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A. Graphical Model
For each of CountVAE and BBoxVAE, we have a conditional VAE that is autoregressive (Figure 8), where the conditioning

variable contains all the information required for each step of generation. By explicitly designing the conditioning variable
this way, we forgo using past latent codes for generation.
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Figure 8: Graphical model for LayoutVAE. c denotes context (label set for CountVAE, label set with counts for BBoxVAE)
and ck denotes the conditioning information for the CVAE. Dashed arrow denotes inference of the approximate posterior.

B. Model Architecture
B.1. CountVAE

We represent the label set L by a multi-label vector s ∈ {0, 1}M , where sk = 1 (resp. 0) means the k-th category is present
(resp. absent). For each step of CountVAE, the current label k is represented by a one-hot vector denoted as lk ∈ {0, 1}M .
We represent the count information nk of category k as a M dimensional one-hot vector yk with the non-zero location filled
with the count value. This representation of count captures its label information as well. We perform pooling over a set of
previously predicted label counts by summing up the vectors. The conditioning input is

cck = FC

([
MLP(s),MLP(lk),MLP

(∑
m<k

yk

)])
(14)

where [·, ·] denotes concatenation, FC a fully connected layer and MLP a generic multi-layer perceptron. Figure 9 shows the
architecture in detail.

B.2. BBoxVAE

We represent label and count information pair for each category {nm : m ∈ L} as ym using the same strategy as in
CountVAE. Pooled representation of the label set along with counts is obtained by summing up these vectors to obtain a



multi-label vector. For each step of BBoxVAE, the current label k is represented by a one-hot vector denoted as lk. We use
LSTM for pooling previously predicted bounding boxes Bprev

k,j . We represent each bounding box as a vector of size 4, and
we concatenate M dimensional label vector to add label information to it. We pass M +4 dimensional vectors of successive
bounding boxes through an LSTM and use the final step output as the pooled representation. Figure 11 shows the pooling
operation, and Figure 10 shows the detailed architecture for each module in BBoxVAE. The conditioning input is

cbk,j = FC

([
MLP

(∑
m∈L

ym

)
,MLP(lk),MLP(Bprev

k,j )

])
. (15)

BBoxVAE predicts the mean for the quadrivariate Gaussian (Equation 12), while covariance is assumed to be a diagonal
matrix with each value of standard deviation equal to 0.02.

Figure 9: CountVAE Architecture.



Figure 10: BBoxVAE Architecture.
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Figure 11: LSTM pooling for bounding boxes. We use an LSTM to pool the set of previously predicted bounding boxes to
be used in the conditioning information for BBoxVAE.



C. Experiments
C.1. MNIST-Layouts dataset

Table 5 shows the rules used to generate the dataset. To generate the layouts, we adapted the code provided at https:
//github.com/aakhundov/tf-attend-infer-repeat.

Label Count Location Size

1 3,4 top medium
2 2,3 middle large
3 1,2 bottom small-medium

4 (2 present) count(2)+3,6 around a 2 small

4 (2 absent) 2 bottom-right small

Table 5: Rules for generating MNIST-Layouts dataset. Given a label set, we use uniform distribution over the possible
count values to generate count. We then sample over a uniform distribution over the location and size ranges (precise details
skipped in the table for brevity) to generate bounding boxes for each label instance. When label 4 is present in the input label
along with label 2 (4th row in the table), we randomly choose an instance of 2 and place all the 4s around that.

C.2. Analysis of latent code size

In Table 6, we analyze the dimension of the latent space for both CountVAE and BBoxVAE. For each dimension we report
the NLL performance on COCO dataset. We observe that both models have good performance when the latent code size is
between 32 and 128, and the models are not sensitive to this hyperparameter. Increasing the latent space beyond 128 does
not improve the performances.

Latent Code Size CountVAE BBoxVAE

2 0.569 4.13
4 0.568 3.11
8 0.565 2.91
16 0.564 2.72
32 0.562 2.72
64 0.563 2.69
128 0.562 2.70

Table 6: Effect of latent code size. Average NLL over COCO test set for CountVAE and BBoxVAE while varying the size
of the latent code.

https://github.com/aakhundov/tf-attend-infer-repeat
https://github.com/aakhundov/tf-attend-infer-repeat


C.3. Detecting unlikely layouts

In this section, we present more examples from our experiment on detecting unlikely layouts by flipping the original
layout and computing likelihood under LayoutVAE. In Figure 12, we present some typical examples where likelihood under
LayoutVAE (BBoxVAE, to be precise, since CountVAE gives the same result for original and flipped layouts as the label
counts remain the same) decreases when flipped upside down. This behaviour was observed for 92.58% samples in the test
set. In Figure 13, we present some examples of unusual layouts where likelihood under LayoutVAE increases when flipped
upside down.

NLL = 1.81 NLL = 11.69 NLL = 1.95 NLL = 11.15

NLL = 2.15 NLL = 11.26 NLL = 0.71 NLL = 9.07

image image layout flipped layout image image layout flipped layout

Figure 12: Some examples where likelihood under BBoxVAE decreases when flipped upside down. We show the test
image, layout for the image and the flipped layout. Negative log likelihood(NLL) of the layout under BBoxVAE is shown
along with each layout. We can see that the flipped layout is highly unlikely in these examples.

NLL = 6.15 NLL = 1.89 NLL = 3.47 NLL = 2.16

NLL = 2.19 NLL = 0.90 NLL = 3.72 NLL = 2.62

image image layout flipped layout image image layout flipped layout

Figure 13: Some examples where likelihood under BBoxVAE increases when flipped upside down. We show the test
image, layout for the image and the flipped layout. Negative log likelihood(NLL) of the layout under BBoxVAE is shown
along with each layout. We can see that the flipped layout is equally or sometimes more plausible in these examples.



C.4. Examples for Layout Generation

Figure 14 shows examples of diverse layouts generated using LayoutVAE.

{person, snow, snowboard}

{person, snow, skis}

{person, playingfield, tennis racket}

{bird, sea}

{person, tie}

Figure 14: Layout generation using LayoutVAE. We show 5 randomly sampled layouts for each input label set.



C.5. Examples for Bounding Box Generation

Figure 15 presents examples that showcase the ability of LayoutVAE to use conditioning information to predict plausible
bounding boxes. We present additional examples of stochastic bounding box generation for test samples that have labels
person, surfboard and sea in Figure 16 and Figure 17.

person person sports ball baseball glove playingfield tree-merged

person person person person person person

Figure 15: Importance of conditioning information. We present two examples here both of which have person as their first
label. We see that bounding boxes for the first label person (first column) are close to the center in the first example, whereas
they are smaller and close to the left side of the scene in the second example. This is because BBoxVAE gets count of persons
(2 for the first example, and 12 for the second examples) in its conditioning information, which prompts the model to predict
bounding boxes appropriately.



person person surfboard surfboard sea sky

person person surfboard surfboard sea sky

person person person surfboard sea sky

Figure 16: Test examples with labels person, surfboard, sea. We show steps of bounding box generation for test set
samples in the same manner as in Figure 7 from the main paper.



person person person person person surfboard

surfboard surfboard surfboard sand sea sky
Figure 17: An example with more objects in the scene. We show steps of bounding box generation for test set samples in
the same manner as in Figure 7 from the main paper.


