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Abstract

In this paper we address the problem of weakly-supervised Visual Relation Detection
(VRD) and human-centric Scene Graph generation. Unlike prior works, we assume
weaker, yet more natural, supervisory signals. Specifically, we only assume a pre-trained
person detector, a generic region proposal mechanism and a set of image-level object and
relation labels per frame. Given this data we formulate a very simple architecture with
multi-task weak-supervision at object level (for individual proposed regions) and relation
level (for each person-object region pair). We show that despite simplicity, our approach
achieves state-of-the-art results as compared to other weakly- and strongly-supervised
VRD models that are significantly more complex. In ablations, we also show that proposed
multi-task learning improves relation predictions. Our goal in this paper is to propose a
strong, yet simple, baseline which will spur further developments in the VRD task.

1 Introduction
Object detection has improved significantly with the introduction of neural architectures
designed specifically for detection tasks, e.g., Faster RCNN [35], Yolo [34] and, most recently,
DETR [62]. However, object detection in itself is inherently limited and is unable to produce
detailed semantic representations that are necessary for higher level visual cognition (e.g.,
visual question answering, human computer interaction, etc.). To this end, recent focus has
evolved to approaches capable of more holistic and contextual scene understanding. This
includes Visual Relation Detection (VRD) which aims to detect objects and predict their rela-
tionships in an image in the form of <subj,pred,obj> triplets, e.g., person (subj) laying
(pred) on a bed (obj), and scene graph generation – collections of <subj,pred,obj>
triplets forming a graph-based representation of the scene with nodes corresponding to
grounded object instances and directed edges to predicate relations among those objects.

However, to a large extent, most of existing architectures focus on fully supervised
scenarios where visual relations, or scene graphs, need to be completely annotated in large
scale training datasets (comprising bounding boxes for object instances, object class labels
per instance and labeled relations among those instances). Attaining such datasets at scale is
undesirable, practically difficult and financially costly. Similar arguments motivated weakly-
supervised object detection [1, 3, 42, 43] and hold, even more strongly, for VRD and scene
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Figure 1: Forms of HOI task: Depicted are both supervised and weakly-supervised variants
that differ in scale and types of supervision assumed. Fully supervised approaches (a) use
annotated object boxes and full scene graphs as supervision. Weakly supervised approaches
use bounding boxes (and class labels) from a pretrained object detector along with either a
full scene graph [29, 57] (b) or image-level relation labels [2] (c). Our approach (d) uses only
a pretrained person detector and (unaligned) sets of image-level relation and object labels.

graph generation, where data is both more complex and less intuitive to annotate. Nevertheless,
research on weakly-supervised variants of those tasks has been limited. Few approaches that
exist, either assume existence of pre-trained detectors [2] (trained on an external dataset)
and/or structured relational labels at the image-level [29, 57] (see Figure 1 (b) and (c)).
We argue that neither of those assumptions are ideal in practice. Pre-training detectors
themselves requires significant supervision with granular bounding box labels and a class
label alignment between external labeled datasets and target data. On the other hand, using
structured weak relation labels (or un-localized relation triplets) can lead to combinatorial
explosion in annotation effort [2].

In this paper we specifically explore human-object interactions (HOI)1 with a weaker
form of supervision. We only assume image-level object and relations (but unlike [29, 57] no
correspondence among them) and a person detector (as opposed to more general object detec-
tion [2]). We argue that this setting is significantly simpler from the user and data annotation
perspective. Further, we show that simple multi-task weakly-supervised architecture, which
simultaneously learns to classify proposal boxes into object classes and pairs of proposals into
their predicates, performs well in practice. Despite simplicity, it achieves better performance
than prior weakly-supervised variants that rely on more supervision and sophisticated models.

We experiment with benchmark HOI datasets from two different domains: image-based
HICO-DET [5] and video-based Action Genome [15]. We provide performance using our
weaker supervision and argue that it sets a strong baseline for any future work, and especially
in the case of HICO-DET [5], the performance surpasses the state-of-the-art results [2].

Contributions: Our contributions are two fold. First, formulation of what we believe to be a
more natural weakly-supervised Visual Relation Detection (VRD) and scene-graph generation
task. Second, establishing a simple but surprisingly strong baseline on this task that leverages
multiple-instance learning, implemented using identical object- and relation-level losses.
We illustrate that this multi-task weakly-supervised setup is beneficial and, overall, results
in performance that sets a new weakly-supervised state-of-the-art (despite relying on less
supervision and much simplified architectural design). We further show that our results can
rival state-of-the-art fully-supervised scene graph generation approaches [20, 28, 52, 53, 56].

1HOI is a type of VRD / scene-graph task, that specifically focuses on humans interacting with objects.
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2 Related Work

2.1 Visual Relationship Detection
Visual Relationship Detection (VRD) has been extensively studied in the context of general
relationships between pairs of objects, ranging from semantic to spatial and comparative
correspondences [6, 19, 21, 28, 31, 58, 63]. Related is also the task of scene graph generation,
where the focus is typically on a set of densely interconnected and grounded VRD relations,
e.g., [20, 52, 53, 55, 56, 59]. A particular instance of VRD where only person is considered
as the subject is known as human-object interactions (HOI) [5, 9, 12, 13, 18, 29, 33, 61],
which is particularly interesting since most of the rich verbs (e.g., talk, drink, throw)
are applicable to person as the subject [12]. However, gathering full annotations for HOI is
prohibitively time consuming and expensive. Therefore, in this work we tackle HOI task using
weak supervision and follow compositional approach where object and relation detection
streams are modelled separately but built on shared feature representations.

2.2 Weakly-supervised object detection
Weakly-supervised learning was initially studied in the context of object detection (WSOD)
where the problem was framed as a Multiple Instance Learning (MIL) task [3, 42, 43]. The
task involves using image-level supervision to ground an external bag of object proposals [44]
to actual objects in an image. Bilen and Vedaldi [3] introduced a framework (named WSDDN)
which uses two streams to classify proposals into one of the target classes, while ensuring not
many proposals get assigned the same class. This was followed by several improvements in
the form of iteratively refining classifiers based on spatial dependence between object parts
and locations [42, 43], to training a strong detector based on pseudo-labels from its weak
counterpart [1, 46]. In this work, we adopt the simple and intuitive WSDDN framework [3],
while noting that our approach is not constrained to this choice.

2.3 Weakly-supervised relation detection
Weakly-supervised relation detection (WSRD) is an abstraction on top of detected objects,
where the task is to identify and classify relations between pairs of objects using only image-
level relation labels. The task has recently gained attention with only a couple of published
works, owing to the difficulty of the problem. Prest et al. [32] used part-based detectors to
detect objects relevant to desired action or relation label. Recently, PPR-FCN [57] proposed
weakly-supervised object and relation detection modules using WSDDN [3] framework, and
assumes image-level triplet annotations as supervision. Specifically, for every ground-truth
<s,r,o> triplet, they select all the candidate regions for subject s and object o, and apply
weak WSDDN [3] loss over all the candidates for the triplet. Peyre et al. [29] also uses such
ground-truth triplets but uses a discriminative clustering scheme for their weakly-supervised
module. However, a common theme among the above works is using image-level triplet
annotations, which is expensive and suffers from combinatorial explosion when annotating
all possible triplets exhaustively [2]. More recently, Baldassarre et al. [2] proposed to use
only image-level relation labels, and showed that it leads to a viable problem setup in terms
of performance and uses much less annotation effort. In this work we follow the setup of [2],
but we go even further to only assume a pre-trained person detector instead of a detector for
all objects present in a dataset (as was the case in [2]).
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Figure 2: Weakly-supervised obj + rel HOI: The figure depicts our approach where the
model takes in an image, uses a pretrained backbone and a Region Proposal Network (RPN)
to obtain object proposals (in gray), and a person detector to detect person proposals (in red).
The object features are then used by weakly-supervised object detection branch to classify
object categories. For relations, the features of person and objects are concatenated and
multiplied with their union features (optional) to obtain relation features, which are then used
by weakly-supervised relation detection branch to classify relation categories.

3 Approach
Human Object Interaction (HOI), as the form of Visual Relation Detection (VRD) task,
comprises of detecting triplets of the form <person, predicate, object> in an image,
which requires identifying person and object bounding box along with the relation between
them, e.g. person is carrying a book (shown in Figure 1). Our approach is divided
into two stages. The first stage uses a pretrained object detector, based on Faster R-CNN
[35], to extract person and class-agnostic object region proposals, and their RoI features
from an image. The second stage forms relation candidates by pairing person with object
proposal regions and applying weak-supervision object and relation losses to train the object
and relation detector. The illustration of this process is shown in Figure 2.

Specifically, we denote an input image as xi and the corresponding set of region proposals
Ri = {rboxi, j} and their RoI feature vectors Zi = {zi, j}, where j ∈ {1,2, ...,Ni} and Ni
denotes the total number of region proposals for image xi. We use the person scores obtained
from pretrained object detector (or person detector) to select high scoring proposals as the
person region proposals, denoted by RP

i , and the corresponding RoI feature vectors, ZP
i . The

remaining region proposals and RoI features for class-agnostic objects are denoted as RO
i

and ZO
i respectively; such that RP

i ∩RO
i = /0 and RP

i ∪RO
i = Ri. We use a two-layered MLP to

process the RoI features ZP
i and ZO

i to obtain person and object feature matrices respectively,
i.e., ΦP

i ∈ RNP
i ×d and ΦO

i ∈ RNO
i ×d , where NP

i and NO
i is the number of person and object

boxes in image i and d is the dimension of the feature vector produced by two-layered MLP.
We then form the set of all possible relations as the cross product between RP

i and RO
i , resulting

in (NP
i ×NO

i ) possible relations in total. We form the relation feature matrix by concatenating
the corresponding person and object features from ΦP

i and ΦO
i to give Φ

P×O
i ∈ R(NP

i ×NO
i )×2d .

Optionally, following [41], we can further enhance relation representations by extracting
features from the union boxes obtained by taking the union of the given person and object
proposal boxes; this is achieved by element-wise multiplication of union features with Φ

P×O
i .
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We then use the weak object loss on the set RO
i and weak relation loss on the set RP×O

i to
train the model. In particular, we build the weak object and relation classifiers, each based on
WSDDN [3] framework. However, we note that our approach is flexible and can adopt any
weakly-supervised loss, e.g., OICR [42], PCL [43], etc.

3.1 Weakly-supervised object detection

Following WSDDN [3], we form two linear classifiers: f ob j
cls and f ob j

det which project a d-
dimensional feature vector to |Cob j|+ 1 output dimensions, where Cob j is the set of object
classes and the additional class for background. The classifiers f ∗cls and f ∗det stand for classifi-
cation and detection streams respectively, where classification stream classifies proposals into
one of the target classes and detection stream focus on ensuring that not many proposals get
assigned the same class [3]. Formally, we obtain:

Sob j(xi) = softmaxcls

[
f ob j
cls (ΦO

i )
]
⊙ softmaxdet

[
f ob j
det (Φ

O
i )
]
, (1)

where softmaxcls is softmax over the class dimension and softmaxdet is over the object
dimension, and Sob j(xi) ∈ RNO

i ×(|Cob j |+1); ⊙ is element-wise multiplication operator.

3.2 Weakly-supervised relation detection

Similar to the above, suppose Crel is the set of relation classes. We form two linear classifiers:
f rel
cls and f rel

det which project 2d-dimensional feature vectors to |Crel |+1 output dimensions.

Srel(xi) = softmaxcls

[
f rel
cls (Φ

P×O
i )

]
⊙ softmaxdet

[
f rel
det(Φ

P×O
i )

]
, (2)

where softmaxcls is softmax over the class dimension and softmaxdet is over the relation
dimension, and Srel(xi) ∈ R(NP

i ×NO
i )×(|Crel |+1).

3.3 Loss function

Suppose yi
ob j and yi

rel are the set of image-level object and relation labels respectively for
image i. We obtain predictions by aggregating the image-level classification scores for object

and relation modules as ŷi
ob j = ∑

NO
i

j=1 Sob j(xi) and ŷi
rel = ∑

NP
i ×NO

i
j=1 Srel(xi). The loss is then

computed using binary cross-entropy loss function as

Lob j
weak =− 1

|Cob j|

|Cob j |

∑
c=1

(
1[c∈yi

ob j ]
log ŷi

ob j +1[c/∈yi
ob j ]

log
(

1− ŷi
ob j

))
(3)

Lrel
weak =− 1

|Crel |

|Crel |

∑
c=1

(
1[c∈yi

rel ]
log ŷi

rel +1[c/∈yi
rel ]

log
(
1− ŷi

rel
))

(4)

We add the above two losses to obtain the final loss, L= Lob j
weak +Lrel

weak, and we jointly
train both the object and relation classification modules with SGD optimizer.
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4 Experiments
We present the results of our approach on two different datasets. For each dataset we provide
implementation details regarding the problem setup, models, and evaluation metrics.

4.1 HICO-DET
The Humans Interacting with Common Objects (HICO-DET) dataset [5] contains 600 human-
centric relation classes (e.g., wash, ride, eat, etc.) and 80 object categories similar to
MS-COCO [23]. The train set contains roughly ∼ 39K images and test set ∼ 9K images. We
sample 15% of the train set as the validation set to be consistent with [2].

Inference Details. In inference we apply same steps as in training (Section 3) up to the loss
computation. We use the relation score for scoring relation predictions. Further details are
given in Section B.2 of Supplemental Material.

Evaluation metrics. We follow Baldassarre et al. [2] and use 11-point interpolated mean
Average Precision (mAP) over 600 HOI classes. A predicted triplet is correct with respect
to a ground-truth triplet if the following criteria are met: (1) subject, relation, and object
categories match, (2) subject boxes have IoU > 0.5, (3) object boxes have IoU > 0.5, and (4)
the ground-truth triplet didn’t match with any previous detected triplet. In addition, we also
report results using the evaluation metric from the SOTA work in HOI [40], which differs from
Baldassarre et al. [2] in the following ways: (1) For an image in [2], the false positives for a
predicted HOI triplet <sub,pred,obj> are ignored when the HOI triplet is not present
in the ground truth of the image, leading to an optimistic measure, (2) and [2] uses all HOI
predictions while [40] uses only top 100 predictions sorted by their scores.

Implementation Details. We use Faster R-CNN from detectron2 [48] to remain con-
sistent with [2]. The model is trained on MS-COCO dataset [23] and the object features
are given by a feature pyramid network with ResNeXt-101 [51] backbone. We use score
threshold of 0.5 in line with [2] to filter out proposals. We divide the set of obtained pro-
posals into persons and non-person set since we assume a person detector (see Section
3), and we form relation pairs by taking cross-product between the two sets. For each
proposal, we obtain a feature map of dimension 256× 7× 7, which we pass through an
AvgPool2d layer with kernel size 2 and padding 1, and flatten it to obtain a feature vec-
tor of 4096 dimension, which is then passed through an MLP comprising of two layers -
[Linear(4096, 2048), ReLU(), Linear(2048, 1024)] to obtain object fea-
tures. The object features are used by weakly-supervised object detection branch to predict
objects. For relations the object features are concatenated together according to relation pairs
to form relation features, which are then used by weakly-supervised relation detection branch
to predict relations. For reproducibility, the code and with pre-trained models can be found at:
https://github.com/ubc-vision/SimpleWeakHOI.

Results. Table 1 illustrates the results. Despite using weaker supervision2, we obtain better
performance as compared to [2]. Moreover, unlike [2], we do not use spatial features of
objects and relation which are a function of relative object bounding box coordinates, size,
and angle between the centers of bounding boxes involved in a relation. Note, we do not use
frequency prior on relations here and compare with the uniform prior result of WS-VRD [2].

2Unlike [2], we do not assume existence of a pre-trained object detector, nor utilize its object classification scores.
Instead, we only rely on person-detector and generic proposal mechanism.
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Table 1: Weakly-supervised HOI results on HICO-DET. Performances for relevant prior
works, including fully-supervised and weakly-supervised are from [2] and [40].

Evaluation method of [2] Evaluation method of [40]

Method
Full

(600)
Rare
(138)

Non-rare
(462)

Full
(600)

Rare
(138)

Non-rare
(462)

Fully-supervised
Chao [5] 7.81 5.37 8.54 - - -

InteractNet [12] 9.94 7.16 10.77 - - -
GPNN [33] 13.11 9.34 14.23 - - -

iCAN [9] 14.84 10.45 16.15 - - -
Analogies [30] 19.40 14.60 20.90 - - -

VSGNet [45] - - - 19.80 16.05 20.91
FCMNet [26] - - - 20.41 17.34 21.56

VCL [14] - - - 23.63 17.21 25.55
ConsNet [27] - - - 24.39 17.10 26.56

DRG [10] - - - 24.53 19.47 26.04
UnionDet [17] - - - 17.58 11.72 19.33

Wang et al. [47] - - - 19.56 12.79 21.58
PPDM [22] - - - 21.73 13.78 24.10
QPIC [40] - - - 29.90 23.92 31.69

Ours 44.29 46.90 43.51 23.78 17.85 25.55

Baselines
Most frequent obj and rel 0 0 0 0 0 0

Sampling from
obj and rel distribution 0 0 0 0 0 0

Weakly-supervised rel
WS-VRD [2] 24.25 20.23 25.45 - - -

Weakly-supervised obj+rel
Ours 28.77 24.64 30.00 13.40 7.53 15.15

We include simple baselines as the lower-bound performance for our model, i.e., 1) most
frequent object and relation which are bicycle and hold respectively, and (2) sampling
from object and relation distribution derived from train set. We also report fully-supervised
version of our model placing an upper-bound on its performance, which is able to perform
comparably to the SOTA approaches despite being simplistic.

Ablation. In order to check whether the multi-task loss over objects and relations is effective,
we train an additional model but with the object loss removed. Since we need object class
predictions for training and evaluation for the model, we use all 80 object detectors from
detectron’s COCO detector. We refer to this model as “rel weak loss only w/ COCO
detector” (first row of Table 2). The corresponding object detection performance is 33.7 mAP
@IoU 0.5. This model mimics the setup used by Baldassarre et al. [2], but we note that the
performance is not at par with their reported performance since they use extra features and
explanatory modules.

On the other hand, our weakly-supervised model mentioned in Table 1 uses both the weak
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Table 2: Multi-task loss ablation on HICO-DET. We compare models trained with weak
relation loss (1st row), and our proposed model trained with both weak object and relation
loss (3rd row), and the model (in 2nd row) using relation detector from 1st row and object
detector from 3rd row.

Method
Full

(600)
Rare
(138)

Non-rare
(462)

Object Detection
(in mAP)

rel weak loss only w/ COCO detector 22.71 16.00 24.72 33.7
rel weak loss only w/ trained detector 24.80 23.30 25.24 38.5
obj + rel weak loss w/ trained detector 28.77 24.64 30.00 38.5

object and relation loss, and is referred to as “obj + rel weak loss w/ trained detector” (third
row of Table 2). The corresponding object detection performance is 38.5 mAP @IoU 0.5.
We form another model to test the effectiveness of our multi-task loss (object and relation),
where we use the relation branch from “rel weak loss only w/ COCO detector” and combine
it with the object branch from “obj + rel weak loss w/ trained detector”. This ensures that the
difference between the second and third row is only due to the performance of the relation
detector and we refer to this model as “rel weak loss only w/ trained detector” (second row of
Table 2). We observe that controlling for the object detection performance, our multi-task
loss outperforms the relation only loss.

4.2 Action Genome
Action Genome [15] is a scene graph data annotated over crowd-acted videos of Charades
dataset [38]. Action Genome consists of 35 object categories and 25 relations and has a
total of 9,848 videos, of which 7,985 belong in the train set and the remaining 1,863 to the
test set, consistent with [15]. We randomly sub-sample 400 videos from the train set as the
validation set. We use the annotated frames provided by [15] as not all frames in the videos
are annotated. We filter out frames without person or object annotations because they would
not yield a scene graph and are unusable for training or evaluation.

Inference Details. Again, in inference we apply same steps as in training (Section 3). The
relation predictions are scored as a product of object scores involved and the relation score
itself. Here we also use frequency prior to modulate final predictions as done in prior related
works [15, 42]. Further details are given in Section B.2 of Supplemental Material.

Evaluation Metrics. We adopt standard metrics and evaluation procedures from Scene Graph
Generation literature. In doing so we adopt (SGGen) condition where the model is neither
provided with ground-truth object labels nor the bounding boxes, rather the model takes an
image, predicts bounding boxes, object categories and predicate labels [15, 28]. To remain
consistent with [15], we evaluate using Recall@20 and Recall@50 metrics.

Implementation Details. We first train an object detector using a Faster R-CNN architecture
with feature pyramid and ResNeXt-101 [51] backbone on the Action Genome dataset. We use
the RPN and RoI head of the object detector to obtain object proposals and their RoI features
of 4096-dimensions. Importantly, we make no use of object classification scores (apart for a
person class). During training, we remove object proposals with objectness score less than
0.5 and pick the proposal with maximum person score as the person, forming relation pairs
with the person and rest of the object proposals.
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Table 3: Weakly-supervised HOI on Action Genome. The prior work results are from [15].

Row Method R@20 R@50

1 VRD [28] 10.28 10.94
2 Freq Prior [56] 24.03 24.87
3 IMP [52] 23.88 25.52
4 MSDN [20] 24.00 25.64
5 Graph R-CNN [53] 24.12 25.77
6 RelDN [59] 25.00 26.21

Baselines
7 Most frequent object and relation 0.0 0.0
8 Sampling from obj and rel distribution 1.87 3.4

Fully-supervised
9 Ours 27.93 30.42

Weakly-supervised obj + rel
10 Ours w/o Freq prior 18.02 19.55
11 Ours 23.21 27.24

Weakly-supervised obj + rel + Kinetics transfer
12 Ours 24.42 28.96

We take the obtained RoI features from these boxes and pass them through a two-layered
MLP (similar to the previous Section 4.1) to obtain object features. We use the features in
weakly-supervised object detection branch to predict objects. For relations, we form relation
features by concatenating the object features according to relation pairs, and multiplying them
by the (optional) union features (depicted in Figure 2) inspired by [41]. The obtained relation
features are used in weakly supervised relation detection branch to predict relations.

We form union features for each person-object pair. Suppose a candidate person-object
pair has bounding box coordinates bbbsub j and bbbob j for subject and object. We form a union
bounding box and extract the RoI feature, i.e., RoIAlign

(
bbbsub j ∪bbbob j

)
, we then add posi-

tional encoding of union bounding to this representation. Please see [41] for further details.

Results. The results are in Table 3. Since no weakly-supervised methods exist that report
performance on this dataset, we both form our own simple baselines and compare to state-
of-the-art fully-supervised scene graph generation variants. Specifically, we provide results
of two simple baselines: 7 most frequent object and relation, which are table and hold
respectively, and 8 sampling from object and relation distribution, which are drawn using
their occurrences in the train set. The main purpose is to observe that the task is not trivial.

Next we compare our result in both fully-supervised and weakly-supervised object and
relation setup, to state-of-the-art fully-supervised baselines. Note, unless stated otherwise, all
our model variants in Table 3 leverage the frequency prior introduced in [56]. Based on the
results in Table 3, one can make a number of observations: (1) our simple multi-task model
trained in fully-supervised manner 9 is competitive to more sophisticated models 1 - 6 ; (2)
our weakly-supervised variant 11 sees only ∼ 4.7 drop in recall compared to fully-supervised
counterpart 9 ; (3) our weakly-supervised variant performs nearly on par with state-of-the-art
scene graph generation methods in R@20 – < 1 drop in recall in most cases 1 - 5 and
even outperforms all fully-supervised methods in R@50. Similar to [56], (4) we observe that
frequency prior is important 10 vs. 11 . Also Table 4 shows that multi-task loss is better than
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Table 4: Multi-task loss ablation on Action Genome dataset. Similar to Table 2, we
compare multi-task loss with relation only loss. We report performances for three categories
of classes separately - attention, spatial and contact [15]. In addition to recall
(R@20) we report mean-recall (mR@20) which is mean over individual class recalls. Both
the configurations are evaluated using same pretrained detector (mAP@IoU 0.5 is 26.67)

Method attention spatial contact
R@20 mR@20 R@20 mR@20 R@20 mR@20

rel weak loss only 32.87 32.24 40.22 36.66 41.06 21.21
obj + rel weak loss 34.34 33.45 40.52 37.01 40.93 23.66

relation only loss, drawing the same conclusion as Table 2.

Transfer learning. Besides weak-supervision, transfer learning [4, 25, 39, 49, 54] is another
common strategy for efficient learning, where knowledge from the source domain is utilized
for a target domain in a data-efficient manner. We conduct a small-scale experiment to see
if transfer learning can further improve the performance of the above simple baseline. One
unique property of Action Genome [15] dataset is that the frames are taken from Charades
videos [38] which opens up the possibility for use of video-based features. We use an off-the-
shelf action classification model - SlowFast 8×8 [8] with ResNet-50 as the backbone which
was pretrained on Kinetics-400 dataset [16]. For every frame in Action Genome dataset, we
extract a clip of 2.13 seconds around the frame in question, and compute 400-dimensional
Kinetics logits. We use relation pairs in the frame, where for each relation pair, we only
consider the union bounding box region in the clip for computing the logits, i.e., we clip
the video using the union bounding box region of the relation pair and compute the logits
which are specific to the relation pair, and therefore for all relation pairs in the frame we get a
400-dimensional vector of action predictions.

We incorporate the obtained logits into the model by concatenating 400-dimensional logit
to the corresponding relation features before passing it through the weakly-supervised relation
detection branch. The results are shown in row 12 of Table 3 where the use of video-based
features leads to improvement in performance of our weakly-supervised model. In particular,
we argue that Kinetics [16] dataset is ImageNet [7] equivalent for videos and does not
assume any extra information, this strategy yields models that are on-par with the prior fully-
supervised works in terms of performance. Similar strategies can be adopted to HICO-DET
by leveraging pre-trained still image action recognition model e.g., [11, 24, 36, 60].

Qualitative results. Qualitative results for both HICO-DET and Action Genome datasets, as
well as different variants of our model, can be found in the Supplemental Material.

5 Discussion and conclusions
In this paper we propose a simple, but surprisingly strong, baseline for weakly-supervised
Visual Relation Detection (VRD) and scene-graph generation. Despite reliance on weaker, but
in our opinion more natural, form of supervision, our approach is more accurate. It sets a new
state-of-the-art in weakly-supervised VRD and performs nearly on par with fully-supervised
counterparts in scene graph prediction. Following the recent trend of carefully analyzing
and re-assessing performance of simple architectures on complex tasks (e.g., human pose
estimation [50], audio-visual dialog [37], etc.), we similarly aim to provide a simple and
strong building block for future research in VRD.
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