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ABSTRACT

To deal with multi-modality in human pose estimation, mix-
ture models or local models are introduced. However, prob-
lems with over-fitting and generalization are caused by our
necessarily limited data, and the regression parameters need
to be determined without resorting to slow and processor-
hungry techniques, such as cross validation. To compensate
these problems, we have developed a semi-parametric regres-
sion model in latent space with variational inference. Our
method performed competitively in comparison to other cur-
rent methods.

Index Terms— Image motion analysis, unsupervised
learning, regression model, latent variable model

1. INTRODUCTION

Though abundant applications for marker-less motion cap-
ture in activity recognition and human computer interaction,
monocular pose estimation remains a difficult task; Complex-
ity of the pose, angle of the camera, the shadow or noise in
the image make even an easy pose difficult to identify.

Most prior research in this area can be classified into two
types of approach: generative and discriminative. Generative
approaches [1] define an image formation model by predict-
ing the appearance of a body given a hypothesized state of
the body (pose); an inference framework is then used to infer
the posterior. Since the inference often takes the form of non-
convex search in a high-dimensional space of body articula-
tions, these methods are computationally expensive, and can
suffer from local convergence. Discriminative approaches [2]
avoid building an explicit imaging model, and instead opt to
learn regression function or conditional distribution directly.
The difficulties with this class of methods are: (1) the con-
ditional probability of pose given image features is typically
multi-modal; and (2) learning high dimensional using limited
training data often results in over-fitting.

To deal with multi-modality, on the parametric side, mix-
ture models were introduced, e.g., Mixture of Regressors [3]
or Mixture of Experts [4] (see Fig. 1). On the non-parametric

side, local models are proposed (e.g., Local Gaussian Pro-
cess Latent Variable Models (Local GPLVM) [5]). In both the
parametric and non-parametric cases, over-fitting and gener-
alization remain a problem due to insufficient training data.

One class of alternatives is variational methods [6]. The
variational parameters gives an approximation to the marginal
or conditional probabilities. Variational Inferences for mix-
ture models have been been used in Gaussian distribution [7],
Factor Analyzer [8], Independent Component Analyzer [9],
Dirichlet Process [10], among others.

However, these methods do not explore correlations be-
tween local and global structure. Neglecting such valuable
information can lead to inconsistent, suboptimal estimations.
We present a variational semi-parametric regression model in
latent space (see Fig. 1). A multi-modal joint density model
can be learned in the form of Variational Bayesian framework.
Local structure in latent space is determined by the compo-
nents of a global Gaussian Mixture Model. Our method can
deal with multi-modality in the data, and derive explicit con-
ditional distributions for inference without over-fitting prob-
lem.

Fig. 1. Graphical models for mixture models. Gray nodes
x depict observed variables, and nodes y represent target
variables. z, zx, and zy are latent variable, and mixing co-
efficients, means and precision matrix in Gaussian Mixture
Model are π, µ and Λ individually.
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2. VARIATIONAL LATENT GAUSSIAN MIXTURE
REGRESSION

2.1. Variational Bayesian Learning Model

Supposing mixing coefficient, mean and precision matrix in
Gaussian Mixture Model are π ∈ RK , µ ∈ Rd×K and Λ ∈
Rd×d×K , respectively, where K is the number of compo-
nents, and d is the dimension of data. Observed data are de-
noted by Z ∈ Rd×N , and latent variables are represented by
H ∈ Rd×K , where N is the number of training data. As
described in the Section 1, if the density function is achieved
with a Gaussian Mixture Model using Expectation Maximiza-
tion (EM) procedure with K-means initialization, then the op-
timal number of components in the mixture needs to be deter-
mined.

Variational inference involves two probability distribu-
tions— posterior distribution p and variational distribution q.
If q can adjust free variational parameters to approximate p,
and it is restricted to the factorized form

q(H, π, µ,Λ) = q(H)q(π, µ,Λ). (1)

Then q(H) can be gained by maximizing the marginal
log-likelihood

max log p(Z) =

∫
q(H)

p(Z,H, π, µ,Λ)

q(H)
dH +KL(q ‖ p),

(2)
where KL(q ‖ p) is a penalty to reduce the distance between
the posterior and the variational distribution.

The optimal solution can be obtained by calculating the
derivative with respect to q(H). This can be equivalent to
minimizing KL distance between q(H) and p(Z,H, π, µ,Λ),
and the solution is

log q∗(H) = Eπ[log p(H|π)]+Eµ,Λ[log p(Z|H, µ,Λ)]+const.
(3)

The factor q(π, µ,Λ) can further factorize as

log q(π, µ,Λ) = q(π)
∏
k

q(µk,Λk), (4)

and the optimal solution q∗(π),q∗(µ),q∗(Λ) can be gained
with the same method as q∗(H)

log q∗(π) = log p(π) + E[log p(H|π)] + const, (5)
log q∗(µ,Λ) = log p(µ,Λ) + E[log p(Z|H, µ,Λ)] + const. (6)

Supposing the prior distributions needed are

p(π) = Dir(π|α), (7)

p(µ,Λ) =
∏K
k=1N (µk|m, (βΛ)−1)W(Λ|W, v), (8)

p(H|π) =
∏N
n=1

∏K
k=1 π

Hnk

k , (9)

p(Z|H, µ,Λ) =
∏N
n=1

∏K
k=1N (zn|µk,Λ−1

k )Hnk , (10)

where α is a parameter of the Dirichlet Distribution, and
m, β,W, v are parameters of the Gaussian-Wishart Distribu-
tion.

The optimization of variational posterior distribution can
be gained by EM algorithm. In the E step, the current varia-
tional distributions over the parameters are employed to eval-
uate the moments, then in the M step, these moments are fixed
and used to re-compute the variational distribution over the
parameters. The algorithm iterates until a final result is ob-
tained.

2.2. Learning the Structure of a Probability Distribution

Given observations, zx ∈ Rd1 , and targets, zy ∈ Rd2 , where
d1 is dimension of the observation, and d2 is dimension of
the target space, d = d1 + d2, we learn the correlation be-
tween local structure and global structure by using the Latent
Gaussian Mixture Regression. Assuming the joint data sam-
ples, (zx, zy), follow the Gaussian mixture distribution with
K mixture components,

P (zx, zy) =

K∑
k=1

πkP (zx, zy;µk,Ck), (11)

where P (zx, zy;µk,Ck) is the multivariate Gaussian density
function. The parameters of model include prior weights, πk,
means, µk = [µk,zx

µk,zy
]T , and covariances matrices, Ck =

[Ck,zx
Ck,zxzy

;Ck,zyzx
Ck,zy

] = Λk
−1, of each Gaussian

component.
The global regression function can be expressed as a mix-

ture of conditional distributions,

P (zy|zx) =
K∑
k=1

ωkP (zy|zx;mk, σ
2
k), (12)

where the mixing weights ωk are defined as:

ωk =
πkP (zx;µk,zx

,Ck,zx
)∑K

j=1 πjP (zx;µj,zx
,Cj,zx

)
. (13)

The mean and the variance of the conditional distribution
P (y|x) can be acquired in closed form by

mk = µk,zx
+ Ck,zyzx

C−1
k,zx

(zx − µk,zx
), (14)

σ2
k = Ck,zy −Ck,zyzxC−1

k,zx
Ck,zxzy . (15)

Given a new input, a prediction can be obtained by com-
puting expectation over P (zy|zx)

E[P (zy|zx)] =

K∑
k=1

ωkmk. (16)

Because mk depends on current input zx, our model is a
semi-parametric regression model, and it determines the local
structure of the data but according to the components of a
global Gaussian mixture model.
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2.3. Initialization

Representations for the observation and full body pose config-
uration are high dimensional and complex by nature. Nonlin-
ear dimensionality reduction techniques like manifold learn-
ing identify the latent space from observation and body pose
individually.

Besides that, Locality Preserving Projections (LPP) [11],
can be simply applied to any new data point to locate it in
the reduced representation space by finding the optimal linear
approximations to the eigenfunctions of the Laplace Beltrami
operator on the manifold.

For example, given a training data set of N poses, Y =
{y(1),y(2), ...,y(N)} ∈ Rdy×N , we want to find a transfor-
mation matrix A = [a1, ...,adz ]

T of basis vectors, ai, that
maps these points to a set of latent points Z = {z(1), z(2), ...,
z(N)} ∈ Rdz×N (dz � dy), such that z(i) is a low dimen-
sional manifold embedding representation of a high dimen-
sional space pose y(i). Following [11], this can be expressed
as:

min
A

tr(ATYLYTA)

subject to ATYDYTA = I, (17)

Where D is a diagonal matrix whose entries are column sums
of weight matrix W, and W incurs a heavy penalty if neigh-
boring training points are mapped far apart; L = D−W is
Laplacian matrix.

3. EXPERIMENTS

The performance of our method is given in this section.
Data set. (1) The Poser Data Set – synthetic sequences of

body postures produced by Poser software [12]. The motion
sequences come from six categories: walk, run, dance, fall,
prone, and misc (see Fig. 2). A total of five sequences within
each category are broken into: three training and two testing
sequences, with each sequence containing approximately 500
frames. The size of each synthetic image is 500× 490 pixels.
We represent body pose in terms of 3D positions of 23 joints,
resulting in dy = 69. All poses are represented in relative
terms by subtracting the skeleton root (pelvis) from all other
joint centers in every frame.

(2) Carnegie Mellon University Graphics Lab Motion
Capture Database – real image/mocap data set publicly avail-
able from [13]. We chose sequences of Subject 2 as training
data, and use sequences in Subject 1, 8, 15 and 17 as test
data, as their foregrounds are easy to be calculated. The size
of each image is 240 × 352 pixels. We represent body pose
in terms of 3D joint positions, resulting in dy = 93. Again,
all poses are represented relative to the skeleton root (pelvis).

Image Features. A number of representations for image
features have been introduced over the years, e.g., Scale in-
variant feature transform (SIFT) [14] or histogram of shape

Fig. 2. Synthesized data generated by Poser 7 software.

Error (cm) KR LR MoE LGMR VLGMR

dance S1 10.85 5.83 5.72 5.60 5.41
S2 10.37 5.23 5.04 4.91 4.68

prone S1 11.36 6.55 6.40 5.88 5.73
S2 12.46 6.36 6.28 6.19 6.00

falls S1 15.32 10.40 10.25 10.05 9.77
S2 16.31 11.50 11.26 10.92 10.68

walk S1 11.65 6.36 6.06 5.93 5.80
S2 9.15 3.55 3.34 3.15 3.12

miscs S1 8.32 3.59 3.42 3.28 3.24
S2 19.27 12.19 12.10 11.80 11.64

run S1 8.94 4.70 4.64 4.31 4.27
S2 11.65 5.96 5.79 5.62 5.44

Average 12.13 6.85 6.69 6.47 6.31

Table 1. Evaluation of different algorithms on the Poser data
set (for details see text).

context [15], to name a few. Similar to prior work, we rely on
silhouette features and encode them using 70D histogram of
shape context.

Comparison. We compare our Latent Gaussian Mix-
ture Regression (LGMR) model, Variational Latent Gaussian
Mixture Regression (VLGMR) model with kernel regression
(KR), linear regression (LR), and mixture of experts (MoE).
The results are shown in Table 1 and Table 2. In our method,
the Locality Preserving Projections (LPP) is trained to keep
95% of the original energy.

We can see that since our features and data are sparse,
kernel regression approaches tend to work poorly. Mixture
models, e.g.mixture of experts and Latent Gaussian Mixture
Regression, learn through unsupervised methods, and suf-
fer from over-fitting, as a result, their performance degrades
in test sequences. By minimizing KL distance between the
posterior and the variational distribution, Variational Latent
Gaussian Mixture Regression solves the problem, and ob-
tains the best performance at the cost of extra training time.
Though Variational Latent Gaussian Mixture Regression is
as complex as the Mixture of Experts algorithm, its Mean
Square Error is much less than the Mixture of Experts, and
it does not need to employ cross-validation to choose param-
eters, so it actually spends less time in training than Latent
Gaussian Mixture Regression.

We also show subjective results of different approaches
in Carnegie Mellon University Graphics Lab Motion Capture
Database in Fig 3. In real video sequence, it is difficult to pre-
dict a 3D human gesture owing to the cluttered background,
shadow, and lighting. As we use the latent variable method,
our result is less sensitive to noise in the real video, which
makes it more accurate than other methods.
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Error (cm) KR LR MoE LGMR VLGMR

Subject 1
01-01 18.27 16.18 15.79 14.49 14.33
01-02 22.27 23.01 21.77 18.49 18.32
01-03 32.88 34.74 34.12 32.76 32.45

Subject 8
08-01 19.00 13.93 13.14 11.78 11.61
08-02 17.59 19.95 19.17 18.66 18.55
08-03 16.69 22.22 18.33 15.45 15.29

Subject 15
15-01 20.24 13.64 13.25 13.14 13.01
15-02 15.90 14.26 13.59 13.42 13.25
15-03 28.82 23.18 23.01 22.95 22.78

Subject 17
17-01 29.49 25.49 23.68 23.23 23.08
17-02 21.43 13.93 13.42 12.01 11.86
17-03 21.43 15.84 14.77 14.55 14.40

Average 21.99 19.68 18.61 17.54 17.41
Train time 0 0.06 72.18 19.38 78.52
Test time 10.28 0.02 0.17 1.14 1.15

Table 2. Evaluation of different algorithms in Carnegie Mel-
lon University motion capture database; the learning and in-
ference time is also given in (seconds).

Image

GroundTruth

KR

LR

MoE

LGMR

VLGMR

Fig. 3. Evaluation on frames 58, 68, 78, and 88 of sequence
04 in subject 08 from the Carnegie Mellon University motion
capture database.

4. CONCLUSION

We have identified 3D poses in video data using a novel
method of semi-parametric regression models based on vari-
ational inference. Our algorithm creates a stick figure that
mirrors the person’s pose in the video to a fair degree of
accuracy. We arrive at a few close predictions to the ground
truth pose in the video by using a Latent Gaussian Mixture
Regression Model, and then enhancing the model’s perfor-
mance using a Variational Bayesian framework. Advantages
to our method include that it can handle multi-modality in the
data and derive explicit conditional distributions for inference

that result in greater accuracy. We show that our performance
compares well to related parametric and non-parametric mod-
els in the original high-dimensional space.
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