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Section 1 comments on the use of more expressive architectures for local spatial context computation (Section 3 in the
main paper). Section 2 explains the architectures for the models used in the experiments (Section 4 in the main paper).
Section 3 provides additional visualizations for the task of Visual Attribute Prediction (Section 4.1 in the main paper) and
Image Generation (Section 4.4 in the main paper), further showing the effectiveness of our proposed structured attention
mechanism.

1. Employing More Expressive Local Spatial Context δ
When computing the attention ai,j for the spatial location (i, j), as explained in Section 3 of the main paper, the proposed

AttentionRNN (ARNN) mechanism utilizes local spatial context δ(xi,j) in its formulation as a proxy for image features. In
our approach, for computational simplicity and to ensure fair comparison to other attention mechanisms, this spatial context
is realized using a single convolutional kernel (Eq. 9 in the main paper). We would like to highlight our proposed mechanism
imposes no constraints on how the spatial context δ is modelled. One can easily use more complex networks N (such as
U-Net [3]) to emulate δ(xi,j). More specifically, only Eq. 9 of the main paper needs to be modified to accommodate this
change.

X̂c = skew (N (X)) (1)

where N (·) implies passing the input through the network N .
Note that any network N used to realize the δ can also be used to generate a valid attention mask A by slightly modi-

fying the output of N (for example applying a sigmoid non-linearity). Therefore N can be thought of as a local attention
mechanism, as it uses local image information to compute A. We would like to emphasize that our proposed AttentionRNN
mechanism is complementary to any local attention mechanismN , as one can easily incorporateN into the ARNN formula-
tion as described earlier (Eq 1). Using ARNN in conjunction toN helps capture explicit global constraints over the attention
variables, which, albeit at the cost of speed, can provide significant performance gains.

To further illustrate this, Table 1 compares the performance of using ARNN in conjunction with U-Net [3] on the MBG
dataset. Please refer to Section 4.1 of the main paper for details on the dataset. All models share the same base network archi-
tecture (Table 2) barring the type of attention used. UNetd=i implies the use of a depth i U-Net architecture [3] to compute
attention at each layer. Figure 1 highlights the differences between the attention layers used in UNetd=i and UNetd=i+ARNN
for d = 3. The differences for d = 2 are analogous. It can be seen that the use of ARNN to model structural dependencies
significantly improves the performance (∼ 5%).

Scale
Total 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0

UNetd=2[3] 85.86 84.25 91.28 89.84 85.41 86.44
UNetd=3 [3] 86.64 84.52 92.98 91.35 91.96 86.44

UNetd=2+ARNN 91.73 90.47 95.78 93.98 92.26 93.89
UNetd=3+ARNN 92.29 90.86 96.14 94.54 97.02 94.91

Table 1: Color prediction accuracy on MBG dataset. Results are in %. Using ARNN is conjunction to local attention
mechanisms significantly improves performance.



(a) Attention layer used in UNetd=3

(b) Attention layer used in UNetd=3+ARNN

Figure 1: Difference between the attention layers used in UNetd=3 and UNetd=3+ARNN. Both UNetd=3 and
UNetd=3+ARNN use the same base architecture (Table 2) barring the attention layer. (a) The attention layer used after
each pooling operation in UNetd=3. (b) The attention layer used after each pooling operation in UNetd=3+ARNN. The
details regarding the incorporation of UNet [3] output into ARNN is explained in Section 1.



2. Model Architectures
2.1. Visual Attribute Prediction

Please refer to Section 4.1 of the main paper for the task definition. Similar to [4], the base CNN architecture is composed
of four stacks of 3×3 convolutions with 32 channels followed by 2×2 max pooling layer. SAN computes attention only on the
output of the last convolution layer, while ¬CTX, CTX and all variants of ARNN are applied after each pooling layer. Table
2 illustrates the model architectures for each network. {¬CTX, CTX, ARNN}sigmoid refers to using sigmoid non-linearity
on the generated attention mask before applying it to the image features. Similarly, {¬CTX, CTX, ARNN}softmax refers to
using softmax non-linearity on the generated attention mask. We use the same hyper-parameters and training procedure for
all models, which is identical to [4].

For the scalability experiment described in Section 4.1, we add an additional stack of 3 × 3 convolution layer followed
by a 2 × 2 max pooling layer to the ARNN architecture described in Table 2. This is used as the base architecture. Table 3
illustrates the differences between the models used to obtain results mentioned in Table 3 of the main paper.

SAN ¬CTX CTX ARNN

conv1 (3x3@32)

pool1 (2x2)

↓ ¬CTXsigmoid CTXsigmoid ARNNsigmoid

conv2 (3x3@32)

pool2 (2x2)

↓ ¬CTXsigmoid CTXsigmoid ARNNsigmoid

conv3 (3x3@32)

pool3 (2x2)

↓ ¬CTXsigmoid CTXsigmoid ARNNsigmoid

conv4 (3x3@32)

pool4 (2x2)

SAN ¬CTXsoftmax CTXsoftmax ARNNsoftmax

Table 2: Architectures for the models used in Section 4.1 of the main paper. ↓ implies that the previous and the next layer are
directly connected. The input is passed to the top-most layer. The computation proceeds from top to bottom.

NONE ARNN BRNN

conv1 (3x3@32)

pool1 (2x2)

↓ ARNNsigmoid BRNNδsigmoid
ARNN (described in Table 2)

Table 3: Model architectures for the scalability study described in Section 4.1 of the main paper. ↓ implies that the previous
and the next layer are directly connected. ARRN in defined in Table 2.

2.2. Image Classification

Please refer to Section 4.2 of the main paper for the task definition. We augment ARNN to the convolution block attention
module (CBAM) proposed by [5]. For a given feature map, CBAM computes two different types of attentions: 1) channel
attention that exploits the inter channel dependencies in a feature map, and 2) spatial attention that uses local context to



identify relationships in the spatial domain. Figure 2a shows the CBAM module integrated with a ResNet [2] block. We
replace only the spatial attention in CBAM with ARNN. This modified module is referred to as CBAM+ARNN. Figure 2b
better illustrates this modification. Both CBAM and CBAM+ARNN use a local context of 3 × 3 to compute attention. We
use the same hyper-parameters and training procedure for both CBAM and CBAM+ARNN, which is identical to [5].

(a) CBAM module

(b) CBAM+ARNN module
Figure 2: Difference between CBAM and CBAM+ARNN. (a) CBAM[5] module integrated with a ResNet[2] block. (b)
CBAM+ARNN replaces the spatial attention in CBAM with ARNN. It is applied similar to (a) after each ResNet[2] block.
Refer to Section 4.2 of the main paper for more details.

2.3. Visual Question Answering

Please refer to Section 4.3 of the main paper for task definition. We use the Multimodal Compact Bilinear Pooling with
Attention (MCB+ATT) architecture proposed by [1] as a baseline for our experiment. To compute attention, MCB+ATT uses
two 1× 1 convolutions over the features obtained after using the compact bilinear pooling operation. Figure 3a illustrates the
architecture for MCB+ATT. We replace this attention with ARNN to obtain MCB+ARNN. MCB+ARNN also uses a 1 × 1
local context to compute attention. Figure 3b better illustrates this modification. We use the same hyper-parameters and
training procedure for MCB, MCB+ATT and MCB+ARNN, which is identical to [1].



(a) MCB+ATT

(b) MCB+ARNN

Figure 3: Difference between MCB+ATT and MCB+ARNN. (a) MCB+ATT model architecture proposed by [1]. It uses a
1×1 context to compute attention over the image features. (b) MCB+ARNN replaces the attention mechanism in MCB+ATT
with ARNN. It is applied in the same location as (a) with 1 × 1 context. Refer to Section 4.3 of the main paper for more
details.

2.4. Image Generation

Please refer to Section 4.4 of the main paper for task definitions. We compare ARNN to a local attention mechanism used
in the ModularGAN (MGAN) framework [6]. MGAN consists of three modules: 1) encoder module that encodes an input
image into an intermediate feature representation, 2) generator module that generates an image given an intermediate feature
representation as input, and 3) transformer module that transforms a given intermediate representation to a new intermediate
representation according to some input condition. The transformer module uses a 3 × 3 local context to compute attention
over the feature representations. Figure 4a illustrates the transformer module proposed by [6]. We define MGAN+ARNN
as the network obtained by replacing this local attention mechanism in the transformer module with ARNN. Note that the
generator and encoder modules are unchanged. MGAN+ARNN also uses a 3× 3 local context to compute attention. Figure
4b better illustrates this modification to the transformer module. We use the same hyper-parameters and training procedure



for both MGAN and MGAN+ARNN, which is identical to [6].

(a) Transformer module for MGAN

(b) Transformer module for MGAN+ARNN

Figure 4: Difference between MGAN and MGAN+ARNN. (a) The transformer module for the ModularGAN (MGAN)
architecture proposed by [6]. It uses a 3 × 3 local context to compute attention over the intermediate features. (b)
MGAN+ARNN replaces the attention mechanism in MGAN with ARNN. It is applied in the same location as (a) with
3 × 3 local context. Note that the generator and encoder modules in MGAN and MGAN+ARNN are identical. Refer to
Section 4.4 of the main paper for more details.



3. Additional Visualizations
3.1. Visual Attribute Prediction

Please refer to Section 4.1 of the main paper for task definition. Figures 5 - 7 show the individual layer attended feature
maps for three different samples from ARNN∼ for a fixed image and query. It can be seen that ARNN∼ is able to identify
the different modes in each of the images.

Figure 5: Qualitative Analysis of Attention Masks sampled from ARNN∼. Layer-wise attended feature maps sampled
from ARNN∼ for a fixed image and query. The masks are able to span the different modes in the image. For detailed
explanation see Section 4.1 of the main paper.



Figure 6: Qualitative Analysis of Attention Masks sampled from ARNN∼. Layer-wise attended feature maps sampled
from ARNN∼ for a fixed image and query. The masks are able to span the different modes in the image. For detailed
explanation see Section 4.1 of the main paper.



Figure 7: Qualitative Analysis of Attention Masks sampled from ARNN∼. Layer-wise attended feature maps sampled
from ARNN∼ for a fixed image and query. The masks are able to span the different modes in the image. For detailed
explanation see Section 4.1 of the main paper.



3.2. Inverse Attribute Prediction

Please refer to Section 4.1 of the main paper for task definition. Figures 8 - 10 show the individual layer attended feature
maps comparing the different attention mechanisms on the MBGinv dataset. It can be seen that ARNN captures the entire
number structure, whereas the other two methods only focus on a part of the target region or on some background region with
the same color as the number, leading to incorrect predictions.

Figure 8: Qualitative Analysis of Attention Masks on MBGinv . Layer-wise attended feature maps generated by different
mechanisms visualized on images from MBGinv dataset. ARNN is able to capture the entire number structure, whereas the
other two methods only focus on a part of the target region or on some background region with the same color as the target
number. For detailed explanation see Section 4.1 of the main paper.



Figure 9: Qualitative Analysis of Attention Masks on MBGinv . Layer-wise attended feature maps generated by different
mechanisms visualized on images from MBGinv dataset. ARNN is able to capture the entire number structure, whereas the
other two methods only focus on a part of the target region or on some background region with the same color as the target
number. For detailed explanation see Section 4.1 of the main paper.



Figure 10: Qualitative Analysis of Attention Masks on MBGinv . Layer-wise attended feature maps generated by different
mechanisms visualized on images from MBGinv dataset. ARNN is able to capture the entire number structure, whereas the
other two methods only focus on a part of the target region or on some background region with the same color as the target
number. For detailed explanation see Section 4.1 of the main paper.



3.3. Image Generation

Please refer to Section 4.4 of the main paper for task definition. Figures 11 and 12 show the attention masks generated by
MGAN and MGAN+ARNN for the task of hair color transformation. MGAN+ARNN encodes structural dependencies in
the attention values, which is evident from the more uniform and continuous attention masks. MGAN, on the other hand, has
sharp discontinuities which, in some cases, leads to less accurate hair color transformations.

Figure 11: Qualitative Results for Image Generation. Attention masks generated by MGAN and MGAN+ARNN are
shown. Notice that the hair mask is more uniform for MGAN+ARNN as it is able to encode structural dependencies in the
attention mask. For detailed explanation see Section 4.4 of the main paper.



Figure 12: Qualitative Results for Image Generation. Attention masks generated by MGAN and MGAN+ARNN are
shown. Notice that the hair mask is more uniform for MGAN+ARNN as it is able to encode structural dependencies in the
attention mask. For detailed explanation see Section 4.4 of the main paper.
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