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Abstract—Learning from synthetic data has many important
and practical applications, An example of application is photo-
sketch recognition. Using synthetic data is challenging due to
the differences in feature distributions between synthetic and
real data, a phenomenon we term synthetic gap. In this paper,
we investigate and formalize a general framework – Stacked
Multichannel Autoencoder (SMCAE) that enables bridging the
synthetic gap and learning from synthetic data more efficiently. In
particular, we show that our SMCAE can not only transform and
use synthetic data on the challenging face-sketch recognition task,
but that it can also help simulate real images, which can be used
for training classifiers for recognition. Preliminary experiments
validate the effectiveness of the framework.

I. INTRODUCTION

Modern supervised learning algorithms need plenty of data
to help train classifiers. More data with higher quality is
always desired in real-world applications; but sometimes, it
is beneficial to turn to synthetic data. For example, to help
identify criminals, many criminal investigations can only rely
on a synthetic face sketch rather than a facial photograph of
a suspect which may not be available. Such synthetic face
data is normally drawn by an expert based on descriptions of
eyewitnesses and/or victim(s). Several photo-sketch examples
are shown in Fig. 1. In this application, recognition based on
synthetic data is very crucial.

Directly using synthetic data in a learning algorithm is
unfortunately very challenging since synthetic data is different
from real data at least to some extent, e.g. exaggerated facial
shapes in sketch images in Fig. 1 as compared with real
images. As a result, the feature distributions of synthetic data
may be shifted away from those of real data as illustrated in
Fig. 2. We term such shift in distributions as synthetic gap.
Synthetic gap is largely caused by the generating process of
synthetic data: whereas the synthetic data are generated by
replicating principal patterns such as eyes, mouth, nose and
hairstyle, rather than replicating every detail of real data. The
synthetic gap is a major obstacle in using synthetic data in
recognition problems, since synthetic data may fail to simulate
potentially useful patterns of real data which are important to
a successful recognition. To solve this problem, we associate
synthetic data with real data, and jointly learn from them in a
Stacked Multichannel Autoencoder (SMCAE) which can help
bridge the synthetic gap by transforming characteristics of
synthetic data to better simulate real data.
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Fig. 2. t-SNE visualization [23] of the distribution of Histogram of Oriented
Gradients (HOG) features in the data in CUFSF dataset [29], [31]. Left:
synthetic gap is observed between photo and sketch features; Right: the
synthetic gap is bridged by our SMCAE.

This paper addresses the problem of learning a mapping
from synthetic data to real data. Specifically, we propose a
novel framework – SMCAE. The training process of SMCAE
facilitates the bridging of the synthetic gap between the real
and the synthetic data by learning how to transform: (1)
synthetic to real data and (2) real to real data. In (2) the
model learns most essential ‘characters’ and ‘patterns’ of real
data, while in (1) it learns how to augment the synthetic data
to best reproduce the distribution of real data. Because the
two tasks are learned simultaneously, with shared parameters,
the essential ‘characteristics’ learned in (2) help to regularize
results in (1) and vice versa as we will illustrate in the
Handwritten Digit experiments.

We highlight two main contributions of this paper: (1)
To the best of our knowledge, this is the first attempt to
address the problem of synthetic gap, by demonstrating that
the synthetic data could be used to improve the performance
on a recognition task. (2) We propose a Stacked Multichannel
Autoencoder (SMCAE) model to bridge the synthetic gap and
jointly learn from both real and synthetic data.

II. RELATED WORK

Transfer Learning aims to extract the knowledge from one,
or more, source tasks and apply it to a target task. Transfer
learning can be used in many different applications, such as



Fig. 1. Examples of face photos and sketches. Data comes from the CUFSF dataset [29], [31].

web page classification [19] and zero-shot classification [14].
A more detailed survey of transfer learning is given by [16].
Our method is a specific form of transfer learning, termed
domain adaptation [6], [30], [32]. Nonetheless, different from
previous domain adaptation approaches, we assume the the
synthetic gap is caused by the shift in feature distribution
of synthetic data from real data and so we assume that the
main ’characters’ and ’patterns’ strongly co-exist in both the
synthetic and real data. Our SMCAE is thus developed based
on this assumption.

Autoencoder is a special type of a neural network where
the output vectors have the same dimensionality as the input
vectors [27]. Autoencoder with its different variants [9], [11],
[2], [18] was shown to be successful in learning and trans-
ferring shared knowledge among data source from different
domains [5], [8], [10], and thus benefit other machine learning
tasks. Our framework borrows the idea of autoencoder to
jointly learn two different and yet related tasks: mapping
synthetic to real data; and real to real data. It is worth noting
that in [20], a multimodal autoencoder with structure similar
to ours is proposed. Their multimodal autoencoder put two
normal autoencoders together by sharing a hidden layer. In
their structure, data at input end and output end are fully
symmetric and each modal of data occupy one branch of
the antuencoder. In contrast to their structure, the proposed
SMCAE composes the structure of both normal autoencoder
and denoising autoencoder. With this composition, one branch
of SMCAE is capable exploring intrinsic features of data
in one domain, and another branch of SMCAE is going to
transfer data from one domain to another domain using features
discovered from both branches. The structure of SMCAE could
be easily expanded to more branches to compensate more
complicated multi-task learning problems. Our experiments
show that our SMCAE is better than other autoencoders in
this regard.

Learning from synthetic templates. Some recent works of
learning from synthetic data [24], [25], [4] mostly generate
synthetic data either by applying a simple geometric trans-
formation or adding image degradation to real data. To help
offline recognition of handwritten text [24], [25], a perturbation
model combined with morphological operation is applied to
real data. To enhance the quality of degraded document [4],
degradation models such as brightness degradation, blurring
degradation, noise degradation, and texture-blending degrada-
tion, were used to create a training dataset for a handwritten
text recognition problem. These methods did not address the
synthetic gap problem, and thus have been limited to a small
performance improvements by using synthetic data. In [17],
computer graphics 3D models are used to ease training data
generation. To simulate pedestrian in a picture, authors track
volunteers pose from multiple views and human bodies are
reshaped using a morphable 3D human model. The reshaped

picture of human bodies later are composed with real world
backgrounds. The same idea has been adopted in [21] where
in addition to render a 3D model to simulate an object in a
real scene, features extracted from synthetic data are adapted
to better train an object detector.

III. STACKED MULTICHANNEL AUTOENCODER
(SMCAE)

We propose the SMACE model to learn a mapping from
synthetic and real data. To learn this mapping, the SMCAE
model is formulated as a stacked structure of multichannel
autoencoders which facilitates an efficient and flexible way
of jointly learning from both synthetic and real data. The
structure and configuration of the SMCAE is illustrated in Fig.
3. Specifically, we set the left and right tasks in two channels
of the SMCAE respectively. The left task, as illustrated in left
channel of Fig. 3, takes synthetic data as input and real data as
reconstruction target; while the right task of the right channel
in Fig. 3 uses real data in both input and reconstruction target.
All between-layer connections that are colored in gray are
shared by tasks of the two channels. The SMCAE structured
in this way attempts to transform synthetic data to real data
in left task using representation learned from real data in right
task.
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Fig. 3. (left) Illustration of the SMCAE: black edges between two layers are
linked to and shared by two tasks; red and blue links are separately connected
to the left and right task respectively. (right) A zoom-in structure of SMCAE
with single hidden layer.

A. Problem setup

We first illustarte the setup of a single layer in each channel
of our SMCAE. For a single channel of our SMCAE is
basically an autoencoder [7][26]. Assume an input dataset with
n instances X = {xi}ni=1 where xi ∈ Rm. To encode the input
data, we have he(xi) = f(W j

e xi+b
j
e) where f(·) is a sigmoid

function and θe = {W j
e , b

j
e}, W j

e ∈ Rk×m, bje ∈ Rk is a set
of encoding parameters in j-th layer. In contrast, the decoding
process is defined as hd(xi) = f(W j

dhe(xi) + bjd) with the
decoding parameters θd = {W j

d , b
j
d}, W

j
d ∈ Rm×k, bjd ∈ Rm

and the encoded representations he(xi).



To minimize the reconstruction error, we have

J(θe, θd) =
1

n

n∑
i=1

(hd(xi)− xi)2 + λW j (1)

where W j = (
∑
k

∑
m(W j

e )2 +
∑
m

∑
k(W j

d )2)/2 is a
weight decay term added to improve generalisation of the
autoencoder and λ leverages the importance of this term. To
avoid learning the identity mapping in the autoencoder, a
regularisation term Θ =

∑k
i=1 δlog δ

δ̂i
+ (1− δ)log 1−δ

1−δ̂i
that

penalizes over-activation of the nodes in the hidden layer is
added1. δ̂i is an averaged activation of all nodes in the hidden
layer and is computed as: δ̂i = 1

k

∑k
i=1 he(xi). Thus the

objective of single channel is updated to:

J(θe, θd) =
1

n

n∑
i=1

(hd(xi)− xi)2 + λW j + ρΘ (2)

where ρ controls sparsity of representation in hidden layer.

B. The SMCAE model

The structure of the SMCAE model is extended from an
autoencoder so that it can simultaneously deal with tasks
in both the left and right channels. Specifically, we use the
notation 〈i:X, o:X〉 to denote the configuration of input data
(short for i) and reconstruction target at the output layer (short
for o) in one channel of SMCAE. We thus label the tasks
in the left and right channels of SMCAE as 〈i:Xs, o:Xr〉L
and 〈i:Xr, o:Xr〉R individually, where 〈·〉L and 〈·〉R indicate
the left and right channel branch of SMCAE. Xs, Xr stand
for synthetic and real data respectively. The tasks in the two
channels share the same parameters θe in all hidden layers
which enforces the autoencoder to learn common structures of
both tasks. At the output layer, we divide the SMCAE into
two separate channels with their own parameters θLd and θRd .

Our target is to minimize the reconstruction error of the
two tasks of SMCAE together while taking into account the
balance between two channels. The new objective function of
SMCAE is thus,

E = JL(θe, θ
L
d ) + JR(θe, θ

R
d ) + γΨ (3)

We add Ψ = 1
2 (JL(θe, θ

L
d )− JR(θe, θ

R
d ))2 as a regularisation

term to balance the learning rate between the two channels.

The regularization term of Ψ is a novel contribution of
our SMCAE. Basically, Ψ penalizes a situation where the
difference of learning errors between two channels are large.
Since in the configuration of the SMCAE the data at the input
and output end of two channels are not symmetric, the learning
error resulted by optimizing learning process in two channels
are very different. Having Ψ in our objective will prevent from
a situation where the optimization of one channel dominates
the entire SMCAE so as to help SMCAE to better leverage the
learning process and find a compromising balance between two
channels. For importance of Ψ in our objective, we show the
learning results of setting different γ for Ψ in Fig. 7

The minimization of Eq. 3 is achieved by back propagation
and stochastic gradient descent using a Quasi-Newton method

1δ is a sparsity parameter and is empirically set to 0.05 in all our
experiments.

– LBFGS. In the SMCAE, with balance regularization added
to the objective, the only difference as opposed to sparse au-
toencoder is the gradient computation of unknown parameters
θe and θLd , θ

R
d . We clarify these differences in the following

equations:

∇W j
e
E =

∂JL

∂W j
e

+
∂JR
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e
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e

)
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∂bje
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(4)

and
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d
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d
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)

∇bRd E =
∂JR
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R

∂bRd
)

(5)

We train a SMCAE in a greedy manner where one layer
gets trained at a time. The configuration for training one layer
of SMCAE is shown in Fig. 3(right). The output of a trained
layer is then sent as input to the next layer for training. A
fine-tuning is implemented to the entire stacked structure once
all layers are trained. Thus, after SMCAE has been trained,
to transform new synthetic data, the data is sent to the left
channel of the SMCAE 〈i:Xs, o:Xr〉L. We take output of this
process as transformed synthetic data.

C. Competitors

As shown in Fig. 4, we compare the SMCAE configuration
to three alternative configurations: (1) SMCAE-II which places
two separate channels on the structure, i.e. 〈i:Xs, o:Xs〉L and
〈i:Xr, o:Xr〉R. (2) Stacked autoencoder type-I (SAE-I) which
merges the tasks in a single channel stacked autoencoder,
with the configuration of :〈i:XsXr, o:XrXr〉. (3) Stacked
autoencoder type-II (SAE-II) which simply transforms source
data to target data, and configures as: 〈i:Xs, o:Xr〉.

Compared with SAE-I and SAE-II, our two channel struc-
tures endow more flexibility. Critically, the single channel
models force synthetic data to fit real data, which causes
synthetic data to lose information and become less useful for
recognition. In contrast, SMCAE can explore ‘characters’ and
‘patterns’ common in both synthetic and real data. Intrinsically,
SMCAE first encodes both synthetic and real data into com-
mon hidden layers which model common information useful
for recognition. Then the decoding process transforms the
synthetic data to better simulate real data. Although SMCAE-
II has the same two branches in the structure, it does not learn
such transformation between synthetic data and real data.

IV. EXPERIMENTS AND RESULTS

We first compare SMCAE on the challenging task of face-
sketch recognition [29], [31] using the CUFSF dataset. We
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Fig. 4. Illustration of the compared configurations: SMCAE, SMCAE-II,
SAE-I and SAE-II.

show that SMCAE is better than alternative configurations.
To further validate the efficacy of our framework, we train
SMCAE on handwritten digit images and generate synthetic
data to simulate real images. We show that the synthetic data
can help train classifiers for recognition.

Dataset. We conduct our experiments on two different datasets:
(1) The CUFSF dataset [29], [31] containing the photos and
sketches of 1194 people with lighting variations. We employ
the standard split defined in [29], [31] which selects 500
persons as the training set, and the remaining 694 persons
as the testing set. (2) handwritten digits dataset2 (HWDUCI)
containing 5620 instances in total in which 3823 samples are
used for training and 1917 samples are used for testing. The
handwritten digits from 0 to 9 in this dataset are collected from
43 people: 30 contributed to the training set and the other 13 to
the test set. For all experiments, we empirically set the number
of hidden layers in SMCAE to two and each layer has 1000
nodes. The same settings are used to make SMCAE, SMCAE-
II, SAE-I and SAE-II more comparable.

Evaluation Metrics. We report the following metrics when
they are available: (1) F1-score, which is defined as F1 =
2·(Precision ·Recall) / (Precision+Recall). (2)Receiving
Operator Characteristic (ROC) curves and VR@0.1%FAR
which is the performance of Verification Rate (VR) at 0.1%
False Acceptance Rate (FAR). VR@0.1%FAR is a standard
evaluation metric and proposed in [29]. (3) Rank-1 recognition
accuracy.

Features.(1) Similar to [13], in the CUFSF dataset we use
Histogram of Oriented Gradients (HOG). To further reduce the
computational cost, the resolution of all photos and sketches
is reduced to 50× 50. So the cell size of HOG features is set
to 3. (2)The HWDUCI dataset uses HOG features with cell
size 3.

Classifiers. For CUFSF dataset, nearest-neighbor search with
Euclidean metric is used in retrieving the most similar photo
to the query sketch. In the handwritten digit classification, a
Support Vector Machine (SVM) with RBF kernel3 is used in
the experiments.

A. Results on the CUFSF dataset

In all experiments on this dataset, HOG features of sketch
images are first transformed by the SMCAE and then used as
queries. We first compare the results of photo-sketch matching

2collected from UCI machine learning repository (HWDUCI) [3].
3The parameters are cross-validated

using HOG feature transformed by SMCAE, SMCAE-II, SAE-
I and SAE-II. The results are reported as ROC curve starting
with VR@0.1%FAR. The dissimilarity between a photo and
a sketch is computed as the Euclidean distance between
descriptors.
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Fig. 5. Results on CUFSF dataset. Left: ROC curve of different methods;
Right: VR@0.1%FAR of different methods.

The ROC curves and VR@0.1%FAR are shown in
Fig. 5. Clearly, the proposed SMCAE achieves the high-
est results on AUC values and VR@0.1%FAR accuracy
and significantly outperforms the alternative configurations.
Note that we also report the state-of-the-art approaches of
VR@0.1%FAR including LFDA [13], CITE [31] and classic
eigenfaces(PCA)[22]. It is worth noting that in some of pre-
vious works, a better result could be obtained by combining
multiple features. For example in [31], multiple CITE features
generated by a random forest are used to batter matching
photos and sketches. Here, to enable a comparison with more
fairness, we focus our comparison on matching results obtained
by using uncombined feature only.
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There are several reasons why our SMCAE outperform
the other approaches. First, compared with SMCAE-II, the
configuration of SMCAE involves a task that handles the
transformation from synthetic to real data, and thus better
eliminates the distance between them. Second, compared with
SAE-I, rather than merging two tasks in a single channel
SMCAE employs two channels to better clarify each task with
the aim of reconstructing the main ‘characters’ and ‘patterns’
co-existing in both tasks. Thus synthetic data can be more
easily transformed to real data with less error. Finally, SMCAE
is better than SAE-II as SMCAE learns features of real data
in task 〈i:Xr, o:Xr〉R. These features will better compensate
the difference between synthetic data and real data during the
transformation.

We further validate the results by using Rank-1 recognition
accuracy which is also reported in [12], [28]. The results are
shown in Fig. 6. The methods of [12], [28] are comparable to
our SMCAE. Method [12] employed a discriminant common
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figure.

subspace to maximize the between-class variations and mini-
mize the within-class variations. Method [28] used a structure
composed of two autoencoders. As can be seen Fig. 6, the
SMCAE outperforms all other methods.

Parameter Validation in Eq. 3. To validate the significance of
Ψ in Eq. 3. We set γ with different values and report the rank-
1 accuracy in Fig 7. Particularly, when γ is 0, it takes 2 times
longer for SMCAE to converge compared with γ = 50 used in
this work, Further with γ = 0 the rank-1 accuracy is dropped
by more than 2%. This validates the importance of term Ψ
discussed in Sec. 3.2.

Qualitative results. Some qualitative results are shown in Fig.
8. It shows that a sketch HOG transformed by our SMCAE is
more similar to the ground truth photo HOG.

A B C D E

Fig. 8. Example of HOG features transformed by SMCAE. A: Sketch. B:
Photo. C: Original sketch HOG. D: Photo HOG. E: Transformed sketch HOG.

B. Handwritten Digit Recognition

Generating synthetic data. A synthetic version of each real
character is generated as a variant of a centralized model
learned from real characters. The centralized model of digit
is shaped by control points C = {ci}ni=1 settled on the
boundary of the digit. A technique called migration is used to
locate corresponding control points on each real digit image.
A synthetic digit image then could be generated by filling
areas closed by the control points 4. Examples of generated
synthetic digits are shown in Fig. 9. To generate more synthetic
data which is used to train the classifier once transformed by

4Please refer to supplementary material for details.

the trained SMCAE, we assume that locations of the control
points follow a multivariate normal distribution C ∼ N(µ,Σ)
with µ and Σ estimated using control points on the synthetic
digit images. For each digit, 3, 000 new synthetic images are
generated by randomly drawing samples from N(µ,Σ).

Fig. 9. Illustration of real digit images (upper row) and corresponding
synthetic versions (lower row).

We compare our SMCAE with SMCAE-II, SAE-I, SAE-
II, LeNet-5 [15] and the best results [1] reported on this data
set. The classification performance is evaluated by F1-score. A
Support Vector Machine (SVM) classifier with RBF kernel is
used in the experiments. For SMCAE, SMCAE-II, SAE-I and
SAE-II in the test, real training data together with transformed
synthetic data are used to train the SVM.

As shown in Fig. 10 (left), the SVM classifier with our SM-
CAE is better than all the alternative methods. This validates
the effectiveness of our framework in generating synthetic data
to better help training a classifier.

To further demonstrate how transformed synthetic data im-
prove the classification results, we conducted more evaluations
by training classifiers using different combinations of training
sets in Fig. 10 (right). Particularly, four combinations of
training sets are used. First, to have a performance baseline of
SVM, we trained the SVM using real data only. To investigate
how much improvement we could obtain in classification using
a SVM trained by transformed synthetic data, we compare a
SVM trained by synthetic data and transformed synthetic data
respectively. The best performance is obtained with a SVM
trained by real data together with transformed synthetic data.

With more synthetic training data generated by SMCAE,
we gain a large margin of improvement in the classification.
We notice that we can get the same result (0.989) by using
Transformed synthetic and Real+Transformed Synthetic sepa-
rately in Fig. 10 (right), which highlights the effectiveness of
SMCAE in transforming synthetic data to simulate real data.

Finally, it is interesting to evaluate how the amount of
synthetic data affects the classification results. We increasingly
add more transformed synthetic data (from 300 to 3,300
samples) when training the SVM. The classification results
are reported in Fig. 11. The curve shows an ascending trend
when adding more samples, which means that all transformed
synthetic data added to this test are highly effective and useful
in the classification.

V. CONCLUSION

In this paper we identify the synthetic gap problem. To
solve this problem, we propose a novel Stacked Multichannel
autoencoder (SMCAE) model. SMCAE has multiple channels
in its structure and is an extension of a standard autoencoder.
We show that SMCAE not only bridges the synthetic gap
between real data and synthetic data, but also jointly learns
from both real and synthetic data.
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