
PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via
Intermediate Polygonal Fitting

EDOARDO ALBERTO DOMINICI, University of British Columbia
NICO SCHERTLER, University of British Columbia
JONATHAN GRIFFIN, University of British Columbia
SHAYAN HOSHYARI, Adobe Inc.
LEONID SIGAL, University of British Columbia
ALLA SHEFFER, University of British Columbia

(a) Raster Input (b) [Selinger 2003] (c) [Hoshyari et al. 2018] (d) Intermediate Polygon (e) Ours
Fig. 1. Vectorizing raster clip-art inputs (a) using existing methods, here Potrace [Selinger 2003] (b) and [Hoshyari et al. 2018] (c), results in visible artifacts
(highlighted in zoomed-in insets). PolyFit outputs (e), created using an intermediate polygonal approximation step (d), are more consistent with viewer
expectations than those produced by these alternatives. Please zoom in online to see details. Input image ©IconScout — www.iconscout.com

Raster clip-art images, which consist of distinctly colored regions separated
by sharp boundaries typically allow for a clear mental vector interpreta-
tion. Converting these images into vector format can facilitate compact
lossless storage and enable numerous processing operations. Despite recent
progress, existing vectorization methods that target such data frequently
produce vectorizations that fail to meet viewer expectations. We present
PolyFit, a new clip-art vectorization method that produces vectorizations
well aligned with human preferences. Since segmentation of such inputs
into regions had been addressed successfully, we specifically focus on fitting
piecewise smooth vector curves to the raster input region boundaries, a task
prior methods are particularly prone to fail on. While perceptual studies
suggest the criteria humans are likely to use during mental boundary vector-
ization, they provide no guidance as to the exact interaction between them;
learning these interactions directly is problematic due to the large size of

Authors’ addresses: Edoardo Alberto Dominici, University of British Columbia,
dedoardo@cs.ubc.ca; Nico Schertler, University of British Columbia, nschertl@mail.ubc.
ca; Jonathan Griffin, University of British Columbia, jcgriff@cs.ubc.ca; Shayan Hosh-
yari, Adobe Inc., s.hoshyari@gmail.com; Leonid Sigal, University of British Columbia,
lsigal@cs.ubc.ca; Alla Sheffer, University of British Columbia, sheffa@cs.ubc.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/6-ART77 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the solution space. To obtain the desired solution, we first approximate the
raster region boundaries with coarse intermediate polygons leveraging a
combination of perceptual cues with observations from studies of human
preferences. We then use these intermediate polygons as auxiliary inputs
for computing piecewise smooth vectorizations of raster inputs. We define a
finite set of potential polygon to curve primitive maps, and learn the map-
ping from the polygons to their best fitting primitive configurations from
human annotations, arriving at a compact set of local raster and polygon
properties whose combinations reliably predict human-expected primitive
choices. We use these primitives to obtain a final globally consistent spline
vectorization. Extensive comparative user studies show that our method
outperforms state-of-the-art approaches on a wide range of data, where our
results are preferred three times as often as those of the closest competitor
across multiple types of inputs with various resolutions.

CCS Concepts: • Computing methodologies → Image manipu-
lation.

Additional Key Words and Phrases: clip-art, vectorization

ACM Reference Format:
Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hosh-
yari, Leonid Sigal, and Alla Sheffer. 2020. PolyFit: Perception-Aligned Vec-
torization of Raster Clip-Art via Intermediate Polygonal Fitting. ACM Trans.
Graph. 1, 1, Article 77 (June 2020), 16 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

77:2 • Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer

(a) Raster Input (b) [Kopf and Lischinski 2011] (c) [Selinger 2003] (d) [Hoshyari et al. 2018] (e) Our Result

Fig. 2. Given a raster input (a), human observers prefer the vectorizations
in (e) created by PolyFit over those in (b-d), created using the methods of
Kopf [Kopf and Lischinski 2011], Potrace [Selinger 2003], and [Hoshyari
et al. 2018] by factors of 10:0, 10:0 and 7:3, respectively, for the example
in the first row, and 9:1, 10:0, 10:0 for the example in the second row. This
preference persists despite the fact that rasterizing all three vector images
in the bottom row would reproduce the input raster exactly.

(a) Raster Input (c) Output(b) Primitive Set

Fig. 3. Vector representation: (a) raster input; (b) primitive set (lines in green,
Bézier curves in blue, C0 corners in red). (c) output vector image.

1 INTRODUCTION
Artist-drawn clip-art images consist of distinctly colored regions de-
lineated by piecewise smooth visually pronounced boundaries, and
are ubiquitously used in digital media. Clip-art images can be com-
pactly and losslessly represented in vector form; yet, for a variety of
reasons, large numbers of clip-art images are still created and stored
in raster format, e.g., the Adobe Stock Image database contains over
nine million raster images labeled as clip-art or icons [Hoshyari
et al. 2018]. Vectorizing these images would enable resolution-free
reuse of artwork created for legacy displays and facilitate a range of
operations such as resizing or editing, which are easier to perform
on vector rather than raster data. Vectorizing this data in a man-
ner consistent with viewer expectations poses unique challenges,
motivating the development of algorithms specifically designed for
clip-art vectorization (e.g., [Hoshyari et al. 2018; Kopf and Lischin-
ski 2011; Selinger 2003]). Notably, while prior methods [Kopf and
Lischinski 2011] successfully segment raster clip-art into regions
consistent with viewer expectations, vectorizing the raster bound-
aries between these regions while meeting observer expectations
remains challenging; existing algorithms still often fail to produce
vector boundaries consistent with human preferences (Figures 1b-
c, 2b-d). We present a new approach for vectorization of region
boundaries in raster clip-art images that significantly outperforms
these earlier approaches, producing results much better aligned
with viewer expectations (Figures 1e, 2e).

Given a raster segmentation obtained using off-the-shelf methods
[Kopf and Lischinski 2011], we aim to convert the raster boundaries
between the obtained regions into vector form. This conversion
requires computing a set of geometric primitives that jointly cap-
ture the input boundary shape as perceived by human observers

(Figure 3). Computing these desirable vectorizations requires deter-
mining the number and type of primitives in the fitted sequence, the
locations and types of the transitions between them (C0 corners vs.
smooth G1 or G2 transitions), and their individual parameters. Per-
ception studies and computer graphics literature (Section 3) identify
a number of core principles likely to impact human perception and
affect the set of piecewise-smooth primitives human observers are
likely to mentally fit to the given raster data. However, converting
these principles into an actionable algorithm requires learning the
interaction between them and quantifying their combined impact on
the mental fitting process. Learning this relationship directly from
pairs of raw raster images and manually vectorized counterparts
is impractical [Hoshyari et al. 2018]: vectorizing a single region
requires 30-45 minutes of a computer artist’s time, making construc-
tion of a large-scale training set problematic. Furthermore, such
pairs cannot be created by simply rasterizing vector boundaries;
since rasterization is lossy, the vectorization output humans expect
given a raster image is often not the same as such originating vector
data (see Figure 2 (bottom) where all vector outputs once raster-
ized reproduce the input). Additionally, directly searching for the
desired vectorization requires operating on a huge mixed discrete
(e. g., number and type of primitives) continuous (e. g., primitive
parameters) solution space, which is computationally challenging.
We overcome both challenges and successfully compute the de-

sired vectorizations by solving a simplified variant of the vector-
ization problem first, and then using this intermediate output to
guide the rest of the computation (Section 3). Specifically, instead
of directly solving for a piecewise smooth approximation of the
raster input, we first approximate this input using a coarse polygo-
nal, or piecewise linear, approximation designed to match human
expectations (Fig. 1d, Section 4). This choice is motivated by the ob-
servation that the approximating polylines human observers prefer
(Appendix A) are strongly correlated with their preferred piecewise
smooth vectorizations in terms of primitive counts, as well as corner
and other transition locations. We formulate polygonal fitting as a
computation of a shortest cycle over a graph of possible polyline
edges, and follow perception principles and observations gleaned
from human-traced polygons (Appendix A) to define the costs of
traversing different edges in this graph.

We use these intermediate polygons as auxiliary input to compute
piecewise smooth vectorizations of the raster inputs (Section 5).
We use a learned classifier, trained on a compact set of manually
annotated polygons, to identify the polygon corners that correspond
to final output corners and to identify the piecewise smooth set of
primitives best suited for fitting the boundary next to each polygon
corner. We optimize the shape of the selected primitives to obtain a
final globally consistent spline. Perception studies point to a strong
viewer preference for more regular input interpretations [Koffka
1955; Wagemans et al. 2012], stemming from an expectation that
observed data conforms to a regular, axis-aligned, and symmetric
pattern. We thus enforce the fitted polygons and splines to conform
to regular patterns detected on the raster data and regularize near-
regular polygon and spline structures (Section 6). The combined
method efficiently computes desirable solutions on a wide range of
tested inputs.

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting • 77:3

We validate our approach by applying it to more than a hundred
inputs and comparing the results to algorithmic alternatives both vi-
sually and via an extensive user study (Section 8). Study participants
preferred our results by a margin of 3:1 compared to the closest-
ranking prior method across all tested input resolutions, with the
margin growing to 16:1 for images with region sizes below 16 × 16.
We also improve on the closest-ranking prior method [Hoshyari
et al. 2018] in terms of runtime and generality: our method is an or-
der of magnitude faster, taking about a second to vectorize a typical
64 × 64 input compared to over a minute. While the prior method
requires separately trained models for different input resolutions,
we use a single model trained using a compact set of annotated
examples for all resolutions.
To summarize, our core contribution is a new, resolution inde-

pendent method for clip-art vectorization that significantly outper-
forms prior art and is particularly well suited for low-resolution
inputs, where existing frameworks perform especially poorly (e.g.,
Figure 2,top). We achieve this goal by leveraging the connections
between perception-aligned polygonal and piecewise smooth raster
boundary approximations.

2 RELATED WORK
We build on research across a number of domains outlined below.

Approximating Sample Points. Vectorization shares some com-
monalities with the classical problems of fitting curves or polygons
to sample points. Traditional fitting methods [Farin 2002; Fleishman
et al. 2005; Liu and Wang 2008] approximate unordered noisy point
samples with smooth spline curves by balancing fit accuracy against
curve fairness. Computational statistics and operations methods
approximate dense input points using coarse polylines, balancing
accuracy against edge count [Aronov et al. 2004; Bellman and Roth
1969; Goldberg et al. 2014]. The inputs and goals of our boundary
fitting method are distinctly different from those employed in both
settings. Instead of dense samples, we process raster boundaries
with axis-aligned edges; instead of denoising, interpolating, or ap-
proximating this input within a given accuracy threshold, we seek to
recover it’s piecewise smooth interpretation consistent with human
perception.

Stroke Beautification. Our goals are related to those of meth-
ods that seek to beautify, or regularize, artist strokes on free-hand
sketches [Baran et al. 2010; McCrae and Singh 2008, 2011]. How-
ever, the raster polyline inputs we process strongly deviate from the
assumptions these methods make about the input stroke geometry.
In particular, the approaches for tangent and curvature estimation
these methods employ are ill-suited for raster data. As a result, ap-
plying these frameworks to raster boundaries leads to inadequate
results [Hoshyari et al. 2018].

Natural Image Vectorization. Techniques for natural image vector-
ization address two distinct challenges: segmenting the input images
into a set of compact, color-coherent raster regions, and fitting the
raster region boundaries using sequences of curve primitives. Most
natural image vectorization methods focus on the image segmen-
tation stage [Favreau et al. 2016; Lecot and Levy 2006; Orzan et al.
2008; Sun et al. 2007; Wang et al. 2017; Xia et al. 2009; Xie et al. 2014].

(a) Raster Input (b) Potrace Polygon (c) Our Polygon (d) Our Vectorization

Fig. 4. Potrace [Selinger 2003] polygons (b) tend to smooth out details in
the input (as highlighted in the overlays shown in the insets), which are not
recoverable by the subsequent spline fit. Our method (c-d) preserves details
at the polygon and final fit levels.

Due to the inherent complexity of such images, these methods tend
to produce large sets of segments with highly irregular boundaries.
Consequently, in the absence of interactive human adjustments
[Jun et al. 2017], the boundary fitting stage of these methods fo-
cuses on simplifying and smoothing these boundaries [Adobe 2017;
Caselles et al. 1997; Figueiredo et al. 2000; Kass et al. 1988]. This lossy
smoothing approach is well suited for natural images but fails to
preserve the visually distinct, piecewise smooth segment boundaries
of artist-designed clip-art [Hoshyari et al. 2018; Yang et al. 2016].
Super-resolution methods that target natural images [Wang et al.
2015] perform equally poorly on artist data [Hoshyari et al. 2018].
Our focus is on vectorization of artist-generated content, which on
the one hand is simpler to segment, but on the other hand requires
a much more careful boundary analysis and fitting.

Vectorization of Artist-Generated Imagery. Several prior works
focus specifically on vectorization of artist-generated imagery, in-
cluding cartoons, binary imagery, pixel art, and clip-art. Zhang
et al. [2009] and Sykora et al. [2005] vectorize cartoon images and
animations. Both methods fit boundaries between pairs of regions
using G1 or G2 continuous curves and introduce discontinuities
only at corners where multiple regions meet. Fatemi et al. [2016] up-
sample binary images using similar continuity assumptions. These
assumptions do not hold for clip-art images, which often contain
visually pronouncedC0 corners and curvature discontinuities along
individual region boundaries (Figures 2, 3). Yang et al. [2016] employ
user-provided discontinuity and corner locations to fit a piecewise
Bézier spline to raster boundaries; providing such locations as input
is a time-consuming task. Our method successfully locates viewer-
expected discontinuities algorithmically with no user input.

Dedicated methods target upscaling [Eagle 1997; Mazzoleni 2001;
Stepin 2003] and vectorization [Kopf and Lischinski 2011] of low-
resolution pixel-art images. Kopf and Lischinski [2011] focus on
resolving topological ambiguities during image segmentation. Like
earlier methods, they employG2 curve fitting to vectorize individual
boundaries between raster regions. This strategy is inadequate on
inputs that contain visibly distinct C0 corners (e. g., Figure 2).

Several commercial packages (e. g., [ScanFont 2017; Selinger 2003;
Vector Magic 2017; Weber and Herzog 2004]) specifically address
clip-art vectorization. As demonstrated by Hoshyari et al. [2018],
Potrace [Selinger 2003] and VectorMagic [2017] often exhibit unde-
sirable artifacts on typical clip-art inputs; others, e. g., [Weber and
Herzog 2004] are no longer maintained. ScanFont [ScanFont 2017] is
designed specifically for fonts and uses character recognition priors.

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

77:4 • Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer

Our approach of fitting an intermediate polygon is inspired by Po-
trace [Selinger 2003], who first compute a polygonal approximation
of the raster and then replace it with a smooth spline. Unfortunately,
the polygon fitting approach they use results in loss of fine details
(Figure 4b), especially noticeable on lower resolution inputs. This de-
tail loss is then propagated to the final vector fits. We constrain our
polygons to accurately preserve input details, leading to more accu-
rate final fits (Figure 4c). Hoshyari et al. [2018] detect the location of
perceptually plausible C0 corners along the vectorized boundaries
using a learned classifier. They acknowledge that learning such
placement from corner annotation alone is challenging and over-
come classifier inaccuracies by integrating the classifier within a
complex perception-motivated pipeline that empirically determines
which classifier-suggested corners to discard. Our two-step vector-
ization process is able to more accurately pinpoint viewer-expected
corner locations and achieves better fitting quality (Figs. 1, 2) at
a fraction of the compute time (Section 8). Our validation study
participants preferred PolyFit results over those of Hoshyari et al.
75.5% of the time (Section 8).

3 METHOD OVERVIEW
The input to our method is raster clip-art images, which are ex-
pected to consist of a number of distinctly colored regions with
clearly identifiable inter-region boundaries. To vectorize this input
we first segment it into single-color regions using the framework
of [Kopf and Lischinski 2011]. Our core focus is to subsequently
convert the raster, or piecewise axis-aligned, boundaries between
the resulting regions into piecewise smooth curves consistent with
viewer perception.

Output Properties. Before describing our algorithm, we discuss
the main criteria that prior perception and computer graphics re-
search [Hoshyari et al. 2018; Koffka 1955; Wagemans et al. 2012],
identifies as likely to impact the human mental vectorization pro-
cess: accuracy, simplicity, regularity, and continuity (Figure 6). We
subsequently employ these criteria in our vectorization framework.
Accuracy predicts that the vectorizations humans envision are

geometrically close to the input raster boundaries. Promoting ac-
curacy encourages vector outputs that are maximally close to the
raw raster input, and in particular ones that, when rasterized, re-
produce (or nearly reproduce) this input [Hoshyari et al. 2018]. The
simplicity principle of Gestalt psychology indicates that human
observers prefer simpler, more compact explanations of observed
phenomena [Wagemans et al. 2012]. In the context of vectorization,
simplicity argues for an output that consists of a minimal number
of geometric primitives, for prioritizing straight lines over curves,
and for preferring curves with smaller curvature variation [Baran
et al. 2010; Hoshyari et al. 2018; McCrae and Singh 2008]. Prior
research emphasizes that human observers are highly sensitive to
inflections, or curvature sign changes, that are present in the output
and are not self-evident in the input [Baran et al. 2010; McCrae and
Singh 2008]. The simplicity principle also indicates that observers
prefer to group data into regular patterns. Research indicates that
viewers expect observed exact or approximate regularities such
as parallelism, symmetries, or axis-alignment present in the raster
input to be preserved in the vector output. Finally, and critically,

studies indicate that observers are likely to mentally convert raster
region boundaries into piecewise continuous curves, with a small
number of C0 corners or abrupt curvature changes [Baran et al.
2010; Wagemans et al. 2012].
Given a raster input, we expect observers to balance these, fre-

quently conflicting, properties to mentally conjure a piecewise
smooth output.

Boundary Vectorization. In the general case, our method seeks to
approximate an axis-aligned polyline raster boundary network using
a connected network of spline curves, each consisting of a sequence
of curve primitives. For simplicity, the formulation presented here
and in Sections 4 and 5 addresses vectorization of a single closed
raster boundary. Section 7 describes the extension of this method to
the case of multiple regions separated by a network of boundaries.
The main difference between this setup and the single boundary
one is the need to resolve fitting inconsistencies that may arise near
network junctions formed by three or more boundary segments
(Figure 13).

Given a raster boundary defined as a sequence of vertices located
at pixel corners, we seek to vectorize, or fit, it using a piecewise
smooth spline curve, defined using a sequence of primitives. Each
spline primitive is expected to approximate a segment of the input
boundary. Neither the number of primitives, nor the segments they
each correspond to, are known a priori, and both the lengths of the
segments approximated by each primitive and the primitives’ geom-
etry can vary significantly (see Figure 3). Consequently, searching
directly for the desired vectorization for a given raster boundary
requires operating on a very large mixed discrete and continuous
solution space which includes the number of output spline primi-
tives, their types, their geometric parameters, and the locations of
their endpoints. More importantly, while prior research identifies
the core principles behind the vectorizations we desire, it does not
quantify the specific balance required among them.

We sidestep the challenges of directly learning this balance from
raster-vector pairs by using a two-step vectorization process (Fig-
ure 5). Instead of computing a piecewise smooth vectorization di-
rectly, we first compute a polygonal approximation of the raster
input using the same perceptual criteria. Since this setting is much
simpler, we can empirically define a fitting cost function and a
corresponding algorithm (Section 4) that jointly lead to polygonal
approximations consistent with observer expectations (Figure 5c).
We perform all our cost function measurements (including curva-
ture) with respect to a coordinate system where a pixel edge length
is one. We believe that low-resolution clipart images are meant
to be displayed at their original size, making this unit constant
and consequently the cost function is free of resolution dependent
parameters.

We conjecture that our fitted polylines provide a rough approxi-
mation of the piecewise smooth vectorizations we seek. In partic-
ular, we note that the viewer-perceived corners on the piecewise
smooth vectorization are typically a subset of the corners on these
polygonal approximations, and that the slopes of the polyline edges
are strongly correlated with their adjacent spline tangents (Fig-
ure 5c and g). We use these observations to define plausible spline
primitives connecting consecutive polygon edge midpoints, and to

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting • 77:5

Polygonal Fitting
(a)

Spline Fitting Regularization Vector OutputInput Raster Image
(b) Graph (c) Polygon (d) Primitive Fitting (e) Fitted Splines Regularized Polygon (f) Regularized Splines (g)

Fig. 5. PolyFit overview: given an input image (a), our first polygonal fitting stage (b-c) generates a graph of all possible edges that connect input vertices
within a given accuracy threshold (b) and computes the shortest cycle on this graph with respect to a perception-motivated cost function to obtain a polygonal
fit well aligned with viewer expectations (c). Our spline fitting step (d-e) uses a learned classifier to fit best-suited primitive combinations to each polygon
corner (singe-curve, curve-line, line-line) (d) and computes a best-fitting spline (e) using the obtained set of primitives. We obtain more regular results by
regularizing both the polygon and its corresponding spline (f) to obtain the final vector output (g).

Accuracy Regularity Continuity

Simplicity

Fig. 6. Perceptual cues impacting mental vectorization: accuracy, regularity,
simplicity, continuity.

learn the perceptual mapping from such corners to their best fit-
ting primitives (C0,G1 or G2) based on the properties of these fitted
primitives. We perform this classification using a random forest
classifier learned from a compact set of annotated combinations of
consecutive polygon edges, their corresponding raster segments,
and locally fitted primitives. We then optimize the geometry of the
computed primitive sequence to best fit the raster input. The com-
bined algorithm (Section 5) reliably produces the desired piecewise
smooth vectorizations (Fig. 5g).

4 INTERMEDIATE POLYGONAL APPROXIMATION
We formulate the extraction of an intermediate polygonal approxi-
mation as the problem of finding a cycle that minimizes an energy
function defined on pairs and triplets of edges in a directed graph
G = (V , E), where the verticesV represent candidate corners and the
edges E represent candidate polygon segments (see Fig. 5b). Comput-
ing an optimal cycle in a directed weighted graph is known to have
cubic complexity in the size of the processed graph [Skiena 2008];
to facilitate efficient computation, we keep the size of the graphs
we operate on small by only including vertices and edges which
are reasonably likely to be part of the final polygon (Sec. 4.1). We
then compute an optimal cycle on this graph that balances accuracy,
simplicity, and continuity (Sec. 4.2, Fig. 5c) via a graph construc-
tion that reduces the problem of finding the optimal cycle of an
energy function defined on pairs and triplets of edges to a classical
shortest-cycle problem.

4.1 Graph Construction
Our perceptual study, in which users were asked to draw approxi-
mating polygons for given raster inputs (Appendix A), indicates that

viewers expect the vast majority of corners of the approximating
polygon to be a subset of the corners of the input raster boundary;we
define a boundary vertex as a corner if the raster edges emanating
from it are orthogonal to one another.
The only notable exception some study participants

made was to place corners at the centers of one- or two-
pixel long raster segments surrounded by symmetri-
cal corners (see inset). We speculate that this choice is
motivated by the desire for more symmetric outputs. Fol-
lowing these observations, and to keep the graph compact we define
the set of graph vertices V to include the raster boundary corners
as well as the midpoints of length-one and -two raster segments.
Our study indicates that viewers expect polygon

edges to closely follow the raster shape, but allow for
edges whose rasterization deviates from the boundary
as long as the Manhattan (axis-aligned) distance from
all pixel corners to the edge is below one and all miss-
classified pixels (highlighed in the inset) are to one
side of the edge; we view a pixel as missclassified if it is inside (to
the left of) the raster boundary but its center is outside (to the right)
with respect the edge, or vice versa (using the counter-clockwise
orientation convention). We consequently connect each pair of ver-
tices (vm,vn) with an edge em,n ∈ E if and only if the straight line
lm,n = {vm,vn } between them satisfies these criteria. We discard
all edges that violate the Manhattan distance criterion and require
all misclassified pixels to lie to one side of the line, discarding edges
that do not satisfy this property. We speculate that observers relax
the strict raster reproduction constraint and allow edges that lead
to pixel missclassification, to accommodate inputs containing ras-
terizations of nearly horizontal or nearly vertical lines which are
characterized by long pixel runs in a single direction, followed by a
single step in the orthogonal direction (as in the inset). In all such
cases the misclassified pixels lie to one side of the line. We set the
directions of the edges to be counter-clockwise with respect to the
region they bound. We compact the graph by merging edges with a
180◦ angle between them as they are perceived as a single line.

4.2 Optimal Polygon Computation
In assessing the optimality of a polygon P = ei j , ejk , . . . , emi , we
evaluate it with respect to the three perceptual criteria identified
in Sec. 3, accuracy, simplicity and continuity. When assessing sim-
plicity we evaluate both edge count and curvature variation. Since

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

77:6 • Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer

we operate on polygons, we use discrete metrics to measure both
continuity and curvature variation, expressing those in terms of
polygon angles. We note that both metrics can only be meaning-
fully compared for angles that are sufficiently flat (in the case of
continuity) or sufficiently similar (in the case of curvature varia-
tion), motivating us to use saturation limits for both (lang = 135° for
continuity, and lcont = 60° for curvature variation).

We measure the accuracy of each edge with respect to the raster
boundary using the previously computed set Pi j of misclassified
pixels. For each such pixel we measure the degree to which a pixel
violates the in/out partition criterion using the distance d(p) from
the centers of the wrongly partitioned pixels p to the line. We define
the overall per edge accuracy error as:

facc(ei j) =

{
0 P = ∅

2 ·maxp∈Pi j d(p) otherwise.
(1)

Note that facc ∈ [0, 1] for all edges, approaching 1when the Manhat-
tan distance is violated. Edges that conform perfectly to the raster
have zero energy.
We use the angles at the polygon corners Ai jk =]ei jejk as a

discrete proxy for continuity. Note that Ai jk is the smaller angle
out of the interior and exterior angle at the corner. We prefer flatter
angles and thus more continuous transitions by setting:

fcont(ei j , ejk) = min
(
1,
180° −Ai jk

lang

)
, (2)

We express simplicity as a preference for minimal
change in curvature and for smaller polygon edge counts.
In our discrete case, we measure curvature change as the
similarity between consecutive angles. We differentiate
between cases where the curvature sign is the same (measured an-
gles are on the same side of the polyline) and inflection scenarios,
where the curvature sign changes (measured angles are on opposite
sides), (see inset). We distinguish between these two scenarios since,
as noted in Sec. 3, viewers are particularly sensitive to inflections.

fcv(ei j , ejk , ekl) =

min ©«1,

|Ai jk−Ajkl |

lcont
if same side

binfl + (1 − binfl)
180°−min(Ai jk ,Ajkl)

180°−linfl
if inflection

ª®¬
(3)

To minimize the appearance of inflections (independent of magni-
tude) we add an absolute inflection penalty of binfl = 0.1 for each
inflection edge and use the smaller of the two angles (i. e., the more
acute one) to assess the inflection’s magnitude. We empirically set
the saturation limit on this magnitude to linfl = 90°. This formula-
tion avoids inflections when possible and prioritizes more gradual
side changes over more abrupt ones if necessary.

Simplicity also argues for reducing the number of polygon edges.
To this end, we assign a small penalty ϵ = 1e−3 to all graph edges,
and further penalize redundant pixel-long edges. We consider such
edges as redundant when they contain previously inserted mid-
points. As noted by prior research [Hoshyari et al. 2018] and con-
firmed by our study (see Appendix), viewers prioritize approxima-
tion that incorporate such midpoints as corners, and rarely utilize

redundant short edges.

fsimp(ei j) =

{
0.5 if ei j is redundant
ϵ otherwise

(4)

The combined polygon cost is the sum of these terms over all
edges, and pairs and triplets of consecutive edges, where we weight
curvature variation less than all other terms (ωcv = 0.25, unit weight
otherwise):

C(P) =
∑
i j

facc(ei j) +
∑
i jk

fcont(ei j , ejk)

+ ωcv
∑
i jkl

fcv(ei j , ejk , ekl) +
∑
i j

fsimp(ei j) (5)

Optimization. Classical shortest cycle computations account for
weights of edges, but do not allow for the evaluation of costs of pairs
or triplets of edges in a cycle. We therefore reformulate the shortest
cycle computation onG as the problem of finding the shortest cycle
on a graph G̃ = (Ñ , Ẽ) whose nodes ñi jk correspond to triplets of
vertices vi ,vj ,vk in the original graphG . We introduce a node ñi jk
into this graph if the original graph G contains the edges ei j =
(vi ,vj) and ejk = (vj ,vk). We then connect each node pair ñi jk
and ñjkl with an edge ẽi jkl . Note that, by construction, these edges
correspond to quadruplets of vertices in the original graph that are
connected by sequences of three edges. We define the cost of each
such edge as

C(ẽi jkl) = facc(ei j)+ fcont(ei j , ejk)+ωcv fcv(ei j , ejk , ekl)+ fsimp(ei j)

The shortest cycle on this graph defines a cycle on the original graph
that minimizes the polygon cost C(P).

5 SPLINE FITTING
The second stage of our algorithm fits a closed, piecewise smooth
spline S to the extracted polygon such that the resulting outline
is perceptually consistent with the input raster boundary R. Com-
puting this fit requires solving for several sets of variables: the
sequence of primitives (defined by their type) that jointly define the
spline, the mapping between the primitives and the raster boundary
segments they fit to (specifically the correspondences between prim-
itive endpoint and raster boundary locations), and finally the shape
parameters of these primitives (control point locations). Methods
such as [Hoshyari et al. 2018] iteratively update the different sets
of variables through trial and error until a satisfactory solution is
found, a highly time-consuming process. We uncouple the compu-
tation of the three sets of variables and enable a fitting method that
is both effective and fast by utilizing the geometric information
provided by the intermediate polygon.

We recall that both the polygon and the spline are
expected to accurately approximate the input raster
and that the tangents of the intermediate polygon
edges are expected to strongly correlate with the tan-
gents of the final spline. In particular, we expect the
spline to pass close to polygon-edge midpoints and
for spline tangents in the vicinity of these midpoints to be similar to
the edge tangents. This observation suggests using edge midpoints

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting • 77:7

(a) Single-Curve (b) Curve-Line (c) Line-Line

Fig. 7. The three primitive configuration types used for a polygon section
around a corner. Control points shown as disks.

(a) Raster Input (d) Fitted Spline (e) Vector Output(c) Corner Classification(b) Polygon

Fig. 8. (a,b) raster input and fitted polygon; (c) corner classification (single
curve - orange, curve-line - grey, line-line red), (d) final fitted spline with
curves colorized based on type, (e) vector output.

as natural G2 transition points between primitives and constrain-
ing primitive tangents at these midpoints to align with polygon
edge tangents. In the following, we refer to each polygon section
between consecutive midpoints as a polygon corner (see inset green)
and denote their corresponding raster segments and spline sections
as corner segments (purple) and corner sections (orange), respectively.
We further note that both polygonal and spline fits are expected to
provide a similar balance between continuity and simplicity. Thus,
we expect corner spline sections to be at least as continuous as
their matching polygon corners (namely to have at most one C0

discontinuity) and expect them to respect the upper bound on the
number of primitives imposed by the polygon corner (i. e., two).

Following these observations, we identify three corner-spanning
primitive configurations that reflect all different balance choices
between simplicity and continuity and that satisfy the criteria above
(Sec. 5.1, Fig. 7). We obtain the sequence of primitives that best
approximates the input raster boundary by searching for the primi-
tive configurations at all polygon corners that are best aligned with
human expectations. We note that assessing all possible primitive
configurations over the entire spline at once is intractable as the
runtime would grow exponentially with the number of polygon
corners. Instead, we successfully compute the desired primitive se-
quence by assigning a primitive configuration to each spline corner
section independently using a learned classifier (Sec. 5.2, Figs. 5d,
8b). To perform the classification we fit the three different primitive
configurations to each polygon corner and measure the compatibil-
ity of each configuration to this polygon corner and its underlying
raster segment across a number of criteria. These measurements are
then used as input for the classifier that determines the best con-
figuration. The local spline fits we use to obtain the measurements
balance tangent and positional accuracy terms subject to different
boundary conditions as discussed in Sec. 5.3. Given the finalized
sequence of primitives, we compute a globally consistent spline
that balances accuracy, tangent alignment, and fairness (minimal
curvature variation) by optimizing the control points of all curve
primitives (Sec. 5.3, Fig. 8d).

Unrestricted Fixing right endpoint Fixing left endpoint

Unrestricted

Input Raster Image

Vector OutputFixing right endpoint Fixing left endpoint

single-curve single-curve single-curve

curve-line curve-line curve-line

Fig. 9. Representative fits used to assess the suitability of the single-curve
(top row) and curve-line (bottom row) primitive configurations. From left to
right: basic boundary constraints, fixing left endpoint, fixing right endpoint.

5.1 Primitive Configuration Candidates
We expect the primitive combinations fit to each corner to be at
least as continuous and as simple as the polygon corners themselves.
Thus we enforce the spline corner sections to have at most one dis-
continuity and to consist of at most two primitives. We require the
spline shape to mimic that of the corresponding polygon corner:
spline tangents at section endpoints should be similar to the corre-
sponding edge tangents and the spline tangent near the polygon
corner should be close to the linear average of these two tangents.
These expectations lead us to use the following local fitting primitive
combinations for each spline corner section (Figure 3): (1) a single
cubic Bézier curve whose tangents approximately linearly interpo-
late the end-point and corner tangents (the most continuous and
simple but potentially least accurate solution); (2) a pair of straight
lines aligned with the endpoint tangents (simple, sufficiently accu-
rate, but discontinuous solution); and (3) a curve-line combination,
where one Bézier curve end point is placed next to the midpoint
closest to the corner and the other is placed symmetrically along
the other edge, the line’s tangent matches the midpoint tangent,
and the Bézier curve smoothly interpolates between the midpoint
tangents. The last alternative has the same primitive count as the
polygon corner, is G1 continuous, and is likely to be somewhere
between the other two primitive combinations in terms of accuracy.

5.2 Primitive Configuration Classification
Our overall goal is to produce a spline that best balances smoothness,
simplicity, and accuracy with respect to the input raster. To find
such a spline, during classification we consider the configuration
types using an ordering that prioritizes continuity over simplic-
ity. Whenever possible, we use the single-curve configuration and
downgrade to line-curve, and subsequently to line-line only when
the first attempted fits are deemed inadequate.
When assessing adequacy locally, we lack the global context

(position and tangent boundary conditions at section endpoints
) that comes into play when fitting an entire spline. To account
for the global nature of the fitting problem when determining the
adequacy of each primitive configuration, instead of only assessing
one possible fit, we examine three representative fits – each with
different boundary conditions; we then base our decision on the
measurements taken across all three fits.

In the first representative fit, we allow both section endpoints to
move orthogonally to their corresponding polygon edges and fix

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

77:8 • Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer

the end tangent directions to those of the polygon. In the other two
fits, in addition to these constraints, we fix either the left or right
endpoint position to the respective polygon edge midpoint. Jointly,
these three options account for plausible additional constraints that
are imposed by neighboring corner sections during the global fit.
Figure 9 shows these representative fits for an example model.

We use these representative fits to obtain a list of features, which
we then utilize to categorize the configurations for each corner
section into adequate and inadequate using a random forest clas-
sifier [Breiman 2001]. We use the Random Forest implementation
provided by Andres et al. [2016]. The classifier receives features
from all representative fits at the same time and produces a single
binary label. In selecting the features, we seek to account for cues
human observers are likely to use during mental vectorization.
(1) For each smooth fit we include its accuracy (computed as

described next) as well as the difference between the accuracy of
the smooth and underlying polygonal fits (6 values). We speculate
that both the absolute and relative accuracy play a role – viewers
would be more likely to discard a fit if it is objectively inaccurate,
or if it is far less accurate than the less continuous alternative.
(2) We also include the maximal curvature along each fitted spline
(3 values). We expect viewers to prefer less continuous but lower
curvature solutions when the curvature of the continuous solutions
grows.
(3) Lastly, we provide the polygon corner angle itself (1 value), as
we expect it to strongly correlate with viewer’s mental balance of
continuity and simplicity.

This choice gives a total of ten features, from which the classifier
computes its categorization. Notably, we do not provide the clas-
sifier with internal details of the fit such as the specific primitive
configuration or raster resolution. This makes the categorization
independent of any specific fitting strategy, and uses a common
coordinate frame defined by the raster resolution across all image
sizes, and thus more general and robust.
In measuring accuracy, we perform a more fine-grained anal-

ysis than in the polygon fitting stage. We measure both the de-
gree to which the vector output violates the in/out pixel-center
classification imposed by the raster boundary and the actual dis-
tance between the raster and the vectorization or polygon fits. This
fine-grained measurement is motivated by the WYSIWYG prin-
ciple, which indicates that humans prefer interpretations closely
aligned with the data observed [Wagemans et al. 2012]. More specif-
ically, for each pixel edge on the corresponding raster boundary,
we use the axis-aligned distance of its midpoint to the
vectorization or polygon edge as the pixel’s accuracy
measure if the pixel center is correctly classified with
respect to the line or spline (see inset top pixel). If
the pixel has the wrong in/out center classification,
we consider the Euclidean distance between the pixel
center and the vectorization or polygon edge (Eq. 1) (see inset bottom
pixel). More formally, given the axis-aligned distance from the pixel
midpoint d⊥ and the Euclidean distance from the pixel center d↗:

d =

{
d⊥ if center classification is correct
0.5 + d↗ otherwise.

(6)

Unrestricted Fixing right endpoint Fixing left endpoint Labels

Fig. 10. Training model with representative fits for the Curve configuration
type (first three columns) with annotations (last column). The fits for each
corner in the polygon can be Adequate (red), Inadequate (red) or missing
due to regularities (gray).

Note that this accuracy metric allows a simple test to determine
if the pixel center classification is correct (by comparing with 0.5).
Given this per-pixel accuracy metric, we define the vectorization’s
or polygon edge’s accuracy as the maximum over all corresponding
raster pixels.

We use the classifier to determine if each of the curve and curve-
line configuration is adequate (we view the line-line as the fallback,
always adequate option). If the curve configuration is deemed ad-
equate we use it, otherwise we fall-back to the curve-line if it is
deemed adequate, and fallback to line-line otherwise. In cases where
the classifier deems the curve configuration as adequate but with a
low confidence (probability < 75 %), we select the curve-line config-
uration if it is deemed adequate with a high confidence (probability
≥ 75%). We found that using confidence in addition to the binary
decision leads to more robust classifications.
After finding the primitive types for each section, we perform a

global spline fit (Section 5.3). We perform a final adequacy check on
this global fit by feeding the actual fit measurements to our classifier
(as three equal representative fits). If the classifier deems any of
the corner sections inadequate, which can happen occasionally due
to the more accurate boundary conditions, we replace the corre-
sponding section configuration with the next one in our preference
order.

Training and Validation. We trained a forest with 100 trees on
manually annotated polygon corners across 23 input images at
different resolutions, exhibiting a wide variety of geometric config-
urations. Figure 10 shows an example of a training model with a red
or green label for inadequate and adequate Curve fits, the complete
set is provided in the supplementary material. Thanks to the generic
design of our feature space, this small training dataset is sufficient
to train a robust classifier, in contrast to Hoshyari et al. [2018], who
require more than 100 annotated input images and train separate
classifiers for different resolutions.
Our training does not limit the depth of trees in the random

forest; however, in practice it produces naturally compact trees
with an average of 40 leaves per tree, which is further evidence
that the description of corner fit properties using the proposed
features generalizes well. This observation is further supported
by the validation test we performed on the classifier. From all the
samples we annotated, we use 50% for training and 50% for testing.
Our trained classifier achieves an accuracy of 99.3% on the test data
set. In addition to a random forest, we also performed tests with a
linear classifier and a multi-layer perceptron (MLP) neural network.

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting • 77:9

Both achieve very similar classification precision on our test set
with only one misclassification more than the random forest. We
chose the random forest because it is relatively simple, expressive,
and robust, and unlike MLP, requires little parameter tuning and no
feature normalization.

5.3 Spline Shape Optimization
Our framework performs two types of spline fitting: individual
per-corner section fits using different primitive combination are
computed during the corner classification stage, and a global fit
of a known (closed) sequence of primitives is performed at the
end to produce the final result. We first explain how we model the
individual classification fits and then describe the modifications for
the final fit.
When computing the per-corner fits, we seek spline degrees of

freedom (i. e., control points) that minimize the following objective
function:

argmin
S

Fs (S) = ωsacc · fsacc(S) + ωtang · ftang(S)

s.t. G1 continuity between consecutive primitives,
(7)

where fsacc promotes proximity to the input raster and ftang
promotes alignment with polygon tangents. We solve this prob-
lem using the Levenberg-Marquardt algorithm[Nocedal and Wright
2006] while enforcing constraints by appropriate elimination of
variables.

Initialization. The iterative Levenberg-Marquardt algorithm re-
quires an initial guess. Furthermore, as we outline below, we define
the constituent energies based on a set of reference primitive curves.
For both purposes, we require a set of initial curves that is suffi-
ciently close to the optimal solution. We find these initial curves
using an analytic construction described in Appendix B.

Accuracy Energy. To assess a spline’s accuracy, we sample the
raster boundary corresponding to the spline at pixel midpoints
M , and measure the distances from these samples to the spline.
For an efficient optimization, we project all midpoints onto the
initial curves, resulting in pairs of points and corresponding curve
parameter values (p, t). We then linearize the objective, setting

fsacc(S) =
1
|M |

∑
(p,t)∈M

(S(t) − p)2 (8)

This energy promotes closeness to the raster boundary. Since the
raster is only a very coarse approximation of the vectorized shape,
we assign a relatively small weight of ωsacc = 0.01.

Tangent Energy. We employ a similar sampling-based approach to
promote tangent alignment. We define a tangent objective where we
prescribe tangents at polygon edge midpoints, corners, and between
them. To this end, we first calculate an equidistant sampling T of
the initial curves and assign target tangents that we derive from
linearly interpolating the nearest midpoint and corner angles using
arc length. Dense even sampling provides better control over the
spline shape compared to sampling at projections of pixel corners
or midpoints which is by default less even and often more sparse.

(a) Raster Input (c) Fitted Spline (d) Recomputed
 Polygon

(e) Final Fitted
 Spline

(f) Vector
Output

(b) Original
Polygon

Fig. 11. Left to right: raster input, polygon (with accidental edges high-
lighted), fitted spline, simplified polygon, and final fit.

We gather these tangents T consisting of tangent directions d and
parameter values t and set

ftang(S) =
1
|T |

∑
(d ,t)∈T

(
ÛS(t) ÛS(t) − d

)2
(9)

Since these tangents are much more indicative of the expected
vectorization than the raster samples, we assign tangent alignment
a significantly higher weight of ωtang = 1.

Final Fit. The goal of the final fit is to produce a fitted spline
consisting of a known set of primitives that best balances accuracy,
tangent alignment, and simplicity (minimal curvature variation). To
account for simplicity across all primitives we augment the opti-
mized energy Fs (Eq. 7) with an additional shape energy term fshape
which minimizes curvature variation across all curve primitives and
enforces soft G2 constraints between them:

fshape(S) = ffair(S) + fG2 (S) (10)

We measure curvature variation using the discretization presented
by Lu et al. [2018] (ẼCV E , Equation (8)) and sum over all Bèzier
curves ffair(S) =

∑
b ∈S ẼCV E (b). To target G2 continuity, we find

all spline parameter values TG2 at which two Bèzier curves meet
and penalize curvature differences:

fG2 (S) =
∑

t ∈TG2

(
κS (t−) − κS (t+)

|κS (t−)| + |κS (t+)| + ϵ

)2
, (11)

where κS (t−) and κS (t+) are the left- and right-sided curvatures at
t , respectively, and ϵ = 10−3 is a small number to avoid division
by zero. Note that the summands of fG2 are approximately 1 when-
ever the two curvatures have opposite signs. This reflects the desire
to penalize curvature differences for curves with the same sign as
reducing those improves curve simplicity. In inflection scenarios,
however, the change in sign by itself is already disruptive and the
degree of disruptiveness does not significantly change as the cur-
vature magnitudes change. For the shape energy, we set a weight
ωshape = 0.1 that is between ωacc and ωtanд .

Corner Feedback Loop. Our polygon computation aims to maxi-
mize continuity and minimize curvature change across all polygon
corners. Thus, once our classifier determines theC0 corners we could
theoretically rerun the polygon computation to obtain a simpler
solution by not optimizing either criterion at such discontinuous
corners. However, such iterative processing is both time-consuming
and, in general, unnecessary as it rarely impacts the cycle choices. In
our experiments the only instances where such iterated processing
meaningfully impacted the results were when the C0 corner was
adjacent to short (two pixel or less) edges. Even in these cases the
impact on the cycle was limited to the immediate vicinity of the

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

77:10 • Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer

Raster
Input

(a) (e) (f)(d)(c) Raster
Regularities

Polygon
Regularities

Symmetry

Parallel Orthogonal

Continuation

Unregularized
Spline

(g) Final Regularized OutputRegularized
Polygon

(b)Unregularized
Polygon

Fig. 12. We first identify raster regularities (a) and use them to modify the
unregularized polygon (b) producing amore regular polygon (e).We combine
detected raster regularities with regularities detected on the polygon (f) to
regularize the output spline (g).

corners. Consequently, to avoid expensive and redundant recompu-
tation once corners are detected, we only adjust the cycle locally
and only in the presence of accidental edges (ones of length two or
less). In this local path computation, we fix all polygon edges except
a small neighborhood of three edges around the accidental edge. We
then run a shortest path extraction on the graph G between these
bounding edges with a modified cost (Eq. 5) that does not include
continuity and curvature variation costs across the C0 corner and
recompute the spline fit (Figure 11).

6 REGULARIZATION
Perceptual and graphics research suggest that human observers rec-
ognize regularities in input data, and expect those to be preserved
during fitting or vectorization [Hoshyari et al. 2018; Li et al. 2011;
Mehra et al. 2009]. We therefore aim to preserve input regularities
in our final output. Similar to prior work [Hoshyari et al. 2018; Li
et al. 2011; Mehra et al. 2009], we focus on symmetries, parallelism,
continuations, and axis-alignment. To differentiate between acci-
dental and non-accidental raster and polygon level regularities, we
only consider axis-aligned edges in the regularity computation if
they are at least two pixels long. When regularity conflicts with
accuracy or simplicity, we prioritize regularity over the other cues,
unless stated otherwise. Since regularity enforcement needs to be
exact, regularities cannot be addressed by adding soft terms to our
polygon of spline fitting energies. Instead, we enforce regularities
at the polygon level using a combination of graph pruning and
polygon modification. At the spline level, we enforce regularities in
two ways: we modify the primitive configuration classifications to
reflect detected regularities, and add hard constraints to the final fit
optimization when necessary. To keep our classifier training robust
and general, we remove all samples from the training and test data
set that are affected by regularities that impact classification.

Orthogonal and Axis-Aligned Edges. We orthogonalize polygon
corners where one edge is non-accidental and already axis-aligned,
if this operation does not decrease accuracy, or simplicity (measured
via inflection count). During fitting, we make axis aligned edges
whose lengths are at least 50 % of the extent of the respective bound-
ing box side more prominent by disallowing the use of (single) curve
primitive configurations for the two incident polygon corners (thus
forcing the method to use the curve-line or line-line configuration
along these edges).

Parallel Edges. We detect and enforce prominent axis-aligned
parallel edges present in the raster input (we consider the edges
as prominent if the distance between them is no longer than their

overlap length) if the parallelism constraint is unenforceable at the
fitting level otherwise (i.e. their slopes are not a priori in the same
quadrant).

In the fitting stage, we classify edges as parallel using the distance
criterion above and an angle threshold of 20° [Hess and Field 1999],
and constrain the tangents of line segments corresponding to these
polygon edges to the average polygon edge direction. Furthermore,
to account for distinctly visible translational symmetries, if a pair
of parallel edges is connected by exactly one other polygon edge,
we make the primitive configurations of this edge’s corners equal
(choosing the lower continuity one if they differ).

Symmetries. Raster data can only capture exact symmetries whose
reflection planes have an orientation of integer multiples of 45°. We
detect and attempt to enforce all such symmetries at the polygon
level. If two raster symmetries conflict, we prioritize symmetries
present a priori in the unregularized polygon, and prioritize longer
symmetric boundary paths over shorter ones. We prioritize simplic-
ity over symmetry, since raster symmetries are inherently noisy.
In the fitting stage, we equalize section classifications for polygon
corners that are associated to each other via a raster symmetry by
downgrading the one with higher priority. Further handling in the
final fitting stage is not necessary as symmetric fits emerge naturally
from the fitting formulation.

Continuations. Continuations [Wagemans et al.
2012] are parts of a boundary that are interrupted
by a protrusion or other part that does not logically
belong to the base shape (see inset). In all such cases,
viewers expect the interrupted curve to be continuous at the ex-
pense of making the vector outline discontinuous at protrusion
end-points. We detect and enforce continuations both at the raster
level (axis-aligned) and at the polygon level (arbitrary orientation).
We preserve axis-aligned continuations at the

raster level, when the edges incident to the participat-
ing corners are non-accidental by forcing all cycles
to pass through the continuation vertices.

We detect continuations of arbitrary orientation using the empty-
circle and same-line test from [Hoshyari et al. 2018]. Instead of only
considering pairs of closest concave corners, we follow perception
literature [Field et al. 1993] and allow continuations between all
pairs of concave corners if the continuation does not exceed a total
angle of 60°. While locating continuations, we also consider those
that would result from moving polygon corners by one pixel in
either direction along the raster boundary. We greedily choose the
continuations that result in flatter continuation angles and relocate
the polygon vertex if a continuation with an offset was chosen,
effectively aligning the vertex pair connected by the continuation
to each other. In the final fitting stage, since the protrusion is effec-
tively separated from the base shape by the continuation, we assign
the line-line primitive configuration to the participating polygon
corners.

7 MULTICOLOR INPUTS
For simplicity, our description so far addressed the baseline scenario
of a drawing consisting of two uniformly colored regions separated

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting • 77:11

(a) Raster Input (b) Separate Region Vectorizations (c) With Junction Resolution

Fig. 13. Multicolor input processing: (a) raster input, (b) result of processing
each region boundary independently, (c) our result with consistent junction
resolution.

by a single closed boundary. Real-life images however typically
contain multiple colored regions.
When extending our framework to handle such data, we need

to ensure fitting consistency along shared boundaries, and in par-
ticular resolve junctions where more than two regions meet. To
enforce these constraints at the polygon level, we first constrain the
polygons to go through the junctions. We apply this constraint for
each region independently by adding junction vertices to the graph
vertex setV , even if these are flat, and removing all graph edges that
bypass them. We then unify the polygon subpaths between junc-
tions shared by pairs of regions, by selecting the subpath candidate
with lower polygon cost (Eq. 5) and using it for both regions. This
process results in a consistent polygonal network that approximates
the input raster.
We compute the spline primitive classifications for each region

separately and then enforce the following consistency rules. We ob-
serve that at both valence three and valence four junctions (the only
two possible on raster data) we can have at most two continuous
spline pairs. Thus if a region classifies the junction as a smooth prim-
itive configuration type (either single-curve or curve-line), at least
one neighboring region needs to classify it as a line-line (C0 corner)
configuration. We further note that adding flat vertices to the poly-
gon edge graph, can generate false positives, making the polygon
appear smoother than it is. We therefore allow two neighboring
regions to both classify the junction as a smooth configuration only
if vectorizing the regions separately would generate a polygon that
uses the junction as a vertex with a smooth configuration type. If
this is not the case, we view the smooth configuration as likely
false positive and only allow at most one of the two neighboring
regions to be classified as smooth. In practice, we found that this
criterion can be approximated to a sufficient degree of accuracy by
testing if the polygon edge incident to both regions is axis-aligned.
If any of the above criteria are not fulfilled, we adjust the section
classification of the most acute polygon section around the junc-
tion to the line-line configuration until all criteria are met. For all
other valence-2 sections shared between two regions, we unify their
classifications by picking the less continuous one if they differ (this
can happen due to different regularities being present in the two
regions).
Finally, we perform a global fit for

all primitives across all regions. We con-
strain primitives along the same polygon
subpaths away from the junctions to have
the same geometry for both regions. To produce awater-tight output,
we replace line primitives of a line-line configuration of a junction
section with the primitives of a neighboring smooth fit (see inset,
black lines denote polygon edges, black dots denote edge midpoints).

This junction resolution still adheres to the continuity choices made
locally and guarantees gap- and overlap-free vectorizations.

8 RESULTS AND VALIDATION
We have tested our method on 143 diverse inputs, including both
man-made and organic clip-art shapes, across a range of resolu-
tions. 43 of these are shown in the paper and the rest are included
in the supplementary material. We assessed its performance on
inputs used by the closest prior method of [Hoshyari et al. 2018],
as well as on 86 new inputs collected from numerous repositories
(e. g., Figures 14, 16). Our test set contains 52 images consisting of
two regions separated by a single closed boundary as well as 91
multi-color examples. For images with large single color regions,
simply enforcing accuracy is often sufficient to generate adequate
vectorizations [Hoshyari et al. 2018]. Thus, the more sophisticated
mechanism proposed in our work is most necessary for vectorizing
low- to medium-resolution data, where accuracy alone is not a suf-
ficient criterion. Our test-set is consequently dominated by inputs
with region resolutions below 100 × 100, with many inputs at low
resolutions of 32 × 32 and less. Visual inspection confirms that our
results are consistently well aligned with viewer expectations.

Comparison to Prior Work. We quantitatively asses our results
by comparing them to algorithmic alternatives via a comparative
perceptual study. Study participants were shown input images, to-
gether with our result and an alternative or ground truth result
using the following layout. The input was shown at the top and
marked as ‘A’, and the two vectorizations were placed at the bottom
and marked as ‘B’ and ‘C’. Participants were then asked to select the
result that resembles the input the most: “Which of the two images
on the bottom ‘B’ or ‘C’ better represents image ‘A’? If both are
equally good then select ‘Both’, and if neither represent ‘A’ then
select ‘Neither’ ”. The answer options were “B”, “C”, “Both”, and
“Neither”. We collected answers for each query from ten different
participants using the protocol described in Appendix A. The re-
sults of the study are detailed next. All study data is provided in the
supplementary.
In the study, we compared our results to those produced by the

two most highly ranked methods in the recent study of Hoshyari
et al. [2018] across 81 inputs (Potrace [Selinger 2003], and [Hoshyari
et al. 2018]). For completeness, we also included 28 comparisons to
the popular method of [Kopf and Lischinski 2011] on low-resolution
color data, the target domain of their method, plus the simple ex-
amples in Figure 2. The test dataset consisted of 37 inputs with a
single region boundary, 28 low-resolution multi-color inputs, and
16 multi-color inputs of medium to high resolution. We used default
parameters for all methods. Representative examples of all meth-
ods across different resolutions are shown in Figures 1, 2, and 14.
Our comparisons focus on inputs with region resolutions of up to
100 since, as noted earlier, for higher resolutions, fitting accuracy
dominates all other cues, with all methods producing fairly similar
results. At lower resolutions, however, especially 16 × 16 and below,
our method clearly dominates the alternatives and was preferred
in 94% of the cases over the results of [Hoshyari et al. 2018]. We,
furthermore, conducted a t-test on the study results, which shows

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

77:12 • Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer
[H

os
hy

ar
i

et
 a

l.
20

18
]

O
ur

s
[S

el
in

ge
r

20
03

]
R

as
te

r
In

pu
t

[Hoshyari et al. 2018] Ours[Selinger 2003]Raster Input

[H
os

hy
ar

i
et

 a
l.

20
18

]
O

ur
s

[S
el

in
ge

r
20

03
]

R
as

te
r

In
pu

t

Fig. 14. Comparison of our method across inputs of various resolutions (please zoom in to see details). Candle, arc and Taj Mahal input images ©IconScout —
www.iconscout.com

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

[Hoshyari et al. 2018]

Potrace [Selinger 2003]

[Kopf and Lischinski 2011]

ours both
other neitherVote Percentage

Fig. 15. The percentages of user preference in our study. Each row shows
the results of comparing our results to those of the respective alternative
method.

that our method’s improvement over each of the prior methods is
highly statistically significant.

Comparisons to Manual Vectorization. Manually vectorizing multi-
color inputs is extremely time consuming (as a single region takes
over 30 minutes to fit accurately [Hoshyari et al. 2018]). We conse-
quently only test our method against 15 vectorized binary images
provided by the authors of [Hoshyari et al. 2018]. Figure 17 shows
three side-by-side comparisons of artist-created and our results. All

artist images are included in the supplementary material. Overall,
participants ranked our results as on par or better than those cre-
ated by the artist 55% of the time. When analyzing the inputs on
which artist results were ranked as superior (e. g., Figure 17c) we
conjecture that this preference is due to recognition - as the artist
outputs reflect the author’s knowledge of the depicted shapes.

Non-Uniform Shading. Our focus is on inputswith distinct, uniquely
defined boundaries, thus our examples are dominated by inputs
where each region has a uniform color. However, many clip art
images have varying shading near inter-region boundaries, e. g.,
due to anti-aliased rasterization (Figure 18a). In this case identifying
the optimal location for the boundary itself, becomes a challenge.
To extend our method to handle such data we modify the graph
construction and accuracy terms used for polygon extraction and
smooth fitting.

We compute region boundaries to use as a starting point for our
algorithm, as follows. We observe that the region boundary we use
for binary data is an isoline at the average color of two neighboring
regions. This definition directly generalizes to non-uniformly shaded
data. We locate all intersections of the isoline with the pixel grid,
similar to the first stage of the Marching Squares algorithm. Since

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting • 77:13

Fig. 16. Additional multi-color results across multiple resolutions. Building
image ©IconScout — www.iconscout.com

Input Raster Artist Ours 0%

25%

50%

75%

100%

P
re

fe
re

nc
e

P
er

ce
nt

ag
e

ov
er

 a
ll

In
pu

ts

ours
both
artist
neither

1
0
9
0

4
4
2
0

2
7
1
0

Fig. 17. Comparison against artist-produced vectorizations (left) and the
distribution of votes from our user study (right). While viewers preferred
our results on the top two inputs, they preferred the artist result on the
raster axe (inset numbers).

(a) Raster Inputs (b) Vectorizations

Fig. 18. Vectorizations (right) of raster inputs (left) with fuzzy (anti-aliased)
boundaries.

the rest of our algorithm expects axis-aligned boundaries, and in
order to preserve sharp features, we then connect these points with
axis-aligned edges to form each region boundary.
Our accuracy term (see Section 4.1) is based on the in-out parti-

tioning of pixels imposed by a graph edge and intuitively measures
the distance that a pixel has to bemoved to lie in the correct partition.

In
pu

t
R

as
te

r

R
es

ul
t

w
it
ho

ut

O
ur

 r
es

ul
t

In
pu

t
R

as
te

r

R
es

ul
t

w
it
ho

ut

O
ur

 r
es

ul
t

In
pu

t
R

as
te

r

R
es

ul
t

w
it
ho

ut

O
ur

 r
es

ul
t

,

Fig. 19. Polygon ablation study: (Top three rows) Raster input (left), poly-
gons and vectorizations obtained without using accuracy, smoothness, or
simplicity cues (middle), and our result using the full energy.

+ 50%

- 50%

Reference

Fig. 20. For each term in Eq. 5 (columns) we show the polygon obtained
using the reference weights (row four), increasing each energy’s weight by
50% (row five) and decreasing it by 50% (last row).

In non-uniformly shaded inputs, this partitioning is
not binary but continuous: the line imposes a linear
color gradient between the region colors onto the
pixel space (see inset).
Using this imposed gradient, we can equivalently

define the pixel accuracy as the distance to the closest
location whose imposed line gradient color equals the pixel color.
Since the gradient bandwidthb depends on the rasterization method,
we use separate per-pixel estimates that we derive from the pixel
color and its distance d to the isoline: b = d · 1

2∆c , where ∆c ∈ [0, 0.5]
is the pixel color difference to the isoline color, normalized by the
region color difference. Doing so, we achieve zero accuracy error
for lines that coincide with the isoline. Equivalently to the uniform
shading case, the accuracy error of a graph edge is the maximum
pixel accuracy error of all pixels around the isoline whose color is
not one of the two region colors.
For the accuracy term in spline fitting (8), equivalently to the

uniform shading case, we sample midpoints of region boundary
edges and use those points in the respective accuracy formulations.

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

77:14 • Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer

Reference

Raster

x

x

Fig. 21. For each term in Eq. 7 we show the final fit obtained using the
reference weights (row two), decreasing each energy’s weight to one third
(row three) or increasing each energy’s weight three times.

(a) Input Raster (b) Polygon (c) No Single-Curve (d) No Curve-Line (e) Our Result

Fig. 22. Fitting ablation study: Raster input (a), polygon (b), and vectoriza-
tions obtained without using one of the primitive configurations (c-d) and
our result (e) using all configurations

Ablation Studies. Figures 19, 21 and 22 show the impact of the
different energy terms in our optimized functions. The three rows
in Figure 19 show the impact of dropping one of our three per-
ceptual cues (accuracy, smoothness, simplicity) on the intermediate
polygons. Figure 20 show the impact of reducing and increasing
the weight of the terms corresponding to each cue by 50%. Increas-
ing accuracy promotes closeness to the boundary, resulting in a
polygon matching the raster boundary more closely. Increasing the
continuity term results in flatter angles being preferred over more
raster-aligned ones (e.g., plug’s cord). Reducing the incentive to
minimize curvature variation produces sharp features instead of
smoother ones (e.g., turtle feet). Finally, simplicity proportionally
affects the presence of short edges. Figure 21 show the impact of
reducing (one third) and increasing(thrice) the weight of the terms
used in the smooth fitting. The reference weights (third column)
has fits better balancing the different energies, but the changes in-
troduced in the first and second column are overall minor. Figure 22
shows the impact of reducing the number of primitive configura-
tions. As demonstrated, the outputs produced with all features in
place are significantly better than the alternatives.

Performance. Our method takes 0.5 and 1.2 seconds to vectorize
a single region at resolutions of 32 × 32 and 64 × 64, respectively
(medians across our binary dataset). The majority of the runtime is

Fig. 23. Vectorization of segmented photographs from the MSRA10k
dataset [Cheng et al. 2015]: (left to right) photo, segmentation output,
vectorization.

Input Raster [Hoshyari et al. 2018]
Preferred 7/10 times

Ours
Preferred 2/10 times

Input Raster [Selinger 2003]
Preferred 6/10 times

Ours
Preferred 3/10 times

[Hoshyari et al. 2018]
Preferred 7/10 times

Input Raster Ours
Preferred 2/10 times

(A
) (B

)
(D

)(C
)

Input Raster [Hoshyari et al. 2018]
Preferred 8/10 times

Ours
Preferred 2/10 times

Fig. 24. Representative pairs of our and alternative method outputs where
our results were consistently judged as inferior and the respective user
preferences.

distributed approximately equally between the initial spline fitting
and the subsequent corner feedback loop. The polygon extraction
stage takes on average between 10% and 20% of the total runtime
and increases as more regularities are present in the input, which
require more regularization work on the polygon. The times are
measured on an 8th Generation Intel Core i7 CPU at 3.7 GHz. These
times are dramatically faster than those of [Hoshyari et al. 2018]
who take on average between 30 and 50 times as long.

Natural Inputs. While our method is designed for clip-art we
had tested it on pre-segmented photographic images (Figure 23).
While the generated results are less regular, they appear overall well
aligned with observer expectations.

Limitations. Since our goal is to produce results aligned with hu-
man perception, we consider it a failure when viewers consistently
prefer an alternative result over ours. Across all the comparisons
made our method failed on only 9 inputs; measured as cases where
users preferred the alternative result more often than either ours
or both (see Figure 24 and the supplementary material). Notably,
all but two of these are 32 and 64 pixel black on white silhouette
images that were used by prior work [Hoshyari et al. 2018], which
is optimized for this exact data. There is no clear point of failure for
these inputs – some of the differences can be attributed to different
regularization strategies or different choice of fitting primitives,
while others appear subjective (e.g., Fig. 24 (D)).

Our current implementation only regularizes individual bound-
aries. It achieves inter-boundary parallelism by default for many

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

PolyFit: Perception-Aligned Vectorization of Raster Clip-Art via Intermediate Polygonal Fitting • 77:15

cases. Explicit detection and enforcement of such parallelism would
be an important practical extension of our method. In the future, one
can similarly extend our regularization step to address regularities
between regions, e.g., using continuation detection, complementing
our core method.

9 CONCLUSION
We presented PolyFit a new method for clip-art vectorization, and
demonstrated it to produce results better aligned with user expecta-
tions, compared to the existing alternatives. Our method performs
particularly well on lower resolution data, where individual regions
have dimensions of 32 × 32 or less. Contrary to prior work it does
not require separate training for different resolutions and is signifi-
cantly faster than the closest alternative. Key to the success of our
method is the two-step processing, where we compute a polygonal
fit using a perception-motivated energy function, and then use the
output of this fit as input to a learned classifier, that facilitates our
final vectorization.

Our work opens the door for several interesting follow-ups. Our
method uses simple criteria for detecting and enforcing regularities;
viewer-perceived regularity detection on raster data is an important
stand-alone problem that merits further research. One of the most
interesting problems in this context is detecting human-perceived
regularities between different boundaries and regions. Human in-
terpretation of raster clip-art is likely affected by object recognition;
combining our method with recognition techniques can further
improve vectorization outputs. Our method is sensitive to small
changes in the raster, and to imperfections in regularities such as
symmetries; human observers are capable of looking past such im-
perfections. Extending vectorization to support non pixel-perfect
inputs is an important research direction. Lastly, more work is nec-
essary to robustly handle anti-aliased inputs.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments,
Enrique Rosales and Luciano S. Burla for their help at various stages
of the project. This work has been supported by NSERC. Leonid
Sigal is supported in part by NSERC Canada Research Chair, CIFAR
AI Chair and the Vector Institute for AI.

REFERENCES
Adobe. 2017. Adobe Illustrator 2017: Image Trace. http://www.adobe.com/.
Bjoern Andres, Steffen Kirchhoff, and Evgeny Levinkov. 2016. A Fast C++ Implementa-

tion of Random Forests. https://github.com/bjoern-andres/random-forest
B. Aronov, T. Asano, N. Katoh, K. Mehlhorn, and T. Tokuyama. 2004. Polyline Fitting

of Planar Points under Min-Sum Criteria. In International Symposium on Algorithms
and Computation.

Ilya Baran, Jaakko Lehtinen, and Jovan Popović. 2010. Sketching clothoid splines using
shortest paths. In CGF, Vol. 29,2. 655–664.

Richard Bellman and Robert Roth. 1969. Curve Fitting by Segmented Straight Lines. J.
Amer. Statist. Assoc. 64, 327 (1969), 1079–1084.

Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. 1997. Geodesic Active Contours.

IJCV 22, 1 (1997), 61–79.
Ming-Ming Cheng, Niloy J. Mitra, Xiaolei Huang, Philip H. S. Torr, and Shi-Min Hu.

2015. Global Contrast based Salient Region Detection. IEEE TPAMI 37, 3 (2015),
569–582. https://doi.org/10.1109/TPAMI.2014.2345401

Eagle. 1997. Eagle. http://everything2.com/index.pl?node_id=1859453.
Gerald Farin. 2002. Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann

Publishers Inc.

M. Fatemi, A. Amini, L. Baboulaz, and M. Vetterli. 2016. Shapes From Pixels. IEEE TIP
25, 3 (2016), 1193–1206.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. 2016. Fidelity vs.
Simplicity: a Global Approach to Line Drawing Vectorization. ACM SIGGRAPH
(2016).

David J. Field, Anthony Hayes, and Robert F. Hess. 1993. Contour integration by the
human visual system: Evidence for a local “association field”. Vision Research 33, 2
(1993), 173 – 193. https://doi.org/10.1016/0042-6989(93)90156-Q

M. A. T. Figueiredo, J. Leitão, and A. K. Jain. 2000. Unsupervised contour representation
and estimation using B-splines and a minimum description length criterion. IEEE
TIP 9, 6 (2000), 1075–187.

Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. 2005. Robust Moving
Least-squares Fitting with Sharp Features. ACM TOG 24, 3 (2005), 544–552.

N. Goldberg, Y. Kim, S. Leyffer, and T. Veselka. 2014. Adaptively refining dynamic
program for linear spline regression. Computational Optimization and Applications
58, 3 (2014), 523–541.

Robert Hess and David Field. 1999. Integration of contours: new insights. Trends in
cognitive sciences 3, 12 (1999), 480–486.

Shayan Hoshyari, Edoardo Alberto Dominici, Alla Sheffer, Nathan Carr, Duygu Cey-
lan, Zhaowen Wang, and I-Chao Shen. 2018. Perception-Driven Semi-Structured
Boundary Vectorization. ACM Transaction on Graphics 37, 4 (2018). https:
//doi.org/10.1145/3197517.3201312

Gašper Jaklič and Emil Žagar. 2011. Curvature variation minimizing cubic Hermite
interpolants. Appl. Math. Comput. 218, 7 (2011), 3918–3924.

Xie Jun, Winnemöller Holger, Li Wilmot, and Schiller Stephen. 2017. Interactive
Vectorization. In Proceedings of SIGCHI 2017. ACM.

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active contour
models. IJCV 1, 4 (1988), 321–331.

K. Koffka. 1955. Principles of Gestalt Psychology. Routledge & K. Paul.
Johannes Kopf and Dani Lischinski. 2011. Depixelizing Pixel Art. ACM TOG 30, 4

(2011), 99:1–99:8.
Gregory Lecot and Bruno Levy. 2006. Ardeco: Automatic Region Detection and Con-

version. In EGSR. 349–360.
Yangyan Li, Xiaokun Wu, Yiorgos Chrysanthou, Andrei Sharf, Daniel Cohen-Or, and

Niloy J. Mitra. 2011. GlobFit: Consistently Fitting Primitives by Discovering Global
Relations. ACM TOG 30, 4 (2011), 52:1–52:12.

Yang Liu and Wenping Wang. 2008. A Revisit to Least Squares Orthogonal Distance
Fitting of Parametric Curves and Surfaces. In Proc. Advances in Geometric Modeling
and Processing. 384–397.

Lizheng Lu, Chengkai Jiang, and Qianqian Hu. 2018. Planar cubic G1 and quintic G2
Hermite interpolations via curvature variation minimization. Computers & Graphics
70 (2018), 92–98.

Andrea Mazzoleni. 2001. Scale2x. http://www.scale2x.it/.
James McCrae and Karan Singh. 2008. Sketching Piecewise Clothoid Curves. In Proc.

Sketch-Based Interfaces and Modeling.
James McCrae and Karan Singh. 2011. Neatening Sketched Strokes Using Piecewise

French Curves. In Proc. EG Symposium on Sketch-Based Interfaces and Modeling.
141–148.

Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy J.
Mitra. 2009. Abstraction of Man-Made Shapes. ACM TOG 28, 5 (2009), 137:1–137:10.

J. Nocedal and S. Wright. 2006. Numerical Optimization. Springer New York. https:
//books.google.ca/books?id=VbHYoSyelFcC

Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot,
and David Salesin. 2008. Diffusion Curves: A Vector Representation for Smooth-
shaded Images. ACM TOG 27, 3 (2008).

ScanFont. 2017. Font Lab, http://old.fontlab.com/font-converter/scanfont//.
Peter Selinger. 2003. Potrace: a polygon-based tracing algorithm. In

http://potrace.sourceforge.net.
Steven S. Skiena. 2008. The Algorithm Design Manual (2nd ed.). Springer Publishing

Company, Incorporated.
Maxim Stepin. 2003. Hqx. http://web.archive.org/web/20070717064839/www.hiend3d.

com/hq4x.html.
Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum. 2007. Image Vectorization

Using Optimized Gradient Meshes. In ACM SIGGRAPH. Article 11.
Daniel Sýkora, Jan Buriánek, and Jiří Žára. 2005. Sketching Cartoons by Example. In

Proc. Sketch-Based Interfaces and Modeling. 27–34.
Vector Magic. 2017. Cedar Lake Ventures http://vectormagic.com/.
J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and R

von der Heydt. 2012. A Century of Gestalt Psychology in Visual Perception I.
Perceptual Grouping and Figure-Ground Organization. Psychological Bulletin 138, 6
(2012), 1172–1217.

C. Wang, J. Zhu, Y. Guo, and W. Wang. 2017. Video Vectorization via Tetrahedral
Remeshing. IEEE TIP 26, 4 (April 2017), 1833–1844.

Zhaowen Wang, Ding Liu, Jianchao Yang, Wei Han, and Thomas Huang. 2015. Deep
networks for image super-resolution with sparse prior. In IEEE ICCV. 370–378.

M. Weber and B. Herzog. 2004. Autotrace. http://autotrace.sourceforge.net.

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

http://www.adobe.com/
https://github.com/bjoern-andres/random-forest
https://doi.org/10.1109/TPAMI.2014.2345401
http://everything2.com/index.pl?node_id=1859453
https://doi.org/10.1016/0042-6989(93)90156-Q
https://doi.org/10.1145/3197517.3201312
https://doi.org/10.1145/3197517.3201312
http://www.scale2x.it/
https://books.google.ca/books?id=VbHYoSyelFcC
https://books.google.ca/books?id=VbHYoSyelFcC
http://old.fontlab.com/font-converter/scanfont//
http://web.archive.org/web/20070717064839/www.hiend3d.com/hq4x.html
http://web.archive.org/web/20070717064839/www.hiend3d.com/hq4x.html
http://vectormagic.com/
http://autotrace.sourceforge.net

77:16 • Edoardo Alberto Dominici, Nico Schertler, Jonathan Griffin, Shayan Hoshyari, Leonid Sigal, and Alla Sheffer

Raster Input User s1 User s2 User s5 Polygon Output Vectors

Raster Input User b2 User b4 User b5 Polygon Output Vectors

Fig. 25. Examples of participant-drawn perception study results (b-f) and
our outputs (g) on the same inputs (a). Top: participants were allowed to use
all pixel corners and edgemidpoints as polygon corners. Bottom: participants
were allowed to use the same raster boundary corners/midpoints as our
method.

Tian Xia, Binbin Liao, and Yizhou Yu. 2009. Patch-based Image Vectorization with
Automatic Curvilinear Feature Alignment. ACM TOG 28, 5 (2009).

Guofu Xie, Xin Sun, Xin Tong, and Derek Nowrouzezahrai. 2014. Hierarchical Diffusion
Curves for Accurate Automatic Image Vectorization. ACM Trans. Graph. 33, 6 (2014),
230:1–230:11.

M. Yang, H. Chao, C. Zhang, J. Guo, L. Yuan, and J. Sun. 2016. Effective Clipart Image
Vectorization through Direct Optimization of Bezigons. IEEE TVCG 22, 2 (2016),
1063–1075.

Song-Hai Zhang, Tao Chen, Yi-Fei Zhang, Shi-Min Hu, and Ralph R. Martin. 2009.
Vectorizing Cartoon Animations. IEEE TVCG 15, 4 (2009), 618–629.

A PERCEPTION STUDIES OF POLYGON
APPROXIMATION

Our polygon approximation algorithm is guided by observations
from two small-scale perception studies.
Our first study was designed to address the question of where

humans place corners when approximating raster inputs using poly-
gons. Participants were shown an editing interface for polygon
drawing (see supplementary for UI snapshot and study instructions)
and asked to draw polygons best approximating the raster. The
interface allowed them to place polygon corners at all pixel corners
and pixel edge midpoints. The study included 5 participants and 7
representative, abstract, raster inputs. An example of the polygons
participants drew is shown in Figure 25,top. The rest are included
in the supplementary. Across all inputs the participants chose raster
corners (Section 4) as polygon corners 64% of the time, and chose
edge-midpoint immediately adjacent to those 19% of the time. They
used midpoints of short symmetric two and one pixel edges 10%
of the time. Only 7% of the corners they used were placed in other
locations. Analysis of the cases where participants chose mid-points
next to corners shows that these were largely chosen in pairs as a
proxy for smoothing the corners, a task handled by our subsequent
smooth fitting step. These observations motivated us to use only
raster corners and short edge mid-points as corners for the graph
computation (Section 4), as including more vertices would increase
computation cost and bring few benefits in terms of vectorization
outcome.
The goal of our second study was to analyze the type of edges

humans choose and in particular to observe how they balance ac-
curacy against other cues. The study used a similar interface to
the first one but only allowed participants to place corners at the
locations used by our algorithm. The study included 5 participants
and 14 representative, abstract, raster inputs. Examples of the poly-
gons participants drew are shown in Figure 25, bottom. The rest are
included in the supplementary. 96% of the edges chosen by viewers
were at Manhattan distance of less than 1 from pixel corners. From
all edges, 27% produced pixel center classifications different from

Fig. 26. The filter question for the study. All other questions had a similar
layout

those induced by the raster boundaries where all misclassified pixels
were on the same side, only 1% of edges had misclassified pixels on
both sides of the line. These criteria motivated our choice of edges
to include in the graph and our accuracy term.
As both studies show, while there is some variance between

participant results, overall the shapes they draw are very similar.
Visual comparison of study results to our outputs further reinforces
our algorithmic choices, as our polygons are very similar to the
manually created ones (Figure 25, right).

B SPLINE FITTING INITIALIZATION
When fitting single-curves to corners, we initialize the endpoints
of the Bézier curve to lie on the midpoints of the corresponding
polygon edges. We place the interior control points along the line
segments and derive their distance from the endpoints using the
curvature variation-minimizing scheme of Jaklič et al. [2011]. For
curve-line primitive configurations, we compute a circular arc that
is tangential to the polygon edges and touches the shorter of the
two edges at its midpoint. We then initialize a Bézier curve to ap-
proximate this arc and add a line segment along the longer edge.
We initialize line-line primitive configurations by placing the line
end points at the respective midpoints and corners.

C QUANTITATIVE ASSESSMENT
The study was conducted using the Mechanical Turk interface. Par-
ticipants were shown two example questions, the one shown in
Figure 26, and a second showing a raster square as input and a
square and rounded square as answer options, and the correct an-
swers to those (circle and square). Each participant was then shown
twenty randomly selected queries with each query shown twice
with ”B” and ”C” switched. To filter out inconsistent answer, we
also asked participants the circle example question, the answer to
which they were explicitly shown (Figure 26), and discarded all
answers from participants who answered this question incorrectly.
For consistency with [Hoshyari et al. 2018], we discarded incon-
sistent answers where a user chose different answers to the same
duplicated query and all answers from participants who answered
inconsistently over 60% of the queries. All questions are included in
the supplementary.

ACM Trans. Graph., Vol. 1, No. 1, Article 77. Publication date: June 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Intermediate Polygonal Approximation
	4.1 Graph Construction
	4.2 Optimal Polygon Computation

	5 Spline Fitting
	5.1 Primitive Configuration Candidates
	5.2 Primitive Configuration Classification
	5.3 Spline Shape Optimization

	6 Regularization
	7 Multicolor Inputs
	8 Results and Validation
	9 Conclusion
	References
	A Perception Studies of Polygon Approximation
	B Spline Fitting Initialization
	C Quantitative Assessment

