conclusions are largely similar to those drawn in the human pose
experiments in the previous section. It is clear that cross-validation procedure outperforms fixed parameter
values as number of labeled target samples increases.
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8.2 Evaluation of Direct TGP

Now that we showed effectiveness of USDA and SSDA methods, we investigate the fast alternatives to the TGP
that are able to improve on the speed of inference by a factor of 8 to 15 times. Since our fast approximation to
TGP applies to all of the methods, instead of running a set of exhaustive experiments with variety of settings
we explored in previous sections, here we focus on a few simple scenarios to illustrate overall effectiveness of the
method.

8.2.1 HumanEva-I Data

We start by exploring performance of Direct TGP on HumanEva-I dataset under selection bias setting. Fig-
ure 10 shows the performance comparison with respect to M and K parameters for dTGP and dUSDA-TGP,
respectively. We observe that performance of dTGP and dUSDA-TGP (similar to TGP and USDA-TGP) are
insensitive to parameter M . The performance tends to asymptote once M is sufficiently large (> 200) and drops
gracefully as M decreases. Some direct methods do appear sensitive to parameter K. In particular, one can
see that with Uniform weighting the performance of dTGP and dUSDA-TGP actually degrades as K increases.
This may seem counterintuitive at first, however, this can be easily explained. First, since Uniform weighting
simply averages across nearest neighbors, having more neighbors implicitly means smoother and more regular-
ized (and hence likely less accurate) prediction. Second, if regression is multi-modal, as is the case here, having
more nearest neighbors with equal weighting will likely average across different modes (where as having much
fewer will more likely focus on a single mode). Because Gaussian and Distance weightings take into account the
distance between samples in both the input and output spaces both of these issues are mitigated. As a result,
Gaussian and Distance variants of dTGP and dUSDA-TGP are relatively insensitive to K. Distance weighting
performs best overall and tends to improve marginally as K increases.

Based on results in Figure 10, we let M = 200 and K = 25 for the remaining experiments. Table 1 shows the
pose estimation accuracy over the test set. Overall, the proposed direct method performs close to the original
TGP and USDA-TGP, speeding them up by about 7 and 8 times, respectively. Distance weighting works the
best among three considered weighting methods (less than 5% loss in performance on average). Note, when the
number of training samples is big, the most computationally expensive operation is finding M -nearest neighbors.
To deal with this issue, we can use locality sensitive hashing to further speed up computation (Shakhnarovich
et al., 2003).

8.2.2 Poser Data
We also notice that despite being an approximation, dTGP and dUSDA-TGP can actually perform better than
the original in certain scenarios. We illustrate this by focusing on another public dataset made available by
Agarwal and Triggs (2006). Poser dataset (Agarwal and Triggs, 2006) consists of 1927 training and 418 test
images, which are synthetically generated, using Poser software package, from motion capture (Mocap) data (54
joint angles per frame). The image features, corresponding to bag-of-words representation with silhouette-based
shape context features, and error metric are provided with the dataset. The ROD score of the Poser dataset is
0.220.

Error metric: The proposed error measure amounts to the root mean square error (in degrees), averaged over

all joints angles, and is given by: Errorpose(ŷ,y
∗) = 1

54

∑54
m=1 ‖(ŷ(m) − y∗(m)) mod 360◦‖, where ŷ ∈ R54 is an

estimated pose vector, and y∗ ∈ R54 is a true pose vector (see Agarwal and Triggs (2006) for details).

Performance and Analysis: Table 2 shows the pose estimation result averaged over the test set. Pro-
posed dTGPs and dUSDA-TGPs compares favorably with their conventional counterparts, speeding up perfor-
mance by 11.5 and 10.6 times, respectively. Moreover, the Distance weighted K-nearest neighbor based dTGPs,
dTGP(Dist) and dUSDA-TGP(Dist), outperform the original USDA-TGP in this data set.
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Figure 10: Performance comparison with respect to M and K parameters. (a,c): Performance comparison of
dTGP and dUSDA-TGP with respect to M (K = 25). (b,d): Performance comparison of dTGP and dUSDA-
TGP with respect to K (M = 200).

Table 1: Performance on the entire HumanEva-I dataset; we average errors over all motions and frames. The
estimated ROD measure for this experiment is 0.207. The best method having the smallest error and comparable
methods (error from a best method is less than 3mm) are specified by bold face.

Subject dTGP dTGP dTGP dUSDA-TGP dUSDA-TGP dUSDA-TGP
Train Test (Unif) (Gauss) (Dist) TGP (Unif) (Gauss) (Dist) USDA-TGP WKNN

S1,S2,S3 S1 97.1 88.8 87.8 85.0 97.1 88.7 87.6 83.6 94.3
S1,S2,S3 S2 105.1 79.4 78.1 72.1 105.1 79.0 77.6 71.5 100.7
S1,S2,S3 S3 117.1 80.6 78.6 76.4 117.1 80.2 78.0 75.7 110.4
Average error (mm) 106.4 82.9 81.5 77.8 106.4 82.6 81.0 76.9 101.8

Average test time (sec) 3.46 3.46 3.46 25.78 3.75 3.75 3.75 27.04 0.76

9 Conclusion

In this paper, we proposed a simple, yet effective, semi-supervised domain adaptation (SSDA) method for
addressing training set bias in regression problems. Our SSDA approach is a generalization of the unsupervised
domain adaptation (USDA), which we propose earlier in Yamada et al. (2012), and reduces to USDA when labeled
data in the target domain is unavailable and/or under a particular setting of model parameters. Proposed SSDA,
and the special case of USDA, are amenable to most discriminative and structured regression/prediction models
and problems.

Using SSDA as the basis, we proposed a new form of Twin Gaussian Processes regression called SSDA-TGP. A
key benefit of SSDA-TGP is that large structural biases in data can be alleviated by data sharing during learning.
SSDA-TGP first projects the input image features into a higher dimensional space to alleviate domain biases
caused by disjointness of training and test data sets. Importance weighted TGP (IWTGP) can then be used in
this higher dimensional space to infer pose, while, in addition, removing the sample selection bias. We applied
the proposed method to 3D head and 3D human pose estimation, and achieve state-of-the-art performance on
standard datasets: HumanEva-I (Sigal and Black, 2006) and ETH Face Pose Range Image Dataset (Breitenstein
et al., 2008).

Further, we propose a measure of domain similarity, between the source and target domains, which allows
us to explore tradeoffs between effectiveness of SSDA-TGP and it’s unsupervised variant USDA-TGP. As a
consequence, we are able to show that proposed SSDA-TGP model is more effective in removing large structural
biases in data and in promoting data sharing during learning (which causes large dissimilarity between source
and target domains). The unsupervised variant, USDA-TGP, on the other hand, is more effective in removing
smaller biases such as selection bias.

Moreover, to speed up TGPs, we proposed a computationally efficient alternative to twin Gaussian processes,
that we called direct TGP (dTGP). We show that dTGP, and proposed alternatives, are 8 to 15 times faster
than traditional TGP formulation, with little to no loss in performance.
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Table 2: Performance and computational training and test time of dTGP and dUSDA-TGP and existing methods
on Poser dataset, where we set the number of nearest neighbors M as 200. Test time is measured over 418 images.
The ROD score of the Poser data is 0.220. The best method having the smallest angle error is specified by bold
face.

dTGP dTGP dTGP TGP dUSDA-TGP dUSDA-TGP dUSDA-TGP USDA-TGP WKNN
(Unif) (Gauss) (Dist) (Unif) (Gauss) (Dist)

Average error (deg) 5.77 5.45 5.44 5.69 5.77 5.44 5.42 5.67 5.69
Training time (sec) 0.15 0.15 0.15 0.15 1.22 1.22 1.22 1.22 –
Test time (sec) 0.79 0.79 0.79 12.32 0.89 0.89 0.89 12.63 0.51
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A Importance Weighted Twin Gaussian Processes Regression
(IWTGP)

For completeness, we overview the importance-weighted variant of twin Gaussian processes (Bo and Sminchisescu,
2010) called IWTGP (Yamada et al., 2012), which is a transfer learning method under covariate shift (Shimodaira,
2000).

Under covariate shift setup it is assumed that labeled training image-pose pairs {(ztri ,ytr
i )}ntr

i=1 drawn i.i.d.
from p(y|z)ptr(z) and unlabeled test image features {ztej }

nte
j=1 drawn i.i.d. from pte(z) (which is usually different

from ptr(z)) are available. Note, for simplicity of notations, we regard ptr(z,y) as p′tr(z,y).

A.1 Gaussian Process Regression

We start by introducing standard Gaussian Process (GP) Regression. The GP regression assumes a linear model
in the function space with Gaussian noise for the k-th dimension (e.g., joint position):

yk = fk(z) + ek, ek ∼ N (0, σ2), fk(z) = b>k φ(z), (17)

where there is a zero mean Gaussian prior over the parameters bk ∼ N (0p,Σp); 0p is the p-dimensional zero
vector and Σp is the p-dimensional covariance matrix, φ(z) is the function which maps a dz = 3dx dimensional
input vector z into an p dimensional feature space. To make prediction for the test sample, one needs to average
over all possible parameter values, weighted by their posterior, resulting in a Gaussian predictive distribution. GP
has similar problems with multi-modality as kernel regression (KR). To address this limitation, TGP encodes the
relations between both inputs and outputs using GP priors. This is achieved by minimizing the Kullback-Leibler
divergence between the marginal GP of outputs (poses) and observations (features).

A.2 Twin Gaussian Processes Regression

In this section, we review the twin Gaussian processes regression (TGP), after (Bo and Sminchisescu, 2010), and
point out potential computational issues with TGP.

Take an alternative view to GP regression, where a joint distribution over all training outputs, Y =
[y1, . . . ,yntr

] ∈ Rdy×ntr , and an unknown test output y for a given corresponding input z takes the form
of a joint Gaussian: [

Y >k
yk

]
∼ NZ

(
0,

[
K k(z)

k(z)> K(z, z)

] )
, (18)

where Yk is the k-th row of Y , yk is the k-th entry of y, K is an ntr × ntr matrix with each element Kij =
cov(φ(zi),φ(zj)) being a covariance function encoding correlations between pairs of random variables zi and zj ;
similarly ki(z) = cov(φ(zi),φ(z)) is a column vector of size ntr × 1 and K(z, z) = cov(φ(z),φ(z)). A popular
choice for a covariance function is a Gaussian with noise:

cov(φ(zi),φ(zj)) = K(zi, zj)

= exp

(
−||zi − zj ||

2

2ρ2z

)
+ λzδij ,

where, ρz is the kernel bandwidth parameter and λz is the noise variance; δij is the Kronecker delta function.
Because the joint distribution is Gaussian, the predictive distribution is also Gaussian and can be obtained

by conditioning on the observed training outputs Yk. The mean and variance of the predictive distribution can
be derived in closed form:

m(yk) = YkK
−1k(z),

σ2(yk) = K(z, z)− k(z)>K−1k(z).
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Unlike GP regression, TGP also defines the covariance function over outputs (not just inputs), which allows
to model correlations in outputs. In addition, by minimizing KL divergence between the two Gaussian Processes
(one going in the forward and one in the backwards direction) it’s possible to focus on the most prominent mode
in the potentially multi-modal mapping between image features and 3D pose.

To derive the backwards GP process, note that
[
Y >k , yk

]>
, in Eq. (18), can also be thought of as a sample

from a Gaussian distribution over the outputs,

[
Y >k
yk

]
∼ NYk∪yk

(
0,

[
L l(yk)

l(yk)> L(yk, yk)

] )
, (19)

where we can empirically estimate covariance matrix as:

LYk∪yk =

[
Y >k
yk

] [
Yk yk

]
.

For a multivariate output case, we can treat each dimension k as an independent samples from the Gaussian
distribution (see Eq. (18)) since covariance is independent of k. Hence, We can instead estimate covariance
matrix as:

LY ∪y =
1

dy

[
Y >

y>

] [
Y y

]
.

This, however, assumes that outputs along each dimension are i.i.d.; to account for the correlations between
outputs, we can define a more general covariance function over the outputs, resulting in:

[
Y >

y

]
∼ NY ∪y

(
0,

[
L l(y)

l(y)> L(y,y)

] )
, (20)

which bears close similarity to the original GP in Eq. (18).
TGP measures the offset between the true Gaussian distribution of the inputs, NZ , and measured Gaussian

distribution of the outputs, NY ∪y, using Kullback-Leibler divergence. However, the output, y, is unknown in
this measure. To match the estimated output distribution and fully observed input one as much as possible, one
is required to estimate output, ŷ, by minimizing the Kullback-Leibler divergence:

ŷ = argmin
y∈Rdy

DKL(NZ || NY ∪y),

where NZ and NY ∪y are defined in Eq. (18) and Eq. (20) respectively.
As a result, inference in TGP is given as the solution to the following optimization problem (Bo and Smin-

chisescu, 2010):

ŷ = argmin
y∈Rdy

[
L(y,y)−2l(y)>u

−η log
[
L(y,y)−l(y)>L−1l(y)

]]
, (21)

where u = K−1k(z), η = K(z, z) − k(z)>u, K(zi, zj) = exp
(
−‖zi−zj‖

2

2ρ2z

)
+ λzδij and L(yi,yj) =

exp
(
−‖yi−yj‖

2

2ρ2y

)
+ λyδij are the Gaussian kernel function for image feature vector z and pose feature vec-

tor y, ρz and ρy are the kernel bandwidth, l(y) = [L(y,y1), . . . , L(y,yntr
)]>, k(z) = [K(z, z1), . . . ,K(z, zntr

)]>,
and λy and λz are regularization parameters to avoid overfitting. This nonlinear optimization problem can
be solved using a second order Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimizer with cubic
polynomial line search for optimal step size selection (Bo and Sminchisescu, 2010).
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A.3 Importance Weighting in TGP

Under covariate shift, the likelihood of Gaussian Process can be given as (Shimodaira, 2000)

ntr∏
i=1

p(y
tr
i |z

tr
i , b)

wα(ztr
i )

∝
ntr∏
i=1

1
√
2πσ

exp

−‖w 1
2
α (ztr

i )ytri − w
1
2
α (ztr

i )φ(ztr
i )>b‖2

2σ2

 , (22)

where wα(z) is the relative importance weight function.
Thus, the GP regression model under covariate shift can be represented by

w
1
2
α (z)yk = w

1
2
α (z)φ(z)>bk + ek, ek ∼ N (0, σ2). (23)

That is, to achieve covariate shift adaptation in TGP, we need to simply re-weight each input and output by

w
1
2
α (z). The optimization problem of IWTGP is therefore given by (Yamada et al., 2012)

ŷ = argmin
y∈Rdy

[
L(y,y)− 2l(y)>uw

−ηw log
[
L(y,y)−l(y)>L−1w l(y)

]]
, (24)

where K(ztri , z
tr
j ) = exp

(
−‖z

tr
i −z

tr
j ‖

2

2ρ2z

)
+ λzδ̃ij and L(ytr

i ,y
tr
j ) = exp

(
−‖y

tr
i −y

tr
j ‖

2

2ρ2y

)
+ λyδ̃ij , δ̃ij takes w(ztri )−1

if i = j and zero if i 6= j, uw = K−1w k(ztr), ηw = K(ztr, ztr) − k(z)>uw, and w(ztr) = pte(z
tr)

ptr(ztr) is called the

importance weight function, which is used for compensating sample selection bias. The importance weight can
be directly estimated from training and test image data sets {ztri }

ntr
i=1 and {ztej }

nte
j=1 by direct importance weight

estimation such as relative unconstrained least-squares importance fitting (RuLSIF) (Yamada et al., 2013).
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