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Abstract

In this paper we present an end-to-end framework for
grounding of phrases in images. In contrast to previous
works, our model, which we call G3RAPHGROUND, uses
graphs to formulate more complex, non-sequential depen-
dencies among proposal image regions and phrases. We
capture intra-modal dependencies using a separate graph
neural network for each modality (visual and lingual), and
then use conditional message-passing in another graph
neural network to fuse their outputs and capture cross-
modal relationships. This final representation results in
grounding decisions. The framework supports many-to-
many matching and is able to ground single phrase to mul-
tiple image regions and vice versa. We validate our de-
sign choices through a series of ablation studies and illus-
trate state-of-the-art performance on Flickr30k and Referlt
Game benchmark datasets.

1. Introduction

Over the last couple of years, phrase (or more generally
language) grounding has emerged as a fundamental task in
computer vision. Phrase grounding is a generalization of
the more traditional computer vision tasks, such as object
detection [! 1] and semantic segmentation [27]. Grounding
requires spatial localization of free-form linguistic phrases
in images. The core challenge is that the space of natural
phrases is exponentially large, as compared to, for exam-
ple, object detection or segmentation where the label sets
are typically much more limited (e.g., 80 categories in MS
COCO [18]). This exponential expressivity of the label set
necessitates amortized learning, which is typically formu-
lated using continuous embeddings of visual and lingual
data. Despite challenges, phrase grounding emerged as the
core problem in vision due to the breadth of applications
that span image captioning [19], visual question answering
[2, 40] and referential expression recognition [20] (which is
at the core of many HCI and HRI systems).

Significant progress has been made on the task in the
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Figure 1. Illustration of G*RAPHGROUND. Two separate graphs
are formed for phrases and image regions respectively, and are
then fused together to make final grounding predictions. The col-
ored bounding-boxes correspond to the phrases in same color.

last couple of years, fueled by large scale datasets (e.g.,
Flickr30k [24] and Referlt Game [14]) and neural architec-
tures of various forms. Most approaches treat the problem
as one of learning an embedding where class-agnostic re-
gion proposals [25] or attended images [8, 34] are embed-
ded close to the corresponding phrases. A variety of embed-
ding models, conditional [22] and unconditional [13, 29],
have been proposed for this task. Recently, the use of con-
textual relationships among the regions and phrases have
started to be explored and shown to substantially improve
the performance. Specifically, [9] and [6] encode the con-
text of previous decisions by processing multiple phrases
sequentially, and/or contextualizing each decision by con-
sidering other phrases and regions [9]. Non-differentiable
process using policy gradient is utilized in [6], while [9]
uses an end-to-end differentiable formulation using LSTMs.
In both cases, the contextual information is modeled using
sequential propagation (e.g., using LSTMs [6, 9]).



In reality, contextual information in the image, e.g.,
among the proposed regions, can hardly be regarded as se-
quential. Same can be argued for phrases, particularly in
cases where they do not come from an underlying structured
source like a sentence (which is explicitly stated as an as-
sumption and limitation of [9]). In essence, previous meth-
ods impose sequential serialization of fundamentally non-
sequential data for convenience. We posit that addressing
this limitation explicitly can lead to both better performance
and more sensibly structured model. Capitalizing on the re-
cent advances in object detection, that have addressed con-
ceptually similar limitations with the use of transitive rea-
soning in graphs (e.g., using convolutional graph neural net-
works [15, 17, 36]), we propose a new graph-based frame-
work for phrase grounding. Markedly, this formulation al-
lows us to take into account more complex, non-sequential
dependencies among both proposal image regions and the
linguistic phrases that require grounding.

Specifically, as illustrated in Figure 1, region propos-
als are first extracted from the image and encoded, using
CNN and bounding-box coordinates, into node features of
the visual graph. The phrases are similarly encoded, us-
ing bi-directional RNN, into node features of the phrase
graph. The strength of connections (edge weights) be-
tween the nodes in both graphs are predicted based on the
corresponding node features and the global image/caption
context. Gated Graph Neural Networks (GG-NNs) [17]
are used to refine the two feature representations through
a series of message-passing iterations. The refined rep-
resentations are then used to construct the fusion graph
for each phrase by fusing the visual graph with the se-
lected phrase. Again the fused features are refined using
message-passing in GG-NN. Finally, the fused features for
each node, that corresponds to the encoding of <phrase,,
image_region;> tuples, are used to predict the proba-
bility of grounding phrase; to image_region;. These
results are further refined by simple scheme that does non-
maxima suppression (NMS), and predicts whether a given
phrase should be grounded to one or more regions. The
final model, we call G3RAPHGROUND, is end-to-end dif-
ferentiable and is shown to produce state-of-the-art results.

While we clearly designed our architecture with phrase
grounding in mind, we want to highlight that it is much
more general and would be useful for any multi-modal as-
signment problem where some contextual relations between
elements in each modality exist. For example, text-to-
clip [35] / caption-image [ 16, 39] retrieval or more general
cross-modal retrieval and localization [3].

Contributions: Our contributions are multifold. First, we
propose novel graph-based grounding architecture which
consists of three connected sub-networks (visual, phrase
and fusion) implemented using Gated Graph Neural Net-
works. Our design is modular and can model rich context

both within a given modality and across modalities, with-
out making strong assumptions on sequential nature of data.
Second, we show how this architecture could be learned in
an end-to-end manner effectively. Third, we propose a sim-
ple but very effective refinement scheme that in addition to
NMS helps to resolve one-to-many groundings. Finally, we
validate our design choices through a series of ablation stud-
ies; and illustrate up to 5.33% and 10.21% better than state-
of-the-art performance on Flickr30k [24] and Referlt Game
[14] datasets.

2. Related Work

Our task of language (phrase) grounding is related to rich
literature on vision and language; with architectural design
building on recent advances in Graph Neural Networks. We
review the most relevant literature and point the reader to
recent surveys [1, 4] and [33, 41] for added context.

Phrase Grounding. Prior works, such as Karpathy et al.
[13], propose to align sentence fragments and image regions
in a subspace. Similarly, Wang et al. [30] propose a struc-
tured matching approach that encourages the semantic re-
lations between phrases to agree with the visual relations
between regions. In [29], Wang et al. propose to learn a
joint visual-text embedding with symmetric distance where
a given phrase is grounded to the closest bounding-box. The
idea is further extended by similarity network proposed in
[28] that uses a single vector for representing multi-modal
features instead of an explicit embedding space. Plummer
et al. [22] build on this idea and propose a concept weight
branch to automatically assign the phrases to embeddings.

It has been shown that both textual and visual context
information can aid phrase grounding. Plummer et al. [23]
perform global inference using a wide range of visual-text
constraints from attributes, verbs, prepositions, and pro-
nouns. Chen et al. [6] try to leverage the semantic and spa-
tial relationships between the phrases and corresponding vi-
sual regions by proposing a context policy network that ac-
counts for the predictions made for other phrases when lo-
calizing a given phrase. They also propose and finetune the
query guided regression network to boost the performance
by better proposals and features. SeqGROUND [9] uses the
full image and sentence as the global context while formu-
lating the task as a sequential and contextual process that
conditions the grounding decision of a given phrase on pre-
viously grounded phrases.Wang et al. [31] uses a graph to
model the relationships between image-regions and local-
izes only one referring expression at a time.

Graph Neural Networks (GNNs). Graph Convolution
Networks (GCNs) were first introduced in [15] for semi-
supervised classification. Each layer of GCN can perform
localized computations involving neighbourhood nodes.



These layers can be further stacked to form a deeper net-
work that is capable of performing complex computations
on graph data. In vision, Yang et al. [37] enhanced GCNs
with attention and found them to be effective for scene
graph generation; [32] deploy GCNs to model videos as
space-time graphs and get impressive results for video clas-
sification task. Visual reasoning among image regions for
object detection, using GCNs, was shown in [7] and served
as conceptual motivation for our visual graph sub-network.

Recently, [36] present a theoretical framework for ana-
lyzing the expressive power of GNNs to capture different
graph structures. They mention that message-passing in
GNNs can be described by two fuctions: AGGREGATE
and COMBINE. The AGGREGATE function aggregates
the messages from the neighbourhood nodes and the COM-
BINE function updates the state of each node by combin-
ing the aggregated message and the previous state of each
node. They prove that choice of these functions is crucial to
the expressive power of GNNSs. Li et al. [ 1 7] propose Gated
Graph Neural Networks (GG-NNs) that use Gated Recur-
rent Units (GRUs) for the gating in the COMBINE step.

Our model is inspired by these works. We use one GG-
NN to model the spatial relationships between the image
regions and another to capture the semantic relationships
between the phrases. We finally use the third GG-NN for
the fusion of the text and visual embeddings obtained from
the corresponding graphs. Output of the fusion network is
used to predict if a given phrase should be grounded to a
specific image region or not.

3. Approach

Phrase grounding is a challenging many-to-many match-
ing problem where a single phrase can, in general, be
grounded to multiple regions, or multiple phrases can be
grounded to a single image region. The G3RAPHGROUND
framework uses graph networks to capture rich intra-modal
and cross-modal relationships between the phrases and the
image regions. We illustrate the architecture in Figure 2.
We assume that the phrases are available, e.g. parsed from
an image caption (Flickr30k [24] dataset) or exist indepen-
dently for a single image (Referlt Game [ 4] dataset).

We encode these phrases using a bi-directional RNN that
we call phrase encoder. These encodings are then used to
initialize the nodes of the phrase graph that is built to cap-
ture the relationships between the phrases. Similarly, we
form the visual graph that models the relationships between
the image regions that are extracted from the image using
RPN and then encoded using the visual encoder. Caption
and full image provide additional context information that
we use to learn the edge-weights for both graphs. Message-
passing is independently done for these graphs to update the
respective node features. This allows each phrase/image re-
gion to be aware of other contextual phrases/image regions.

We finally fuse the outputs of these two graphs by instan-
tiating one fusion graph for each phrase. We concatenate
the features of all nodes of the visual graph with the feature
vector of a given node of the phrase graph to condition the
message-passing in this new fusion graph.

The final state of each node of the fusion graph, that
corresponds to a pair <phrase;, image_region;>,
is fed to a fully connected prediction network to make
a binary decision if phrase; should be grounded to
image_region;. Note that all predictions are implicitly
inter-dependent due to series of message-passing iterations
in three graphs. We also predict if the phrase should be
grounded to a single or multiple regions and use this infor-
mation for post processing to refine our predictions.

3.1. Text and Visual Encoders

Phrase Encoder. We assume one or more phrases are avail-
able and need to be grounded. Each phrase consists of a
word or a sequence of words. We encode each word using
its GLoVe [21] embedding and then encode the complete
phrase using the last hidden state of a bi-directional RNN.
Finally, we obtain phrase encodings pi,...,p, for the cor-
responding n input phrases P ... P,.

Caption Encoder. We use another bi-directional RNN to
encode the complete input caption C' and obtain the caption
encoding c.,.. This is useful as it provides global context
information missing in the encodings of individual phrases.

Visual Encoder. We use a region proposal network (RPN)
to extract region proposals R; ... R,, from an image. Each
region proposal R; is fed to the pre-trained VGG-16 net-
work to extract 4096-dimensional vector from the first fully-
connected layer. We transform this vector to 300 dimen-
sional vector r; by passing it through a network with three
fully-connected layers with ReLLU activations and a batch
normalization layer at the end.

Image Encoder. We use same architecture as the visual
encoder to also encode the full image into the correspond-
ing 300 dimensional vector i, that serves as global image
context for the grounding network.

3.2. G3RAPHGROUND Network

Phrase Graph. To model relationships between the
phrases, we construct the phrase graph G¥ where nodes of
the graph correspond to the phrase encodings and the edges
correspond to the context among them. The core idea is to
make grounding decision for each phrase dependent upon
other phrases present in the caption. This provides with
the important context for the grounding of the given phrase.
Formally, GF = (V¥ EF) where VI are the nodes corre-
sponding to the phrases and £¥ are the edges connecting
these nodes. We model this using Gated Graph Neural Net-
work where AGGREGATE step of the message-passing for
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Figure 2. G3RAPHGROUND Architecture. The phrases are encoded into the phrase graph while image regions are extracted and encoded
into the visual graph. The fusion graph is formed by independently conditioning the visual graph on each node of the phrase graph. The
output state of each node of the fusion graph after message-passing is fed to the prediction network to get the final grounding decision.

each node v € VT can be described as

af(t) = AGGREGATE({hf(t — 1) :u e N(v)})
= > (AL W{ b - 1)), %
ueN (v)
where a’’(t) is the aggregated message received by node v

from its neighbourhood A during ¢*" iteration of message-
passing, h’ (¢t — 1) is a d-dimensional feature vector of
phrase-node u before ' iteration of message-passing,
W/ € R4*? s a learnable d x d dimensional graph kernel
matrix, and Ai » corresponds to the scalar entry of learn-
able adjacency-matrix that denotes the weight of the edge
connecting the nodes u and v.

We initialize hZ’ (0) with the corresponding phrase en-
coding p,, € R? produced by the phrase encoder. To obtain
each entry of the adjacency-matrix Ai »» We concatenate
the caption embedding (c.,.), the full image embedding
(ienc) and the sum of corresponding phrase embeddings: p,,
and p,. The concatenated feature is passed through a two
layer fully-connected network f,q4; followed by sigmoid:

= U(fadj (Concat(pu + Puvs Cencs ienc)))~
2
Aggregated message al’ (t) received by node v is used to
update the state of node v during #** iteration:

P _ P
Au,v - Av,u

hy'(t) = COMBINE({h;(t —1),a;(1)}) (3

We use GRU gating in the COMBINE step as proposed by
[17]. After k (k = 2 for all experiments) stages of message-
passing on this graph-network, we obtain hZ’ (k) that en-
codes the final state for the phrase node v € VP of the
phrase graph; these final states are then used in the fusion.

Visual Graph. Similarly, we instantiate another GG-NN to
model the visual graph GV that models the spatial relation-
ships between the image regions present in the image. Each
node of the graph corresponds to an image region extracted
from RPN. To initialize the states of these nodes, we use
the encoded features of the image regions produced by vi-
sual encoder, and concatenate them with the position of the
corresponding image region in the image denoted by four
normalized coordinates. V¥ denotes the nodes of the visual
graph GV. The AGGREGATE step of message-passing on
this network for each node v € V'V can be described as:

a ()= > {au(W} -hy(t-1)}

“)

ueN (v)
where ~we initialize hY(0) with the vector
[t,, amn, ymin gmar  gmaz] which is obtained

after concatenating the visual encoding (r,) of the u'"

image region and its normalized position, «,, represents the
attention weight given to the node u during the message-
passing. To obtain «,,, we concatenate the visual encoding
r,, of that node with the caption encoding c.,. and the full
image encoding i.,., and then pass this vector through a



fully-connected network f4,, followed by sigmoid:

Qg = O—(fattn(concat(rua Cenc) ienc)))~ (5)

This is similar to AGGREGATE step of message-passing
on the phrase graph except we do not learn the complete
adjacency matrix for this graph. We note that it is com-
putationally expensive to learn this matrix as number of
entries in adjacency matrix increase quadratically with the
increase in number of the image regions. Instead we use
unsupervised-attention c over the nodes of the visual graph
to decide the edge-weights. All edges that originate from
the node u are weighted o, where a,, € [0, 1].

Similar to phrase graph, we use GRU mechanism [17]
for the COMBINE step of message-passing on this graph.
After k stages of message-passing on this graph-network we
obtain hY (k) that encodes the final state for the image re-
gion node v € V'V of the visual graph. The updated visual
graph is conditioned on each node of the phrase graph in
the fusion step that we explain next.

Fusion Graph. As we have phrase embeddings and image
region embeddings from the phrase graph and the visual
graph respectively, the fusion graph is designed to merge
these embeddings before grounding decisions are made.
One fusion graph is instantiated for each phrase. This in-
stantiation is achieved by concatenating the features of all
the nodes of the visual graph with the node features of the
selected phrase node from the phrase graph. That is to say,
the fusion graph has properties: 1) it has the same structure
(i.e., the number of nodes as well as the adjacency matrix)
as the visual graph; 2) the number of fusion graphs instanti-
ated is the same as the number of nodes in the phrase graph.
We can also characterize this graph as visual graph condi-
tioned on a node from the phrase graph.

After k iterations of message-passing in the fusion
graph, we use the final state of each node to predict the
grounding decision for the corresponding image region
with respect to the phrase on which the corresponding
fusion graph was conditioned. This is independently re-
peated for all of the phrases by instantiating a new fusion
graph from the visual graph for each phrase, and condition-
ing the message-passing in this new graph on the selected
phrase node of the phrase graph. Note that it may seem
that message-passing in the fusion graphs occur indepen-
dently for each phrase but it’s not true. Each phrase embed-
ding that is used to condition message-passing in the fision
graph is output of the phrase graph, and hence, is aware of
other phrases present in the caption.

Let G denote the fusion graph obtained by condition-
ing the visual graph on node ¢ of the phrase graph. The
initialization of node j in this fusion graph can be described
as:

hf(O) = Concat(hf (k),hy (k)),¥j € V' (6)

where h}/ (k) corresponds to the final feature vector of node
j in the visual graph and h¥ (k) is the final feature vector
of the selected node i in the phase graph.

The AGGREGATE and COMBINE steps of message-
passing on each fusion graph remain same as described for
the visual graph in Egs. (4) and (3).

Prediction Network. While grounding, we predict a scalar
d; ; for each phrase-region pair that denotes the probability
whether the phrase F; is grounded to the image region R;.
The probability of this decision conditioned on the given
image and caption can be approximated from the fused-
embedding of that image region conditioned on the given
phrase. We pass the fused-embedding of the node j of
the fusion graph G' through the prediction network fpred
which consists of three fully-connected layers with inter-
leaved ReLU activations and a sigmoid function at the end.

P(dyj = 1] (k) = o (fprea(h (k) Q)

Post Processing. Note that a given phrase may be grounded
to a single or multiple regions. We find that the model’s per-
formance can be significantly boosted if we post process the
grounding predictions for two cases separately. Hence, we
predict a scalar Bq, for each phrase v € V¥ which denotes
the probability of the phrase to be grounded to more than
one image region. We pass the updated phrase-embedding
h? (k) of node v obtained from the phrase graph through a
2-layered fully-connected network feount:

Bo = 0(feount(hE (k))), (8)

If 3, is greater than 0.5, we select those image regions for
which the output of the prediction network are above a fixed
threshold and then apply non-maximum suppression (NMS)
as a final step. Otherwise, we simply ground the phrase to
the image region with the maximum decision probability
output from the prediction network.

Training. We pre-train the encoders to provide them with
good initialization for end-to-end learning. First, we pre-
train the phrase encoder in autoencoder format, and then
keeping it fixed, we pre-train the visual encoder using a
ranking loss. The loss enforces the cosine similarity S.(.)
between the phrase-encoding and the visual-encoding for
ground-truth pair (p;,r;) to be more than that of a con-
trastive pair by least the margin ~:

L= (Epsp,maz{0,y — Sc(pi,r;) + Sc(P,r;)}
+Esr, maz{0,7 — Sc(pi, rj) + Sc(pi, T)})
9

where T and p denote randomly sampled constrastive image
region and phrase respectively. The caption encoder and the



Method Accuracy
SMPL [30] 42.08
NonlinearSP [29] 43.89
GroundeR [26] 47.81
MCB [10] 48.69
RtP [24] 50.89
Similarity Network [28] 51.05
IGOP [38] 53.97
SPC+PPC [23] 55.49
SS+QRN (VGGyey) [6] 55.99
CITE [22] 59.27
SeqGROUND [9] 61.60

CITE [22] (finetuned) 61.89
QRC Net [6] (finetuned) 65.14

G3RAPHGROUND++ 66.93

Table 1. State-of-the-art comparison on Flickr30k. Phrase
grounding accuracy on the test set reported in percentages.

image encoder are pre-trained in similar fashion. After pre-
training the encoders, we jointly train the model end-to-end.

For end-to-end training, we formulate this as a binary-
classification task where the model predicts grounding deci-
sion for each phrase-region pair. We minimize binary cross-
entropy loss BC'E(+) between the model prediction and the
ground-truth label. We also jointly train f.,,,: and apply
binary cross-entropy loss for the binary-classification task
of predicting if a phrase should be grounded to a single re-
gion or multiple regions. The total training loss is described
as:

Lirain = BCE(d, j,d; ;) + \BCE(B:, 8;),  (10)

where Jl ; and d; ; are the prediction and ground-truth
grounding decision for i*" phrase and j*" region respec-
tively, meanwhile, Bz and (; are the prediction and ground-
truth on whether i phrase is grounded to multiple regions
or not; A is a hyperparameter that is tuned using grid search.

4. Experiments
4.1. Setup and Inference

We use Faster R-CNN [25] with VGG-16 backbone as
a mechanism for extracting proposal regions from the im-
ages. We treat those image regions (i.e., bounding-boxes)
proposed by RPN as positive labels during training which
have ToU of more than 0.7 with the ground-truth boxes an-
notations of the dataset. For phrases where no such box
exists, we reduce the threshold to 0.5. We sample three neg-
ative boxes for every positive during training. This ensures
that the learned model is not biased towards negatives.

During inference, we feed all the proposal image regions
to the model and make two predictions. The first prediction

Method Accuracy
SCRC [12] 17.93
MCB + Reg + Spatial [5] 26.54
GroundeR + Spatial [26] 26.93
Similarity Network + Spatial [28] 31.26
CGRE [20] 31.85
MNN + Reg + Spatial [5] 32.21
EB+QRN (VGG5-SPAT) [6] 32.21
CITE [22] 34.13
IGOP [38] 34.70
QRC Net [6] (finetuned) 44.07
G3RAPHGROUND++ 44.91

Table 2. State-of-the-art comparison on ReferIt Game. Phrase
grounding accuracy on the test set reported in percentages.

is for each phrase, to determine whether the phrase should
be grounded to a single or multiple image regions. The sec-
ond prediction is for each phrase-region pair, to determine
the probability of grounding the given phrase to the given
image region. Based on the first prediction, results of the
second prediction are accordingly post processed, and the
phrase is grounded to a single or multiple image regions.

4.2. Datasets and Evaluation

We validate our model on Flickr30k [24] and Referit
Game [14] datasets. Flickr30k contains 31,783 images
where each image is annotated with five captions/sentences.
Each caption is further parsed into phrases, and the cor-
responding bounding-box annotations are available. A
phrase may be annotated with more than one ground-truth
bounding-box, and a bounding-box may be annotated to
more than one phrase. We use the same dataset split as pre-
vious works [22, 24] which use 29,783 images for training,
1000 for validation, and 1000 for testing.

Referit Game dataset contains 20,000 images and we use
same split as used in [12, 22] where we use 10,000 images
for training and validation while other 10,000 for testing.
Each image is annotated with multiple referring expressions
(phrases) and corresponding bounding-boxes. We note that
the phrases corresponding to a given image of this dataset
do not come from a sentence but exist independently.

Consistent with the prior work [26], we use grounding
accuracy as the evaluation metric which is the ratio of cor-
rectly grounded phrases to total number of phrases in the
test set. If a phrase is grounded to multiple boxes, we first
take the union of the predicted boxes over the image plane.
The phrase is correctly grounded if the predicted region has
IoU of more than 0.5 with the ground-truth.

4.3. Results and Comparison

Flickr30k. We test our model on Flickr30k dataset
and report our results in Table 1. Our full model



Method Flickr30k  Referlt Game
GG - PhraseG 60.82 38.12
GG - VisualG 62.23 38.82
GG - FusionG 59.13 36.54
GG - VisualG - FusionG 56.32 32.89
GG - ImageContext 62.32 40.92
GG - CaptionContext 62.73 41.79
GGFusionBase 60.41 38.65
G3RAPHGROUND (GG) 63.87 41.79
G3RAPHGROUND++ 66.93 44.91

Table 3. Ablation results. Flickr30k and Referlt Game datasets.

G3RAPHGROUND++ surpasses all other works by achiev-
ing the best accuracy of 66.93%. The model achieves 5.33%
increase in the grounding accuracy over the state-of-the-art
performance of SeqGROUND [9]. Most methods, as do we,
do not finetune the features on the target dataset. Exceptions
include CITE [22] and QRC Net [6] designated as (fine-
tuned) in the table. We highlight that comparison to those
methods isn’t strictly fair as they use Flickr30k dataset itself
to finetune feature extractors. Despite this, we outperform
them, by 5% and 1.8% respectively, without utilizing spe-
cialized feature extractors. When compared to the versions
of these models (CITE and SS+QRN (VGGyg,,)) that are not
finetuned, our model outperform them by 7.7% and 10.9%
respectively. This highlights the power of our contextual
reasoning in G3RAPHGROUND. Finetuning of features is
likely to lead to additional improvements.

Table 4 shows the phrase grounding performance of the
models for different coarse categories in Flickr30k dataset.
we observe that G3RAPHGROUND++ achieves consistent
increase in accuracy compared to other methods in all of the
categories except for the “instruments”; in fact our model
performs best in six out of eight categories even when com-
pared with the finetuned methods like [6, 22]. Improvement
in the accuracy for “clothing” and “body parts” categories
is more than 8% and 9% respectively.

We also consider a stricter metric for the box-level accu-
racy. We call the phrase correctly grounded if: 1) every box
in the ground truth for the phrase has an IOU > 0.5 with
at least one box among those that are matched to the phrase
by the model; and 2) Every box among those matched to the
phrase by the model has an IOU > 0.5 with at least one box
from the ground truth for the phrase. We report this metric
for phrases with single (n = 1) and multiple (n > 1) ground
truth annotations below. We also consider Top! version of
our model that grounds every phrase to one max score box.

Method Acc(n =1) Acc(n > 1) mean Acc
G3RAPHGROUND (Topl) 69.03 4.80 56.12
G3RAPHGROUND (GG) 53.17 25.78 48.08

G®RAPHGROUND++ 67.46 25.61 59.07

(a) A young boy is looking at a man
painted in all gold.

(b) A man is checking his blue sneakers
next to two men having a
conversation.

(c) A brown dog jumps high on a
field of grass.

(d) A woman stands in a field near a car
and looks through binoculars.

Figure 3. Sample attention results for visual graph. Aggregated
attention over each image region projected in an image.

ReferIt Game. We report results of our model on Referlt
Game dataset in Table 2. G3RAPHGROUND++ clearly out-
performs all other state-of-the-art techniques and achieves
the best accuracy of 44.91%. Our model improves the
grounding accuracy by 10.21% over the state-of-the-art
IGOP [38] model that uses similar features.

4.4. Qualitative Results

In Figure 3 we visualize the attention () on the nodes
(image regions) of the visual graph (image). We find that
the model is able to differentiate the important image re-
gions from the rest, for example, in (a), the model assigns
higher attention weights to important foreground objects
such as child and man than the background objects like wall
and pillar. Similarly in (d), woman and car get more atten-
tion than any other region in the image.

We also visualize some phrase grounding results in Fig-
ure 4. We find that our model is successful in grounding
phrases for challenging scenarios. In (f) the model is able to
distinguish two women from other women and is also able
to infer that colorful clothing corresponds to the dress of
two women not other women. In (b), (d) and (f) our model
is able to ground single phrase to multiple corresponding
bounding-boxes. Also note correct grounding of hand in (i)
despite the presence of other hand candidate. We also point
out few mistakes, for example in (i), blue Bic pen is incor-
rectly grounded to a bracelet which is spatially close. In (h),
curly hair is grounded to a larger bounding-box.

4.5. Ablation

We conduct ablation studies on our model to clearly un-
derstand the benefits of each component. Table 3 shows the
results on both datasets. G3RAPHGROUND++ is our full
model which achieves the best accuracy. G*RAPHGROUND
lacks the separate count prediction branch, and therefore
post processes all the predictions of the network using



Method people clothing body parts animals  vehicles instruments scene  other

SMPL [30] 57.89 34.61 15.87 55.98 5225 23.46 3422 26.23
GroundeR [26] 61.00 38.12 10.33 62.55 68.75 36.42 58.18  29.08

RtP [24] 64.73 46.88 17.21 65.83 68.72 37.65 51.39  31.77

IGOP [38] 68.71 56.83 19.50 70.07 73.75 39.50 60.38 3245
SPC+PPC [23] 71.69 50.95 25.24 76.23 66.50 35.80 51.51  35.98
SeqGROUND [9] 76.02 56.94 26.18 75.56 66.00 39.36 68.69  40.60
CITE [22] (finetuned) 75.95 58.50 30.78 77.03 79.25 48.15 58.78 43.24
QRC Net [0] (finetuned)  76.32 59.58 25.24 80.50 78.25 50.62 67.12  43.60
G*RAPHGROUND++ 78.86 68.34 39.80 81.38 76.58 42.35 68.82 45.08

Table 4. Phrase grounding accuracy comparison over coarse categories on Flickr30k dataset.

(a) A man wearing a black-jacket has
a smile on his face.

(b) People are walking on the street
with bikes parked up to the left of
the picture.

() T nen in

are dancing inside a circle of

rful clothir (g) Lady wearing te shirt with
blue umbrella in the rain.
other women

(¢) A woman in a yellow shirt is
walking down the sidewalk.

(h) Young girl with curly ha
drinking out of a plastic cup.

(e) <bottom>, <bush in middle>,
<sand in foreground>, <bush on right>

(d) A young boy is
walking on wooden
path in the middle
of trees.

<the ship>,

(i) The bearded Y
<grass on the right>

keeps his blue Bic
pen in hand while
he plays the guitar.

Figure 4. Sample results obtained by GZRAPHGROUND .The colored bounding-boxes correspond to the phrases in same color.

the threshold mechanism. The model GG-PhraseG lacks
the phrase graph to share information across the phrases,
and directly uses the output of the phrase encoder dur-
ing the fusion step. In a similar approach, the model
GG-VisualG lacks the visual graph, i.e., there occurs no
message-passing among proposal image regions. The out-
put of the visual encoder is directly used during the fu-
sion. The model GG-FusionG lacks the fusion graph, i.e.,
the prediction network makes the predictions directly from
the output of the visual graph concatenated with the out-
put of the phrase graph. GG-VisualG-FusionG is miss-
ing both the visual graph and the fusion graph. GG-
ImageContext and GG-CaptionContext do not use the full
image and caption embedding respectively in the context
information. We design another strong baseline GGFusion-
Base for GERAPHGROUND to validate our fusion graph. In
this method we do not instantiate one fusion graph on each
phrase for conditional massage-passing, but instead perform
fusion through message-passing on a single big graph that
consists of the updated nodes of both, the phrase graph and
the visual graph, such that each phrase node is connected
to each image region node with an edge of unit weight; no
edges between the nodes of the same modality exist.

We find that the results show consistent patterns in both
of the datasets. The worse performance of GG-PhraseG
and GG-VisualG as compared to G3RAPHGROUND con-

firms the importance of capturing intra-modal relation-
ships. GG-VisualG-FusionG performs worst for both of
the datasets. Even when either one of the visual graph
or the fusion graph is present, accuracy is significantly
boosted. However, the fusion graph is the most critical
individual component of our model as its absence causes
the maximum drop in accuracy. GGFusionBase is slightly
better than GG-FusionG but still significantly worse than
G3RAPHGROUND . This is strong proof of the efficacy of
our fusion graph. The role of our post processing tech-
nique is also evident from the performance gap between
G3RAPHGROUND and G®RAPHGROUND++. Since each
ablated model performs significantly worse than the com-
bined model, we conclude that each module is important.

Conclusion. In this paper, we proposed G*RAPHGROUND
framework that deploys GG-NNs to capture intra-modal
and cross-modal relationships between the phrases and the
image regions to perform the task of language ground-
ing. G3RAPHGROUND encodes the phrases into the phrase
graph and image regions into the visual graph to finally
fuse them into the fusion graph using conditional message-
passing. This allows the model to jointly make predictions
for all phrase-region pairs without making any assumption
about the underlying structure of the data. The effective-
ness of our approach is demonstrated on two benchmark
datasets, with up to 10% improvement on state-of-the-art.
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