
Layered Controllable Video Generation

Jiahui Huang1,2 Yuhe Jin1 Kwang Moo Yi1 Leonid Sigal1,2,3,4

1University of British Columbia 2Vector Institute for AI
3CIFAR AI Chair 4NSERC CRC Chair

layered-controllable-video-generation.github.io

Abstract

We introduce layered controllable video generation,
where we, without any supervision, decompose the initial
frame of a video into foreground and background layers,
with which the user can control the video generation pro-
cess by simply manipulating the foreground mask. The
key challenges are the unsupervised foreground-background
separation, which is ambiguous, and ability to antici-
pate user manipulations with access to only raw video se-
quences. We address these challenges by proposing a two-
stage learning procedure. In the first stage, with the rich set
of losses and dynamic foreground size prior, we learn how to
separate the frame into foreground and background layers
and, conditioned on these layers, how to generate the next
frame using VQ-VAE generator. In the second stage, we
fine-tune this network to anticipate edits to the mask, by fit-
ting (parameterized) control to the mask from future frame.
We demonstrate the effectiveness of this learning and the
more granular control mechanism, while illustrating state-
of-the-art performance on two benchmark datasets.

1. Introduction
Advances in deep generative models have led to im-

pressive results in image and video synthesis. Typical
forms of such models, including Variational Autoencoder
(VAE) [30], Generative Adversarial (GAN) [17] and recur-
rent (RNN) [48] formulations, can produce complex and
highly realistic content. However, synthesis of realistic im-
ages/videos, without the ability to control the depicted con-
tent in them, has limited practical utility. This has led to a
variety of conditional generative tasks and formulations.

In the image domain, both coarse- (e.g., sentence [66])
and fine-level (e.g., layout [68] and instance attribute [16])
control signals have been explored. The progress on the
video side, on the other hand, has generally been more
modest, in part due to an added challenge of synthesiz-

Translation

Scaling

Rotation

Control Signals

Figure 1. Layered Controllable Video Generation. Illustration
of the proposed task, where a frame at time t is first decomposed
into a foreground/background layers, using the learned mask net-
work M, and then the user is allowed to modify this mask with
control signals θ (e.g., by shifting it by ∆t) to control the next
generated frame realized by generator G. The foreground source
and target mask are illustrated in red and blue.

ing temporally coherent content. Future frame predic-
tion [10,14,15,31,35,51–53,60] conditions the future gen-
erated frames on one (or a couple) seed frame(s). But this
provides very limited control as the object(s), or person(s),
depicted in the conditioned frame can move in a multitude
of ways, particularly as predictions are made longer into the
future. To address this, a number of methods condition fu-
ture frames on the action [20,46] and object [37] label. Still,
they only provide very coarse global video-level control.

More recent approaches focus on the ability to control

1

ar
X

iv
:2

11
1.

12
74

7v
3

 [
cs

.C
V

]
 3

0
Se

p
20

22

https://gabriel-huang.github.io/layered_controllable_video_generation/

the video content on-the-fly at the frame-level. Typically,
these methods are formulated as conditional auto-regressive
(or recurrent) models that generate one frame at a time, con-
ditioned, for example, on the discrete action label [28] or
keypoint-based human pose specification [50, 54, 64] (e.g.,
obtained from a target video source [65]). Such methods,
however, require dense per-frame annotation of actions or
poses at training time, which are costly to obtain and make
it challenging to employ such approaches in realistic envi-
ronments. The task of playable video generation [36], has
been introduced to address these limitations. In playable
video generation, the discrete action space is discovered in
an unsupervised manner and can then be used as a condi-
tioning signal in an auto-regressive probabilistic generative
model. While obtaining impressive results, with no inter-
mediate supervision and allowing frame-level control over
the generative process, [36] is inherently limited to a single
subject and a small set of discrete action controls.

Thus, in this work, we aim to allow richer and more
granular control over the generated video content, while
similarly requiring no supervision of any kind – i.e., hav-
ing only raw videos as training input, as in [36]. To do
so, we make an observation (inspired by early works in vi-
sion [26,32,55]) that a video can be effectively decomposed
into foreground / background layers. The background layer
corresponds to static (or slowly changing) parts of the scene.
The foreground layer, on the other hand, evolves as the
dominant objects move. Importantly, the foreground mask
itself contains position, size and shape information neces-
sary to both characterize and render the moving objects ap-
propriately. Hence, this foreground mask can in itself be
leveraged as a useful level of abstraction that allows both
intuitive and simple control over the generative process.

With the above intuition, we therefore propose an ap-
proach that automatically learns to segment video frames
into foreground and background, and at the same time gen-
erates future frames conditioned on the segmentation and
the past frame, iteratively. To allow on-the-fly control of
video generation, we expose the foreground mask to the
user for manipulation – e.g., translations of the mask leads
to corresponding in-plane motion of the object, resizing it
would lead to the depth away/towards motion, and changes
in the shape of the mask can control the object pose.

From the technical perspective, the challenge of for-
mulating such a method is two fold. First, unsupervised
foreground/background layer segmentation is highly am-
biguous, particularly if the background is not assumed to
be static and the foreground motions can be small. Sec-
ond, user input needs to be anticipated to ensure model
learns how to react to changes in the mask, without ex-
plicit access to such information. To this end, we propose
a two-stage learning procedure. In the first stage, the net-
work learns how to perform foreground/background separa-

tion and, conditioned on this layered representation, future
frame prediction. Specifically, we introduce a set of sophis-
ticated losses and a dynamic prior to learn how to predict a
foreground mask and leverage VQ-VAE [49] to predict fore-
ground and background latent content which is then fused
and decoded to the next frame. In the second stage, we sim-
ulate user input and fine-tune the generative model such that
this user input can be appropriately handled.

Contributions: Our contributions are multi-fold.
• From raw video data, our model learns to generate fore-

ground/background separation masks in an unsupervised
manner. We then leverage the foreground layer as a flex-
ible (parametric) user control mechanism for the genera-
tive process. This provides both richer and more intuitive
control compared to action vectors [36] or sparse trajec-
tories [19].

• To effectively train our model we introduce two-stage
training: the first stage tasked with learning how to sepa-
rate layers and perform future frame prediction; the sec-
ond, to adopting and anticipating user control.

• To prevent over-/under-segmentation, we regularize layer
separation with sparsity loss and dynamic mask size prior.

• Finally, we validate our approach on multiple datasets and
show that we are able to generate state-of-the-art results
and, at the same time, allow higher level of control over
the generated content without any supervision.

2. Related works
Video generation. Early video generation techniques pro-
posed to generate a video as a whole. Most of these convert
a noise vector, sampled from simple distribution or a prior,
to a video, using a GAN [2, 51, 57] or VAE [6, 10] formula-
tion. More recent architectures leveraged transformer-based
formulations [38, 41, 60, 63] that have generally resulted in
higher quality video outputs. As an alternative to 3D (trans-
posed) convolution techniques, that generate all frames at
once, recurrent auto-regressive variants [27] have also been
explored. While these early works largely focused on the
video quality and resolution, more recently, the focus has
shifted to conditioned or controlled video generation.

Video generation with global control. Future frame pre-
diction considers the task of generating a video conditioned
on a few starting seed frames. Early approaches to future
prediction employed deterministic models [14, 35, 52, 61]
that failed to model uncertainty in the future induced by
variability of unfolding events. To overcome this limitation,
later methods, based on VAE [6, 10], GAN [33, 34], and
probabilistic formulations [62], attempted to introduce real-
world stochasticity into the generative process. Action label
conditioning, in combination with seed frames or not, where

2

Figure 2. Illustration of the Proposed Two-stage Training. The flow of Stage I is represented in orange and Stage II in green.M denotes
the mask network, which estimates the foreground/background mask, and G denotes the generator network that takes the current frame and
a mask to produce the next frame. O(·) is the optimization procedure described in Eq.(17). T (·) is a differentiable function that transforms
a mask to a target shape using user control signal θt.

a video sequence is generated conditioned on an input ac-
tion label [29, 58] is also popular; some such approaches
leverage disentangled factored representations (e.g., of sub-
ject identity and action [20]). Other types of global condi-
tioning signals include action-object tuples [37]. However,
these methods, collectively, require action annotations for
training, and, more importantly, do not allow control at the
frame-level.

Video generation with frame-level control. More granu-
lar control, at the frame-level, has also been explored. Pose-
guided generative models first generate a sequence sparse
[50,54,64] or dense [65] keypoint human poses, either pre-
dictively [50, 54] or from a source video [65], and then use
these for conditional generation of respective video frames.
However, these methods are only applicable to videos of hu-
man subjects and require either pose annotations or a pre-
trained pose detector. Alternatively, individual frames can
be conditioned on action labels [9, 28, 39]. However, these
methods require dense frame-level annotations, which are
only available in limited environments such as video games.
Closest to our work, Menapace et al. proposed Playable
Video Generation [36], which, in an unsupervised manner,
discovers semantically consistent actions meanwhile gen-
erating the next frame conditioned on the past frames and
an input action, thus providing user control to the genera-
tion process. However, their method is limited to a small
set of discrete action controls and explicitly assumes a sin-
gle moving object. In contrast, our method allows richer
and more granular control, and can be used to generate, and
control, videos with multiple objects.

Video generation with pixel-level control. It is worth
mentioning that some prior works attempted to use dense
semantic segmentation [40, 56] and sparse trajectories [19]
to control video generation. While such approaches allow

granular control at a pixel-level, these representations are
incredibly difficult for a user to produce or modify. We also
use a form of (foreground) segmentation for control, how-
ever, it is unsupervised, class-agnostic, and can be easily
controlled either parametrically or non-parametrically.

Unsupervised object segmentation. Layered representa-
tions have long history in computer vision [26, 32, 55], and
are supported by neuroscience evidence [59]. Traditional
techniques for this rely on feature clustering [1, 5, 22] and
statistical background modeling and subtraction [8, 12, 45].
Such techniques work best for videos where the background
is (mostly) static, lighting fixed and the foreground is fast
moving; we refer readers to [18] for an extensive analysis
and discussion. More recent techniques have focused on
generative formulations for the task. In particular, Bielski
et al. proposed the PerturbGAN [7], their model generates
the foreground and background layers separately, and uses
a perturbation strategy to enforce the generation of seman-
tically meaningful masks. Related, MarioNette [44] learns
to decompose scenes into a background and a learned dic-
tionary of sprites. Other approaches focus on separation of
videos into natural layers (e.g., to factorize secondary ef-
fects such as shadows and reflections [4]) and to control
which layer to attend to [3]. Similar to [51], we decompose
frames and separately model foreground/background con-
tent that is then composed/fused together to produce video.
However, unlike [51] and others, we allow the user to have
frame-level control over the foreground mask using both in-
tuitive parametric and nonparametric controls.

3. Method

We first discuss our framework in detail then our two-
stage training strategy.

3

3.1. Framework

Inference. For easy explanation, we first explain the infer-
ence flow of our method. As illustrated in Figure 2 (b), our
method is composed of mainly two components: the mask
network and the generator network. The mask networkM
takes as input an image frame f t ∈ R3×W×H at time t and
outputs a mask:

mt =M
(
f t
)
, (1)

where mt ∈ RW×H , segmenting the foreground layer and
the background layer. Then, our generator network G takes
the mask and the frame as input to generate the next frame:

f̂ t+1 = G
(
f t,mt

)
. (2)

More specifically, for the generator, we employ a VQ-
VAE framework [49] for its high-quality image generation.
Hence, as shown in Figure 3, the generator G can be written
as a composite function of an encoder E , a decoderD, and a
learnable discrete code book Z = {zk}Kk=1 ⊂ Rnz , where
nz is the dimension of each code, we encode the foreground
layer and the background layer separately in our pipeline,
and then merge them in the latent space before feeding them
into the decoder:

ztfg = E
(
f t �mt

)
ztbg = E

(
f t � (1−mt)

)
f̂ t+1 = D

(
q
(
ztfg
)

+ q
(
ztbg
)) , (3)

where � is the element-wise product and q is the element-
wise quantization function defined as:

q(z)ij := arg min
zk∈Z

‖zij − zk‖ , (4)

where i and j are the row and column indices. G andM are
then used to generate the video via auto-regression.

Control. With the above inference pipeline, we enable on-
the-fly user control by modifying the mask to create mt

c and
using it in place of mt in Eq. (2). Mathematically, we write

mt
c = T

(
mt,θt

)
, (5)

where T is the mask controlling operation parameterized
by θt. In the crudest form, the controlling operation T
can simply be shifting the mask mt by ∆x and ∆y in hor-
izontal and vertical directions, respectively, or for example,
be an affine transformation. Both can be implemented dif-
ferentiably as a simple parametric coordinate transforma-
tion on mt [24, 25], allowing differentiable control of the
mask. We utilize this the differentiabilty later in Section 4.1
to find the “ground-truth” control signal for easy compar-
ison with existing works. Other forms of control are also
possible, including more granular non-parametric, and non-
differentiable, direct manipulation of the mask.

Training. Given the inference pipeline, we now wish to
train the three networksM, E and D, without any supervi-
sion. In order to do this, we introduce two main ideas:

• we can treat the mask created byM as a latent variable,
which with proper regularization during training, can be
discovered automatically (Section 3.2);

• we can simulate the user input by considering the mask at
time t and t+ 1 (Section 3.3).

We detail them in the following subsections.

3.2. Initial training for mask-based generation

We first train our method with the focus of generating
high-quality foreground-background segmentation masks,
without considering introducing controlability to the gen-
eration process. Doing so requires two main objectives: (1)
high-quality estimation of the next image frame f t+1; and
(2) proper regularization of the generated mask. Hence, if
we write the two objectives as loss terms Limg and Lmask,
respectively, the total loss for the first stage training of our
method Ltotal can be written as:

Ltotal = Limg + Lmask. (6)

We detail each loss term in the following.

Learning to predict the next frame. To train our method
to estimate the next frame, we follow the VQ-VAE [49]
framework with a Generative Adversarial Network (GAN)
loss to encourage realism [13]. We therefore write

Limg = λVQLVQ + λGANLGAN + λperceptLpercept, (7)

where λVQ, λGAN, λpercept are hyperparameters controlling
the influence of each loss term.

— LVQ. Following the original VQ-VAE formulation we
write

LVQ =
∥∥∥f t+1 − f̂ t+1

∥∥∥
1

+
∥∥sg

[
E(f t)

]
− zq

∥∥2
2

+
∥∥sg [zq]− E(f t)

∥∥2
2

, (8)

where f t+1 and f̂ t+1 are true and estimated next frame, sg[·]
denotes the stop gradient operation, and zq is the quantized
latent variable of the VQ-VAE. Note that we use the `1
norm, instead of the `2, for the reconstruction part of the
loss, as we emprically found it to be more stable in training.

— LGAN. We train a discriminator C with the architecture
from [23] and aim to improve the generation quality. We
therefore write

LGAN = log
(
C
(
f t+1

))
+ log

(
1− C

(
f̂ t+1

))
. (9)

We note that for the hyperparameter for this loss λGAN, we
follow [13] and apply a dynamic weighing strategy, which
stabilizes training.

4

&RGHERRN

� � � 1�� 1�� 1� � � � �

�

��

��

���

� �

��

�

�

�

�

� �

��

�

��

�

��

�

�

�

��

�

��

��

�

��

��

�

�

�

��

��

����

�

��

��

��

�

��

��

�

��

��

� ��

Figure 3. Frame Generator G. We employ VQGAN framework for the generator G, comprising of an encoder E , decoder D, a learnable
discrete codebook Z and a discriminator C. We encode the foreground and the background layers separately and then merge them in the
latent space before feeding them to the decoder D which generates the next frame in the sequence.

— Lpercept. We use a pretrained VGG-16 network [43] to
extract deep features and compute the perceptual loss. De-
noting the deep feature extraction process as V we write

Lpercept =
∥∥∥V(f̂ t+1)− V(f t+1)

∥∥∥
2
. (10)

Regularizing the mask. To train our method to generate
proper masks without any supervision, we regularize the
mask with three losses: (1) Lbg – the contents of the back-
ground should not change; (2) Lfg – there should be as least
amount of foreground as possible since classifying all pix-
els as foreground provides a trivial solution for Lbg; and (3)
Lbin – the masking should be binary for effective separation.
We therefore write the mask regularization loss Lmask as

Lmask = λbgLbg + λfgLfg + λbinLbin, (11)

where λbg, λfg, and λbin are the hyperparameters controlling
how much each loss term affects the mask regularization.

— Lbg. We aim to ensure that the mask correctly identifies
the background, i.e., non-moving parts of the scene. Hence,
we simply define it as the amount of change in the masked
out (background) region between two consecutive frames.
We write

Lbg =
∥∥(1−mt)� f t − (1−mt)� f t+1

∥∥
1
, (12)

where � denotes the elementwise multiplication. Note that
we define this loss using the `1 norm, as changes in the
scene are not strictly restricted to the mask – e.g. shadows
of moving objects can occur in the background, or other
scenic changes, such as a global illumination change can
happen – and the `1 norm leaves room for the method to
incorporate these edits if necessary.

— Lfg. As mentioned earlier, Lbg alone, leaves room for a
trivial solution—assigning mt=1 results in Lbg=0 regard-
less of the values of f t and f t+1. This could be avoided by

enforcing an additional loss term that penalizes having too
many foreground pixels, but a naı̈ve regularization is not
sufficient, as the amount of the actual foreground pixels to
be edited may drastically differ from one frame to another –
e.g., robot arm moving close to the camera vs. further away.

We thus propose to regularize based on the amount of
evident change between f t and f t+1, approximated using
simple background subtraction. Specifically, for a pixel in-
dex i, j, if we denote whether the pixel changed between
the two consecutive frames f t and f t+1 as

µt
ij =

{
1, if

∥∥f t+1
ij − f tij

∥∥
1
> τ

0, otherwise
, (13)

where τ is a threshold for controlling the sensitivity, we can
use the average of µt

ij as a rough standard for how much
of the pixels should be foreground, dynamically for each
consecutive frame. We thus write

Lfg = max
{

0,
∥∥Eij

[
mt

ij

]
− Eij

[
µt

ij

]∥∥
1

}
, (14)

where Eij is the expectation over pixels.
We note that the balance between the hyperparameter

settings related to Lfg and Lbg is important since they gov-
ern how the loss behaves—e.g. a wider mask that covers all
potential changes in the scene, or a tight mask that only fo-
cuses on the actual changing locations. We empirically set
the ratio between λbg and λfg to be 100:1, and we gradually
decrease this ratio in training for faster convergence.

— Lbin. Finally, there is one last loophole for the network to
cheat its way through the two mask regularizors – by pro-
ducing intermediate values in the range [0, 1]. In fact, we
found in our early experiments that this soft mask allows the
deep network to encode information about the image, i.e.,
f t+1, thus being able to fully reconstruct the original image
from mask alone, and any modification on the mask – e.g.,
position shifts – results in a global appearance change of

5

the generated image, which is undesirable. Therefore, we
encourage the mask to be binary as in [7]:

Lbin = min{mt, (1−mt)}. (15)

We then, at test time, convert these pseudo-binary masks
into hard ones by thresholding with 0.5.

3.3. Fine-tuning for controllability

We now discuss the second stage of our training setup,
where we shift our focus to imbue our method with control-
lability. While the model trained in Section 3.2 is a gen-
erative model conditioned on the latent mask mt, it cannot
immediately be used with any arbitrary mask – the gener-
ator G would expect a mask that aligns perfectly with f t,
whereas our user controlled mask T

(
mt,θt

)
will not. In

other words, we need a way to simulate user input, in terms
of mask modifications, and incorporate it into the training.

We therefore turn our attention to the fact that the masks
between two consecutive frames mt and mt+1 are not too
different, and that mt+1 can be seen as user modified ver-
sion of mt that specifies how the foreground should move,
that is,

mt+1 ≈ T
(
mt,θt

)
. (16)

Under this assumption, we can then find the pseudo user
control at time t using the following optimization procedure
[24, 25]:

θ̂
t
≡ arg min

θ

∥∥mt+1 − T
(
mt,θ

)∥∥ . (17)

Now, with θ̂
t
, we can fine-tune our network G to create

the next frame, which results in controllable video gener-
ation. Denoting the binarization operation as b·c0.5, instead
of Equation (2), we write

f̃ t+1 = G
(
f t,
⌊
T
(
mt, θ̂

t
)⌋

0.5

)
. (18)

We then use f̃ t+1 in our loss functions to fine-tune.
One noteworthy aspect of this second stage training

is that, because we binarize the mask, no gradient flows
through toM. We found this to be important, as allowing
any softness in the mask resulted in the image information
leaking through the mask, resulting in non-controllabilty –
e.g., shifting the mask resulted in a shift of the entire scene.
This also leads to Lbg, Lfg, and Lbin not affecting training.
While the latter two can be dropped since they are purely
on how the mask networkM behaves, completely dropping
Lbg now has the danger of the generated image ignoring the
mask. Hence, we replace f t in Equation (12) with f̃ t+1, so
that the generated image still obeys the mask conditioning.
Hence, for the second stage training, instead of Lbg, we uti-
lize L′bg where

L′bg =
∥∥∥(1−mt)� f̃ t+1 − (1−mt)� f t+1

∥∥∥
1
, (19)

which now enforces our fine-tuned generator G to still obey
the provided mask.

4. Experiments
While our method is not limited to a “single-agent” as-

sumption, i.e., single dominant moving agent in the scene,
previous work, and notably [36] which is the closest and
the most competitive baseline, are. Hence, for fair compari-
son, we adopt the single-agent setup for the majority of our
experiments. We train / test on the following datasets:

BAIR Robot Pushing Dataset [11]. This dataset contains
44K video clips (256×256 resolution) of a single robot arm
agent pushing toys on a flat surface.

Tennis Dataset [36]. This dataset contains 900 clips ex-
tracted from two full tennis matches on YouTube. These
clips are cropped such that only the half of the court is visi-
ble. The resolution of each frame is (96× 256).

4.1. Results

Evaluation Protocol. We compare our model against
other conditional generative methods, focusing on quality
of reconstructed sequences and controlability. We evalu-
ate our model under three control protocols: two paramet-
ric (position, affine) and one non-parametric (direct non-
differentiable control over mask):

• Ours /w position control: We first use our trained
mask networkM to extract masks from the ground truth
test sequences, then we use Eq. (5) to approximate those
masks with control for generation, where θ is restricted to
positional parameters, i.e., x and y translation.

• Ours /w affine control: Similar to above, here our
θ employs full affine transformation parameters, i.e.,
translation, rotation, scaling and shearing.

• Ours /w non-param control: We use masks predicted
from ground truth test sequences themselves to condition
our generation. These masks can change at a pixel-level,
hence constituting non-parametric control.

For testing, we generate video sequences conditioned on the
first frame f0 and the user input Θ = {θtu}Tt=1 in all cases.

Metrics. To quantitatively evaluate our results, we consider
standard metrics:

• Learned Perceptual Image Patch Similarity (LPIPS) [67]:
LPIPS measures the perceptual distance between gener-
ated and ground truth frames.

• Fréchet Inception Distance (FID) [21]: FID calculates the
Fréchet distance between multivariate Gaussians fitted to
the feature space of the Inception-v3 network of gener-
ated and ground truth frames.

• Fréchet Video Distance (FVD) [47]: FVD extends FID to
the video domain. In addition to the quality of each frame,

6

Method LPIPS ↓ FID ↓ FVD ↓ RMSED ↓
MoCoGAN [46] 0.466 198 1380 -
MoCoGAN+ (from [36]) 0.201 66.1 849 0.211
SAVP [34] 0.433 220 1720 -
SAVP+ (from [36]) 0.154 27.2 303 0.109

CADDY [36] 0.202 35.9 423 0.132
Ours /w position control 0.202 28.5 333 0.059
Ours /w affine control 0.201 30.1 292 0.035
Ours /w non-param control 0.176 29.3 293 0.021

Table 1. Results on the BAIR Dataset

Method LPIPS ↓ FID ↓ FVD ↓ ADD ↓ MDR ↓
MoCoGAN [46] 0.266 132 3400 28.5 20.2
MoCoGAN+ (from [36]) 0.166 56.8 1410 48.2 27.0
SAVP [34] 0.245 156 3270 10.7 19.7
SAVP+ (from [36]) 0.104 25.2 223 13.4 19.2

CADDY [36] 0.102 13.7 239 8.85 1.01
Ours /w position control 0.122 10.1 215 4.30 0.300
Ours /w affine control 0.115 11.2 207 3.40 0.317
Ours /w non-param control 0.100 8.68 204 1.76 0.306

Table 2. Results on the Tennis Dataset

FVD also evaluates the temporal coherence between gen-
erated and ground truth sequences.

• Average Detection Distance (ADD) [36]: ADD first uses
Faster-RCNN [42] to detect the target object in both gen-
erated and ground truth frames, then calculates the Eu-
clidean distance between the bound box centers.

• Missing Detection Rate (MDR) [36]: MDR reports per-
centage of unsuccessful detections in generated vs. suc-
cessful detections in ground truth sequences.

• Rooted Mean Square Error of Displacement
(RMSED) [36]: RMSED, which we define, reports
the RMSE of the displacement of ground truth locations
vs. generated locations. See Figure 4 for more details.

LIPIPS, FID and FVD measure the quality of generated
videos. ADD and MDR measure how the action label con-
ditions the generated video, and RMSED measures the pre-
cision of control.

Baselines. CADDY [36] is the only unsupervised video
generation method that allows frame-level user condition-
ing, thus we use it as our main baseline. We also include
results of other frame-level conditioned methods: MoCo-
GAN [46], SAVP [34], and their high-resolution adapta-
tions MoCoGAN+ and SAVP+ from [36].

Quantitative Results. We report the results on the BAIR
dataset in Table 1. We highlight that in terms of RMSED
score, our method achieved the highest precision of con-
trol (more than ×5 improvement compared to other base-
lines). In terms of generation quality, with similar level of
abstraction of ground truth information (ours: 6 continu-
ous affine control parameters, CADDY: 7 discrete ac-

GT Ours CADDY MoCo+ SAVP+

t = 0

t = 16

Figure 4. RMSED. We labelled the robot arm positions for half of
the testing sequences (128 videos out of 256) from both generated
videos and ground truth videos. As illustrated on the figure: GT
location is marked green and generated locations are marked red.
We calculate RMSE of the displacement between GT locations
and generated locations to arrive at the RMSED score.

G
T

O
ur

s
C

A
D

D
Y

SA
V

P+
M

oC
o+

t = 1 t = 10 t = 20 t = 1 t = 8 t = 16

Figure 5. Qualitative Results. Comparison of our model with
affine control against other conditional generative methods.
Tennis sequences are cropped for better visualization.

tion labels), our model outperformed CADDY on all three
evaluated metrics by a large margin, demonstrating that our
model is of better generation quality. With non-param
control, our generation quality is comparable to the SAVP+.

Table 2 shows the results on the Tennis dataset. In terms
of generation quality (LPIPS, FID, FVD), all our adapta-
tions outperformed all other comparing methods. Specifi-
cally, in terms of FID score, our model is up to 37% better
than the closest baseline ([36]). Further, in terms of control
precision, our method achieves the lowest error on ADD
and MDR (improvement of 80% & 70% respectively), indi-
cating our method is able to generate consistent players with
accurate control. One can see that simple positional control
works much better here compared to the BAIR dataset. This
can be attributed to largely in plane motion of the subject.

Qualitative Results. In Figure 4 and Figure 5, we show
generated sequences on the BAIR and Tennis dataset (we

7

"left, 25 pixels"

"down, 10 pixels"

"right, 10 pixels"

"up, 14 pixels"

"left, 45 pixels"

"down, 35 pixels"

"right, 10 pixels"

"up, 8 pixels"

Figure 6. Effectiveness of Control. Illustrated is how our model precisely reacts to different controlling signals starting from the same
initial frame. We illustrate position parameters; however, other affine control parameters are also possible (e.g., scale, rotation and shear).

Figure 7. Control of Multiple Agents. Our method is able to gen-
erate videos with multiple moving objects that can be controlled
individually by their respective masks.

used our model with affine control for both cases
shown). In terms of image quality, our method is superior
to competitors. In terms of control accuracy, unlike other
competing methods, our method is able to precisely place
the robot arm and the tennis player in the correct position.

In Figure 6, we show the results of our model reacting
to different user control signals. On the Tennis dataset, our
method not only moves the player in the correct direction,
it’s also able to generate plausible motions of the player it-
self. On the BAIR dataset, our model is able to “hullcinate”
what’s missing in the original frame and generate frames
with respect to the control signal, i.e., in the “down, 35 pix-
els” example, our model successfully generates the upper
part of the robot arm, not available on the input frame.

In Figure 7, we show that our method is capable of gen-
erating and controlling videos with multiple moving objects
by simply overlaying two individually controlled mask se-
quences together, i.e., producing 2 and 3 players in this ex-
ample. As far as we know, our method is the only video
generation method that allows frame-level control of mul-
tiple objects acting in the same scene. We provide more
visual results in the Supp. Mat.

Method LPIPS ↓ FID ↓ FVD ↓
w/o Lfg 0.333 60.1 816
w/o Lbg 0.306 97.1 796
w/o Lbin 0.222 59.2 398
w/o mask prior 0.208 55.0 279
single-stage training 0.608 302.3 6614
full 0.176 29.3 293

Input

full

Figure 8. Ablation of Design Choices. We ablate various loss
terms, the use of dynamic mask prior and the two-stage training
design. Thumbnails below illustrate the effect these components
have on the estimated mask itself; full model producing the most
coherent mask.

4.2. Ablation Study

Mask losses. Here we explore impact of our key design
choices have on the quality of generated results and the fore-
ground mask. We show quantitative and qualitative results
in Figure 8. The background loss Lbg enforces the network
to generate meaningful masks, without it, the mask network
fails to generate a reasonable mask (all zeros). The fore-
ground constraint Lfg shrinks the mask as much as possi-
ble. Without this term the network learns a travail solution,
where Lbg in Eq.(12) becomes 0 – labeling everything as
the foreground (all ones). When computing the foreground
loss Lfg, we introduce a dynamic mask size prior. We ablate
this choice by instead using a fixed global prior of 0.15 as
in [7]. Visuals show that if we do not use dynamic prior, the
network tends to generate masks with a fixed size, which
leads to hollow masks for samples with larger foreground.
To prevent information leaking from soft masks, we bina-
rize the masks with thresholding the mask value, without
the binary loss Lbin, some pixels on the mask fails to pass

8

the threshold and leave some defects on the binarized mask.
Overall, the ablations show that all our design choices are
important.

One-stage training VS. Two-stage training. Breaking
our training procedure into two stages is a crucial design for
the performance of our method. As described in Eq. (17), a
well-trained mask generator is a prerequisite for finding the
pseudo user control θ̂, which we use to introduce control-
lability to our model. Nevertheless, we still experimented
with training the model with one single shot (training Stage
II directly by replacing f t with f t+1). This leads to vastly
poorer performance during test time (Figure 8, “single-stage
training”).

5. Conclusions
We have introduced layered controllable video genera-

tion, an unsupervised method that decomposes frames into
foreground and background, with which the user can con-
trol the generative process at a frame-level by altering the
foreground mask. Our core contributions are the framework
itself, and the two-stage training strategy that allows our
model to learn to both separate and control on its own. We
show that various degrees of control can be implemented
with our method, from parametric (position, affine) to com-
plete non-parametric control with the mask. Our results on
BAIR and Tennis datasets show that our method outperforms
the state-of-the-art in both quality and control.

6. Acknowledgements
This work was funded, in part, by the Vector Institute

for AI, Canada CIFAR AI Chair, NSERC CRC and an
NSERC Discovery and Discovery Accelerator Grants. Re-
sources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Insti-
tute www.vectorinstitute.ai/#partners. Ad-
ditional hardware support was provided by John R. Evans
Leaders Fund CFI grant and Compute Canada under the Re-
source Allocation Competition awards of the two PIs. We
would also like to thank Willi Menapace for his help in an-
swering our questions and helping with fair comparisons
to [36].

References
[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien

Lucchi, Pascal V. Fua, and Sabine Süsstrunk. Slic su-
perpixels compared to state-of-the-art superpixel methods.
34:2274–2282, 2012. 3

[2] Dinesh Acharya, Zhiwu Huang, Danda Pani Paudel, and
Luc Van Gool. Towards high resolution video generation
with progressive growing of sliced wasserstein gans. ArXiv
preprint, 2018. 2

[3] Jean-Baptiste Alayrac, Joao Carreira, Relja Arandjelovic,
and Andrew Zisserman. Controllable attention for structured
layered video decomposition. In ICCV, 2019. 3

[4] Jean-Baptiste Alayrac, Joao Carreira, and Andrew Zisser-
man. The visual centrifuge: Model-free layered video repre-
sentations. In CVPR, 2019. 3

[5] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari.
Classcut for unsupervised class segmentation. In ECCV,
2010. 3

[6] Mohammad Babaeizadeh, Chelsea Finn, D. Erhan, Roy H.
Campbell, and Sergey Levine. Stochastic variational video
prediction. 2018. 2

[7] Adam Bielski and Paolo Favaro. Emergence of object seg-
mentation in perturbed generative models. In NeurIPS, 2019.
3, 6, 8

[8] Thierry Bouwmans, Fatih Porikli, Benjamin Höferlin, and
Antoine Vacavant. Background modeling and foreground de-
tection for video surveillance. CRC press, 2014. 3

[9] Silvia Chiappa, Sébastien Racanière, Daan Wierstra, and
Shakir Mohamed. Recurrent environment simulators. In
ICLR, 2017. 3

[10] Emily L. Denton and Rob Fergus. Stochastic video genera-
tion with a learned prior. In ICML, 2018. 1, 2

[11] Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey
Levine. Self-supervised visual planning with temporal skip
connections. In CoRL, 2017. 6

[12] Ahmed Elgammal, David Harwood, and Larry Davis. Non-
parametric model for background subtraction. In ECCV,
2000. 3

[13] Patrick Esser, Robin Rombach, and Björn Ommer. Tam-
ing Transformers for High-Resolution Image Synthesis. In
CVPR, 2021. 4, 1

[14] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsuper-
vised learning for physical interaction through video predic-
tion. In NeurIPS, 2016. 1, 2

[15] Jean-Yves Franceschi, Edouard Delasalles, Mickaël Chen,
Sylvain Lamprier, and Patrick Gallinari. Stochastic latent
residual video prediction. In ICML, 2020. 1

[16] Stanislav Frolov, Avneesh Sharma, Jorn Hees,
Tushar Karayil amd Federico Raue, and Andreas Den-
gel. Attrlostgan: Attribute controlled image synthesis from
reconfigurable layout and style. In GCPR, 2021. 1

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 1

[18] Nil Goyette, Pierre-Marc Jodoin, Fatih Porikli, Janusz Kon-
rad, and Prakash Ishwar. changedetection.net: A New
Change Detection Benchmark Dataset. In CVPR, 2012. 3

[19] Zekun Hao, Xun Huang, and Serge Belongie. Controllable
video generation with sparse trajectories. In CVPR, 2018. 2,
3

[20] Jiawei He, Andreas Lehrmann, J. Marino, Joseph Marino,
and Leonid Sigal. Probabilistic video generation using holis-
tic attribute control. In ECCV, 2018. 1, 3

[21] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

9

www.vectorinstitute.ai/#partners

two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 6

[22] Dorit S. Hochbaum and Vikas Singh. An efficient algorithm
for co-segmentation. In ICCV, pages 269–276, 2009. 3

[23] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks. 2017. 4, 1

[24] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In
NeurIPS, 2015. 4, 6

[25] Wei Jiang, Weiwei Sun, Andrea Tagliasacchi, Eduard Trulls,
and Kwang Moo Yi. Linearized Multi-Sampling for Differ-
entiable Image Transformation. In CVPR, 2019. 4, 6

[26] Nebojsa Jojic and Brendan J. Frey. Learning flexible sprites
in video layers. In CVPR, 2001. 2, 3

[27] Nal Kalchbrenner, Aäron van den Oord, Karen Simonyan,
Ivo Danihelka, Oriol Vinyals, Alex Graves, and Koray
Kavukcuoglu. Video pixel networks. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pages 1771–1779.
PMLR, 06–11 Aug 2017. 2

[28] Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Tor-
ralba, and Sanja Fidler. Learning to simulate dynamic envi-
ronments with gamegan. In CVPR, 2020. 2, 3

[29] Yunji Kim, Seonghyeon Nam, I. Cho, and Seon Joo
Kim. Unsupervised keypoint learning for guiding class-
conditional video prediction. In NeurIPS, 2019. 3

[30] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In ICLR, 2013. 1

[31] Manoj Kumar, Mohammad Babaeizadeh nd Dumitru Er-
han, Chelsea Finn, Sergey Levine, Laurent Dinh, and Durk
Kingma. Videoflow: A conditional flow-based model for
stochastic video generation. In ICLR, 2020. 1

[32] M. Pawan Kumar, Philip Hilaire Torr, and A. Zisserman.
Learning layered motion segmentations of video. 2008. 2, 3

[33] Yong Hoon Kwon and Min-Gyu Park. Predicting future
frames using retrospective cycle gan. 2019. 2

[34] Alex X. Lee, Richard Zhang, Frederik Ebert, P. Abbeel,
Chelsea Finn, and Sergey Levine. Stochastic adversarial
video prediction. ArXiv preprint, 2018. 2, 7

[35] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep
multi-scale video prediction beyond mean square error. In
ICLR, 2016. 1, 2

[36] Willi Menapace, Stéphane Lathuilière, S. Tulyakov, Aliak-
sandr Siarohin, and Elisa Ricci. Playable Video Generation.
In CVPR, 2021. 2, 3, 6, 7, 9

[37] Megha Nawhal, Mengyao Zhai, Andreas Lehrmann, Leonid
Sigal, and Greg Mori. Generating videos of zero-shot com-
positions of actions and objects. In ECCV, 2020. 1, 3

[38] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Assel-
mann. Video transformer network. ArXiv preprint, 2021.
2

[39] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis,
and Satinder Singh. Action-conditional video prediction us-
ing deep networks in atari games. In NeurIPS, 2015. 3

[40] Junting Pan, Chengyu Wang, Xu Jia, Jing Shao, Lu Sheng,
Junjie Yan, and Xiaogang Wang. Video Generation From
Single Semantic Label Map. In CVPR, pages 3728–3737, 06
2019. 3

[41] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, De-
nis Zorin, and Evgeny Burnaev. Latent video transformer. In
VISIGRAPP, 2021. 2

[42] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39:1137–1149, 2015. 7

[43] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2015. 5

[44] Dmitriy Smirnov, Michael Gharbi, Matthew Fisher, Vitor
Guizilini, Alexei A. Efros, and Justin Solomon. Marionette:
Self-supervised sprite learning. In NeurIPS, 2021. 3

[45] Chris Stauffer and W.E.L Grimson. Adaptive background
mixture models for real-time tracking. In CVPR, 1999. 3

[46] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan
Kautz. Mocogan: Decomposing motion and content for
video generation. In CVPR, 2018. 1, 7

[47] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphaël Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric &
challenges. ArXiv preprint, 2018. 6

[48] Aaron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In ICML,
2016. 1

[49] Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In NeurIPS, 2017. 2, 4

[50] Ruben Villegas, Jimei Yang, Yuliang Zou, Sungryull Sohn,
Xunyu Lin, and Honglak Lee. Learning to generate long-
term future via hierarchical prediction. In ICML, 2017. 2,
3

[51] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.
Generating videos with scene dynamics. In NeurIPS, 2016.
1, 2, 3

[52] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. An-
ticipating the future by watching unlabeled video. In ICLR,
2017. 1, 2

[53] Carl Vondrick and Antonio Torralba. Generating the future
with adversarial transformers. In CVPR, 2017. 1

[54] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial
Hebert. The pose knows: Video forecasting by generating
pose futures. In ICCV, 2017. 2, 3

[55] John Y.A. Wang and Edward H. Adelson. Representing
Moving Images with Layers, 1994. 2, 3

[56] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
video synthesis. In NeurIPS, 2019. 3

[57] Yaohui Wang, Piotr Tadeusz Bilinski, François Brémond,
and Antitza Dantcheva. G3an: Disentangling appearance
and motion for video generation. 2020. 2

[58] Yaohui Wang, Piotr Tadeusz Bilinski, François Brémond,
and Antitza Dantcheva. Imaginator: Conditional spatio-
temporal gan for video generation. In WACV, 2020. 3

10

[59] Michael A. Webster. Color vision: Appearance is a many-
layered thing. In Current Biology, 2009. 3

[60] Dirk Weissenborn, Oscar Tackstrom, and Jakob Uszkoreit.
Scaling autoregressive video models. In ICLR, 2020. 1, 2

[61] Nevan Wichers, Ruben Villegas, D. Erhan, and Honglak Lee.
Hierarchical long-term video prediction without supervision.
In ICML, 2018. 2

[62] Tianfan Xue, Jiajun Wu, Katherine L. Bouman, and
William T. Freeman. Visual dynamics: Stochastic future
generation via layered cross convolutional networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
41:2236–2250, 2019. 2

[63] Wilson Yan, Yunzhi Zhang, P. Abbeel, and A. Srinivas.
Videogpt: Video generation using vq-vae and transformers.
ArXiv preprint, 2021. 2

[64] Ceyuan Yang, Zhe Wang, Xinge Zhu, Chen Huang, Jianping
Shi, and Dahua Lin. Pose guided human video generation.
In ECCV, 2018. 2, 3

[65] Polina Zablotskaia, Aliaksandr Siarohin, Bo Zhao, and
Leonid Sigal. Dwnet: Dense warp-based network for pose-
guided human video generation. In BMVC, 2019. 2, 3

[66] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris Metaxas. Stackgan:
Text to photo-realistic image synthesis with stacked genera-
tive adversarial networks. In ICCV, 2017. 1

[67] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

[68] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image
generation from layout. In CVPR, 2019. 1

11

Layered Controllable Video
Generation

Supplementary Material

This supplementary material is structured as follows. In
Section A, we present our architectural details of our mod-
els, and the implementation details of our training/ testing
procedures. In Section B, we show visual results of the
frames generated by our model under different conditions.
In Section C, we show additional ablation results to prove
the effectiveness of our two staged training setup. In Sec-
tion D, we show soft masks could lead to degenerated re-
sults. Our video results can be found at this website.

A. Implementation Details

Architecture details. Our model consists of four main
modules: the Mask NetworkM, the Encoder E , the learn-
able discrete code book Z , and the Decoder D. We summa-
rize the details in Table 3. In total, our model has 47.8 M
parameters, and takes about 191.2 MB to store on disk.

Training Details. In all our experiments, we use the Adam
Optimizer with a fixed learning rate of 4.5 × 10−6, which
we found empirically.

• Initial training for mask-based generation: For this stage,
we train all models for 10, 000 iterations. For experi-
ments on the BAIR dataset, we initialize the ratio between
λbg : λfg to be 80 : 1, and reduce it by a factor of 2 for
every 1, 000 iterations until this ratio becomes 5 : 1. For
experiments on the Tennis dataset, this ratio is initialized
to 10 : 1 and reduced by half after 5, 000 iterations.

• Fine-tuning for controllability: In this stage of training,
we drop all losses related to the mask regularization as
their gradient becomes zero (see Section 3.3), except for
Lbg. On the BAIR dataset, λbg is set to 5, and on the Tennis
dataset, it’s set to 0.5.

• Finding the “ground-truth” control signal: In Equa-
tion. 5, we use the fully differentiable transformation op-
eration T (θt) to approximate the mask of the ground truth
next frame using the mask of the current frame. For each
frame, we optimize the affine transformation matrix that’s
been used to transform mt into mt

c, the optimization is
performed by the ADAM optimizer for 1, 000 iterations
with the learning rate of 0.1.
On the BAIR dataset, our model requires 80GB GPU
memory and 40 hours to train on 4× RTX-6000 (24GB
V-RAM per GPU) GPUs, and on the Tennis daaset, the
model takes 22GB GPU memory and 23 hours to train on
a single RTX-3090 (24GB V-RAM).

Table 3. Architecture details of the main modules of our model.
The high-level design follows the architecture presented in [13].
K denotes the number of entries in the code book, nz is the dimen-
sion of each entry, h,w = (H,W)/4 and h′, w′ = (H,W)/16.
For the discriminator C, we use the vanilla PatchGAN discrimina-
tor as described in [23].

Mask NetworkM
x ∈ RH×W×3

Conv2D→ RH×W×64

2×{Residual Blocks + Downsample} → Rh×w×256

9× Residual Blocks→ Rh×w×256

2×{Upsample + Residual Blocks }→ Rh×w×64

Conv2D + Sigmoid→ RH×W×1

Encoder E
x ∈ RH×W×3

Conv2D→ RH×W×256

4×{Residual Blocks + DownSample} → Rh′×w′×64

Residual Block→ Rh′×w′×64

Attention Block→ Rh′×w′×64

Residual Block→ Rh′×w′×64

GroupNorm, SiLu, Conv2D→ Rh′×w′×nz

Code book Z
K = 1024
nz = 256

Decoder D

q(z) ∈ Rh′×w′×nz

Conv2D→ Rh′×w′×64

Residual Block→ Rh′×w′×64

Attention Block→ Rh′×w′×64

Residual Block→ Rh′×w′×64

4×{Residual Blocks + DownSample} → RH×W×256

GroupNorm, SiLu, Conv2D→ RH×W×3

B. Additional qualitative results

Comparing with other baselines. In Figure 9 and Fig-
ure 10, we show the comparison of the three variants of
our model against other baselines that we mentioned in the
main text, on the BAIR and Tennis datasets respectively. No-
ticeably on both datsets, our model achieves the most pre-
cise control over the generated video (see how the generated
motion corresponds to the ground truth sequences), mean-
while generating one of the best frame-quality videos. For
example, CADDY fails to control the robot arm, SAVP+
controls it up to some degree, but as shown in frames t=10
and t=15, their control is not as precise, whereas all of our
variants provide highly accurate control.

Generating videos conditioned on user inputs. In Fig-

1

https://gabriel-huang.github.io/layered_controllable_video_generation/

G
T

O
ur

s
no

n-
pa

ra
m

C
AD

D
Y

SA
VP

+
M

oC
o+

t = 1 t = 5 t = 10 t = 15 t = 20 t = 25

O
ur

s
af

fin
e

O
ur

s
tra

ns
la

tio
n

Figure 9. Comparing with other baselines on the BAIR dataset.

ure 11 and Figure 12, we show how the video generated
by our model responds to the user inputs, on the BAIR
and Tennis datasets respectively. Here, for each sam-

ple, we keep applying the same control signal (moving
left/right/up/down) to the model so that it can generate
video sequences with single consistent motions.

2

t = 1 t = 4 t = 8 t = 12 t = 16

G
T

O
ur

s
no

ne
-p

ar
am

C
AD

D
Y

SA
VP

+
M

oC
o+

O
ur

s
af

fin
e

O
ur

s
tra

ns
la

tio
n

Figure 10. Comparing with other baselines on the Tennis dataset.

move left move right move up move down

t =
 1

t =
 5

t =
 1

0
t =

 1
5

Figure 11. Generating videos conditioned on user inputs, BAIR dataset.

Action mimicking. In Figure 13, we show that our method
can be used to extract the motion from a driving sequence
and then apply onto different appearances (staring frames).

Video results. For more video results, please refer to this

website. , where we demonstrate all above mentioned re-
sults in video format, as well as other applications of our
method, such as generating videos of multi players, real-
time user controllable generation demo, and animating a

3

https://gabriel-huang.github.io/layered_controllable_video_generation/
https://gabriel-huang.github.io/layered_controllable_video_generation/

move left move right

move up move down

Figure 12. Generating videos conditioned on user inputs, Tennis dataset.

t = 0 t = 4 t = 8 t = 12 t = 16

Figure 13. “Mimicking”. Our model can be used to extract the motion from a driving sequence and then apply onto different appearances
(staring frames). The mask sequence is extracted from the driving video (first row), then applied onto two other staring frames (third, fourth
row).

4

t = 0 t = 1 t = 2

U
si

ng
 G

T
 m

as
ks

U
si

ng
 o

pt
im

iz
ed

m
as

ks

Figure 14. Single stage training results in poor testing performance when control is introduced. Green represents GT next frame mask,
orange represents generated current frame’s mask, and purple represents transformed mask. On the top row, the model is tested using
ground truth masks to generate future frames (same as how the model was trained). On the bottom row, the model is tested using pseudo
control signals (same as real-world testing). The performance of the single stage trained model drops significantly when there are edits to
the mask.

input t = 10t = 1 t = 5 t = 15 t = 20 t = 25

se
qu

en
ce

 1

se
qu

en
ce

 2

Figure 15. Soft masks result in degenerated frames.

single frame with different motions.

C. Additional Ablation results - Single Stage
Training

As mentioned in our main text, breaking down our train-
ing procedure into two stages is a crucial design in our
setup. In stage I, our model focuses on generating a FG/BG
segmentation mask, and in stage II, we make edits to this
mask to finetune the network for controlled generation.
Training the model in one single stage wouldn’t allow us
to introduce controllability, without stage II finetuning, the
model is extremely vulnerable to any changes to the mask.
As shown on Figure 14, on the top row, the model is tested
using ground truth masks to generate future frames (same
as single stage training setup), and the model performed
well. However, on the bottom row, when we try to use
pseudo control signals to transform the mask, then use the
transformed mask to condition the generation (same as real-
world testing for controlled video generation), the model
performs poorly.

D. Additional Ablation results - Soft Masks
As shown in Fig. 15, without mask binarization, infor-

mation is leaked through the soft masks, shifting the mask
will not only affect the foreground, but the entire scene,
which results in degeneration of the frame.

5

	1 . Introduction
	2 . Related works
	3 . Method
	3.1 . Framework
	3.2 . Initial training for mask-based generation
	3.3 . Fine-tuning for controllability

	4 . Experiments
	4.1 . Results
	4.2 . Ablation Study

	5 . Conclusions
	6 . Acknowledgements
	A . Implementation Details
	B . Additional qualitative results
	C . Additional Ablation results - Single Stage Training
	D . Additional Ablation results - Soft Masks

